黄磷尾气催化氧化净化系列催化剂开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了低温微氧催化氧化净化黄磷尾气的相关问题。
     首先,通过载体选择实验、催化剂制备实验、基础实验和优化实验得到了脱磷、脱硫和脱磷硫三种催化剂评估了催化净化的影响因素,并通过再生实验评价了催化剂再生效果。载体选择实验表明,ZP-4活性炭对PH_3和H_2S吸附效果较好,确定ZP-4活性炭为催化剂载体。催化剂制备实验表明,碳酸钠,醋酸铜和盐酸浸渍得到的催化剂,PH_3和H_2S的净化效果可以显著提高;选择盐酸为脱磷催化剂的浸渍液,碳酸钠为脱硫催化剂的浸渍液,醋酸铜为脱磷硫催化剂的浸渍液。基础实验表明,脱磷催化剂净化PH_3时,较合适的盐酸浓度是5%;无氧时为物理吸附,较合适吸附反应温度为20℃,有氧时因化学反应吸附容量提高较大,较合适反应温度为70℃;较合适氧含量为1%。基础实验同时表明,脱硫催化剂净化H_2S时,较合适的碳酸钠浓度是7%;较合适氧含量为0.4%;随着温度的增加脱硫催化剂净化H_2S的效果逐步提高,较合适反应温度为90℃。优化实验表明,脱磷硫催化剂净化PH3时,影响因素的重要性顺序依次为反应温度,氧含量,焙烧温度,浸渍液浓度,气体流量和粒径;实验范围内影响因素的最佳值分别为反应温度95℃,浸渍液浓度0.3 mol/L,粒径3.5 mm,氧含量1%,焙烧温度300℃和气体流量0.4 L/min。优化实验同时表明,脱磷硫催化剂净化H_2S时,影响因素的重要性顺序依次为反应温度,氧含量,浸渍液浓度,焙烧温度,粒径气体和流量;实验范围内影响因素的最佳值分别为反应温度95℃,浸渍液浓度0.3 mol/L,粒径3.5 mm,氧含量1%,焙烧温度300℃和气体流量0.4 L/min。再生试验表明,再生基本可行;再生方案对含磷物质的再生效果比较好,同时再生液中磷酸含量达0.877mg/L,可回收其中的磷酸;再生方案对含硫杂质的再生不甚理想,同时再生液中硫磺回收过程比较复杂,有待于进一步研究。
     接着,通过动力学实验得到了三种催化剂的动力学参数,并评估了内外扩散对催化净化的影响。动力学实验表明,用脱硫催化剂净化H_2S时,平均反应级数为—1,反应的平均活化能为23.77kJ/mol;用脱磷催化剂净化PH_3时,平均反应级数为—2,反应的平均活化能为61.3kJ/mol;用脱磷硫催化剂净化PH_3和H_2S时,平均反应级数分别为-0.8和-0.76,反应的平均活化能分别为1247.6 J/mol和134.4 J/mol。活化能数值初步证明了催化剂净化黄磷尾气是一个化学反应过程。内外扩散过程对反应过程都有重要影响,减小催化剂粒径增加空速可以显著提高脱磷硫催化剂净化PH_3和H_2S的平均反应速率。
     然后,通过现场实验用江磷集团的黄磷尾气对催化剂进行了现场评价,并通过催化剂表征得到了催化剂催化氧化净化黄磷尾气的反应机理。现场实验表明,用脱硫催化剂净化黄磷尾气时,200分钟内各种杂质总含量都低于10mg/Nm~3;脱硫催化剂对H_2S的选择性较好。现场实验同时表明,脱磷硫催化剂净化黄磷尾气时,300分钟内各种杂质总含量都低于10mg/Nm~3;脱磷硫催化剂对H_2S和PH_3的选择性较好。孔径分布分析、热重差热分析和扫描电镜分析,可以初步认为脱硫催化剂和脱磷催化剂净化H_2S和PH_3时,H_2S和PH_3首先与氧在催化剂表面进行催化氧化反应生成硫或硫氧化物和磷或磷氧化物,然后沉积吸附在催化剂表面。X射线光电子能谱分析、热重差热分析和孔径分布分析,可以认为脱磷硫催化剂净化H_2S和PH_3时,H_2S和PH_3首先与氧在催化剂表面进行催化氧化反应生成S和P_2O_5,然后沉积吸附在催化剂表面。
     最后,根据反应机理推导得到三种催化剂的催化净化模型,并用实验数据对模型进行了验证。拟合得到脱磷催化剂和脱硫催化剂模型的参数,其预测PH_3或H_2S的穿透曲线时,相关系数分别可以达到0.99354和0.99136;通过数值计算求解脱磷硫催化剂模型,其预测PH_3或H_2S的穿透曲线时,相关系数分别可以达到0.9976和0.9919。
This thesis is about research and discussion of purification of yellow phosphorus off-gas at low temperature and low oxygen content.
    Firstly, experiments were conducted to select carrier of catalyst, to assess the efficiency of catalyst regeneration, and the influencing factors which were related with purification of yellow phosphorus off-gas. Activated carbon was an efficient adsorbent for both PH_3 and H_2S, and therefore chosen as carrier of catalyst. HCl, Na_2CO_3 and CuAc_2 were selected to be used as impregnants for phosphorus-remove catalyst, sulfur-remove catalyst and phosphorus-sulfur-remove catalyst respectively. When phosphorus-remove catalyst was used to remove PH3, it was 5% and 1% (vol%) for the appropriate concentration of HC1 and oxygen content respectively; and it was physic adsorption in anoxic atmosphere with 20℃ as appropriate temperature, and chemical reaction and adsorption in aerobic atmosphere with 70 ℃ as appropriate temperature. When sulfur-remove catalyst was used to remove H_2S, it was 7%, 0.4% (vol%) and 90℃ for the appropriate concentration of Na_2CO_3, oxygen content and reaction temperature respectively; the higher the temperature was the higher the removal efficiency was. When phosphorus-sulfur-remove catalyst was used to remove PH_3 and H_2S, for PH3 the superiority order was temperature > oxygen content > parch temperature > impregnant concentration (Cu~(2+)) > flow rate > diameter while for H_2S it was reaction temperature > oxygen content > impregnant concentration > parch temperature > diameter > flow rate. And the optimum experiment parameters for both PH_3 and H_2S were reaction temperature, 95℃; impregnant concentration (Cu~(2+)), 0.25 mol/L; diameter of catalyst, 3.5 mm; oxygen content, 1%; parch temperature, 300 ℃ and flow rate, 0.4 L/min. Regeneration of phosphorus-sulfur-remove catalyst was effective for PH_3 but not compelling for H_2S.
    Secondly, experiments were carried out to acquire thermodynamic parameters and to assess the influence of internal and external diffusion on removal efficiency. When sulfur-remove catalyst was used to remove H_2S, it was -1 and 23.77kJ/mol for the average reaction order and average activation energy. When phosphorus-remove catalyst was used to remove PH_3, it was -2 and 61.3kJ/mol for the average reaction order and average
    activation energy. When phosphorus-sulfur-remove catalyst was used to remove PH_3 and H_2S, reaction orders were -0.8 and -0.76 for PH_3 and H_2S respectively; and average activation energies were 1247.6 J/mol and 134.4 J/mol for PH_3 and H_2S respectively. Purification of yellow phosphorus off-gas could be primarily identified as a chemical process through these values of activation energies. Decrease of diameter of catalyst and increase of flow rate could dramatically increase the average reaction rate.
    Thirdly, onsite experiments were conducted to investigate the practical purifying efficiency of catalyst on phosphorus off-gas in Jianglin Corporation; and SEM, TG/DTA, BET adsorption and XPS were used to characterize the performance of catalysts and to illustrate the reaction mechanism. When sulfur-remove catalyst was used to purify phosphorus off-gas, total impurity content was lower than 10mg/Nm~3 in 200 minutes with better selectivity on H_2S. When phosphorus-sulfur-remove catalyst was used to purify phosphorus off-gas, total impurity content was lower than 10mg/Nm~3 in 300 minutes with better selectivity on H_2S and PH_3. Analysis of pore size distribution, TG/DTA and SEM primarily indicates that, during purification, H_2S and PH_3 were firstly reacted with oxygen to produce sulfur and sulfur oxides or phosphorus and phosphorus oxides, and then adsorbed on sulfur-remove catalyst or phosphorus-remove catalyst. Analysis of XPS, TG/DTA and pore size distribution indicates that, during purification, H_2S and PH_3 were firstly reacted with oxygen to produce S and P_2O_5, and then adsorbed on phosphorus-sulfur-remove catalyst.
    Finally, models were established according to reaction mechanism, and calibrated and validated through experiment data. Parameters of models of phosphorus-remove catalyst and sulfur-remove catalyst were attained through fitting of experiment data. When they were used to forecast the outlet concentration, the relativity coefficients were 0.99354 and 0.99136 for PH_3 and H_2S respectively. Model of phosphorus-sulfur-remove catalyst was solved numerically. When it was used to forecast outlet concentration, the relativity coefficients were 0.9976 and 0.9919 for PH_3 and H_2S respectively.
引文
[1] 熊辉,杨晓利,李光兴.次氢酸钠氢化脱除黄磷尾气中的硫磷杂质[J].化工环保,2002,22(3):161~164.
    [2] 宁平,Hans—JOrg Bart,王学谦等.催化氧化净化黄磷尾气中的磷和硫[J].中国工程科学,2005,7(6):27-35.
    [3] 王宏伟,电炉法制磷尾气的综合利用[J],河南化工,1996(3):27~28.
    [4] 罗良均,黄磷尾气在六偏磷酸钠生产中的应用[J],无机盐工业,1997(4):40.
    [5] 曾之平等,黄磷生产尾气净化现状与改进建议[J],无机盐工业,1992(5):28~30
    [6] 魏玺群等,黄磷尾气净化回收新工艺探讨[J],化肥工业,2001(6):29~32
    [7] 冯孝庭主编,吸附分离技术[M],北京:化学工业出版社,2000,第一版:34~55
    [8] 陈平等,变压吸附技术应用小结[J],化肥工业,27卷(2):27~29
    [9] 张建军等,变压吸附二氧化硅的实验研究[J],无机盐工业,2000(6):11~12
    [10] 刘玉琪等,变压吸附脱碳的应用[J],化肥工业,1994(3):46~47
    [11] 冯元琦,我国的变压吸附煤气化技术[J],化肥工业,1994(1):23~25
    [12] 周振戎,变压吸附制纯氧富氧连续气化初探[J],化肥工业,1995(4):43~45
    [13] Golden T.C.et.al,APCI’S COVSA,第七界国际吸附学术会议,巴黎,1998
    [14] 陈中明,武立新等,变温和变压吸附法从黄磷尾气净化回收一氧化碳[J],天然气化工,2001,26卷:24~26
    [15] 熊辉,杨晓利等,次氯酸钠氧化脱除黄磷尾气中的硫、磷杂质[J],化工环保,2002,22(3):161~164
    [16] 吴满昌,宁平等,黄磷尾气净化方法探讨[J],磷肥与复肥,1995(4):43~45.
    [17] 化工百科全书(第10卷)[M].北京:化学工业出版社,1996:436~437
    [18] Matheson气体数据手册(原书第七版).北京:化学工业出版社,696
    [19] 庞文渌.磷化氢熏蒸的安全防护[J].粮食储藏,2002,(2):34~36
    [20] Brent Elliont,Frank Balma,Frederick Johnson..Exhaust gas incineration and the combustion of arsine and phosphine[J].Solid State Technology, 1990,33(1);89~92
    [21] 王惠平,唐忠松.次磷酸钠生产中“三废”的综合治理.化学世界[J].1999,第3期:159~162
    [22] Wilde Jurgen.Absorbent mass for phosphine[P]. Intemationale Ver affent lichung snummer.WO 00/21644 A3,2000-04-20
    [23] 郭坤敏等.氢气流中净化磷化氢、砷化氢的浸渍活性炭[P].CN:1076173,1993-09-15
    [24] 郭坤敏等.在氢气流中净化磷化氢、砷化氢的新型催化剂和净化罐的研究[J].化学通报,1994,3:29~31
    [25] The BOC Group plc.Gas stream purification apparatus[P].EP:0611140, 1994-08-1
    [26] Goncharova L V, Clowes S K, Fogg R R, et al. Phosphine adsorption and the production of phosphide phases on Cu(001) [J]. Surface Science, 2002, 515: 553~566.
    [27] 张建华.溶解乙炔气生产过程中脱除硫化氢、磷化氢的新工艺[J].黎明化工.1995,第5期:40~42
    [28] Lawless J J,Searle H T.Kinetics of the reaction between phosphine and hypochlorite in alkaline solution[J].J Am Chem Soc, 1962,94:4200~4205
    [29] 朱仁康等.磷化氢尾气排放的净化装置[J].粮油仓储科技通讯,1993,(2):33~35
    [30] 程建忠等.次磷酸钠生产过程中磷化氢尾气处理技术的研究.南开大学学报(自然科学).2001,34(2):31~34
    [31] 熊辉等.次氯酸钠氧化脱除黄磷尾气中的硫、磷杂质[J].2002,22(3):161~164
    [32] 钱学海.球墨铸铁切削加工中磷化氢气体生成的化学控制[J].国外机车车辆工艺.1990,第5期:16~21
    [33] Tim Herman, Scott Soden. Efficiently handling effluent gases through chemical scrubbing[J].AIP Conf.Pro. 1988,166:99~108
    [34] 化学吸收法处理熏蒸杀虫余气磷化氢的研究:(硕士学位论文.上海:华东理工大学,2002
    [35] 王成俊,郭爱红等.次磷酸钠工业生产过程中PH3尾气处理技术[J].天津化工.2003,17(5):37~38
    [36] Kyowa Kako KK.Method for removing arsine and/or phosphine[P].JP:1266836,1989-10~24
    [37] 朱尔根.茨默门伍德有限公司.从气体中,特别是从乙炔气气体中洗脱磷化氢的方法[P].CK85105317
    [38] 丁百全等.熏蒸杀虫余气PH3的吸收净化研究[J].环境污染治理技术与设备,2003,4(1):30~32
    [39] Per Sostrand, Bjorn Tvedt, Wijnand Eduard, Erik Bye and Kari Heldal. Hazardous peak concentrations of hydrogen sulfide gas related to the sewage. AIHAJ, 2000, 61(1): 107~110.
    [40] Yue Changtao, Li Shuyuan, Ding Kangle and Zhong Ningning. Simulation Experiments on the Reaction of CH4·CaSO4 and Its Carbon Kinetic Isotope Fractionation[J]. Petrolem Science, 2005, 2(1): 82~85.
    [41] T.A.谢苗诺娃.工艺气体的净化.北京:化学工业出版社,1982
    [42] 吕建中.浅谈硫化氢中毒。西南造纸,2000(5):15~19
    [43] 张家忠,易红宏.硫化氢吸收净化技术研究进展.环境污染治理技术与设备,2002,6(3)47~52.
    [44] Andrey B, Habibur R, Teresa J B. Study of H2S Adsorption and Water Regeneration of Spent Coconut-Based Activated Carbon [J]. Environ. Sci. Technol., 2000, 34(21): 4587~4592.
    [45] Teresa J B. Effect of pore structure and surface chemistry of virgin activated carbons on removal of hydro- -gen sulfide [J]. Carbon, 1999, 37: 483~491.
    [46] Teresa J B. On the Adsorption/Oxidation of Hydrogen Sulfide on Activated Carbons at Ambient Temperatures [J]. Journal of Colloid and Interface Science, 2002, 246:1~20.
    [47] Andrey B, Habibur R, Teresa J B. Wood-Based Activated Carbons as Adsorbents of Hydrogen Sulfide: A Study of Adsorption and Water Regeneration Processes [J]. Ind. Eng. Chem. Res., 2000, 39: 3849~3855.
    [48] Tsai J H, Jeng F T, Chang H L. Removal of H_2S from Exhaust Gas by Use of Alkaline Activated Carbon [J]. Adsorption, 2001, 7: 357~366.
    [49] Alexeeva O K, Klebanov Y D, Safonova A M, et al. Preparation of adsorption-catalytic and protective coatings on carbon fibers used for hydrogen purification [J]. International Journal of Hydrogen Energy, 1999, 24: 241~246.
    [50] Masuda J, Fukuyama J, Fuju S. Influence of concurrent substance on removal of hydrogen sulfide on activated carbon [J]. Chemosphere, 1999, 39(10): 1611~1616.
    [51] Shimomura M, Moller P J, Nerlov J, et al. Adsorption of H_2S on InP(001) studied by photoemission spectroscopy [J]. Applied Surface Science, 1997, 121: 237~240.
    [52] Dudzik E, Muller C, McGovern I T, et al. H_2S adsorption on the (110) surface of Ⅲ-Ⅴ semiconductors [J]. Surface Science, 1995, 34: 1~10.
    [53] Duan Y F, Xiang Y Z, Xia D. Removal of hydrogen sulfide from light oil with solid base [J]. Fuel Processing Technology, 2004, 86: 237~244.
    [54] Duan Y F, Xia D, Xiang Y Z, et al. Solid base for hydrogen sulfide removal in light oil [J]. Journal of Colloid and Interface Science, 2005, 281:197~200.
    [55] Ozdemir S, Bardakci T. Hydrogen sulfide removal from coal gas by zinc titanate sorbent [J]. Separation and Purification Technology, 1999, 16: 225~234.
    [56] 宁平,王学谦,吴满昌.黄磷尾气碱洗催化氧化净化[J].化学工程,2004,32(5):61~65.
    [57] 孙佩石,黄兵等.生物法净化低浓度硫化氢废气的动力学模型研究[J].贵州环保科技,2002,3(8):1~4.
    [58] 黄兵,杜永林等.生物法净化低浓度硫化氢废气的基础研究[J].云南化工,1998,3:17~19.
    [59] 黄兵,李晓梅等.生物膜填料塔净化低浓度硫化氢恶臭气体研究[J].环境科学与技术,1999,4:17~21.
    [60] 杜永林,黄兵.生物膜法净化低浓度硫化氧气体的试验研究[J].云南化工,1998,4:17~21.
    [61] 黄兵,黄若华.低浓度硫化氢恶臭气体的生化处理研究[J].云南环境科学,1998,3 (17):9~11.
    [62] Hebi li, James R. Mihelcic et al. Field Measurements and Modeling of Two-Stage Biofilter that Treats Oddorous Sulfur Air Emissions[J]. Journal of Environmental Engineering, 2003, 129 (8) : 684~692.
    [63] 张彭义,余刚等.挥发性有机物和臭味的生物过滤处理[J].环境污染治理技术与设备,2000,1 (1)1:1~7.
    [64] 任爱玲,郭斌.PVC弹性填料生物膜法处理含H_2S气体[J].化工环保,2000,4 (20):25~28.
    [65] 王玉亭,郭兵兵等.生物过滤法净化炼油污水处理设施排放的废气[J].石油炼制与化工,2003,4(34):54~57.
    [66] 邵立明,何品晶.固定化微生物处理含H_2S气体的试验研究[J].环境科学,1999,1 (20):19~22.
    [67] 王学谦,宁平.硫化氢废气治理研究进展[J].环境污染治理技术与设备,2001,4 (2):77~85.
    [68] Anonymous. Russian refiner tests new one-stage H_2S removal process[J]. Oil & Gas Journal, 1994, 92(10): 81~82.
    [69] 陈凡植,颜幼平.硫化氢硫醇废气的臭氧氧化试验[J].环境污染与防治,2000,3 (22):8~10.
    [70] 陈凡植,颜幼平.工业废气中H_2S和R—SH的臭氢氢化去除试验[J].广州化工,2000,4 (28):170~173.
    [71] 薛天祥,范德松.含微量硫化氢气体中硫回收技术[J].大氮肥,1998,5 (21):7~9.
    [72] 宁平,王学谦.氧化铝厂废气燃烧法处理研究[J].环境工程,2001,19(2):27~29.
    [73] 候健,郑光云.DBD技术脱除恶臭气体H_2S和CS_2的可行性[J].环境科学,2001,5 (22):201~203.
    [74] Trauffer, E. A. , Aminal scrubbing compounds cut TRS levels with no CO_2[J]. Pulp & Paper, 1995, 69 (5) : 121~123.
    [75] 张永,王学谦,宁平.吸收吸附联合法净化氧化铝厂含硫化氢废气[J].环境科学与技术,2006,29 (7):77~78.
    [76] 王学谦.硕士研究生论文.昆明理工大学,2001.
    [77] 高天石,侯惠奇.应用低温等离子体技术治理H_2S和CS_2废气[J].人造纤维,2000,4(31):20~23.
    [78] 秦张峰,关春梅.有害废气的低温等离子体脱出研究[J].宁夏大学学报(自然科学版),2001,2(22):12~16.
    [79] 周宇松,聂通元.纳米光催化净化分解炼化厂恶臭有毒气体研究[J].材料导报, 2002,7(16):66~67.
    [80] 王学谦,宁平.活性炭吸附硫化氢及微波辐照解吸研究[J].环境污染与防治,2001,6(23):274~276
    [81] Smith J M. Chemical Engineering Kinetics. New York: McGraw-Hill, 3rd. , Chapter 14, 1981
    [82] Levenspiel O. Chemical Reaction Engineering. New York: John Wiley and Sons, 2nd ed. Chapterl2, 1972
    [83] Carberry J J. Chemical and Catalytic Reaction Engineering. New York: McGraw-Hill, Chapter7, 1976
    [84] Ishida. M. and Wen C Y. Comparison of kinetic and diffusional model for solid-gas 不reaction. AICHE, J. , 1968, 14(2): 311~317
    [85] Szekely J. , Evans J W. and Sohn H. Y. Gas-Solid Reaction. Academic Press, 1976; 中译本,胡道和译,气—固反应.北京:中国建筑工业出版社,1986.
    [86] 鞭岩、森山昭.冶金反应工程学.东京:养贤堂,1972:中译本,蔡志鹏,谢裕生译.冶金反应工程学.北京:科学出版社,1981
    [87] 许贺卿,气—固反应动力学.北京:原子能出版社,1993
    [88] 葛庆仁.气—固反应动力学.北京:原子能出版社,1991
    [89] Carberry J J. A Boundary-layer model of fluid-partical mass transfer in fixed beds. AICHE J. , 1960, 6: 460~463
    [90] Szekeley J and Evans J W. A structural model for gas-solid reactions. Chem. Eng. Sci. , 1970, 25: 1091~1107
    [91] Ramachandran P A and Smith J M. A single-pore model for gas-solid noncatalytic reactions. AICHE J, 1977, 23: 362~375
    [92] Park J Y and Levenspiel O. The cracking core model for the reaction of solid particles. Chem. Eng. Sci. , 1975, 30: 1207~1214
    [93] 高正中.《实用催化》.北京:化学工业出版社,83~312.
    [94] 李彬,宁平,王学谦.负载活性炭净化黄磷尾气中的磷化氢[J].四川化工,2004,7(5):41~43.
    [95] 朱炳辰.化学反应工程[M].北京:化学工业出版社,2002.17~19.
    [96] 刘维桥,孙桂大.固体催化剂实用研究方法[M].中国石化出版社,2000
    [97] 马晓迅,张美华.改性活性碳吸附H_2S总传质系数的测定及动力学研究[J].化学工程,1993,21(2):60~65.
    [98] Quintana M, Sanchez E, Colmenarejo M F, et al. Kinetics of phosphorus removal and struvite formation by the utilization of by-product of magnesium oxide production [J]. Chemical Engineering Journal, 2005, 111: 45~52.
    [99] Lee S H, Vigneswaran S, Moon H. Adsorption of phosphorus on saturated slag media column [J]. Separation and purification technology, 1997, 12: 109~118.
    [100] Lopez E, Soto B, Arias M, et al. Adsorbent properties of red mud and its use for waste water treatment [J]. Wat. Res. 1998,32 (4): 1314-1322.
    
    [101] Southam D C, Lewis T W, McFarlane A J, et al. Amorphous calcium silicate as a chemisorbent for phosphate [J]. Current Applied Physics, 2004,4: 355-358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700