温度对牛粪流化床空气气化影响的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对集约化畜牧场粪便产生量大、现有处理方式单一,不仅不能充分利用粪便的肥料和能源特性,还对环境造成一定的污染等问题,在充分分析国内外生物质气化研究基础上,本文选择在秸秆类生物质中技术相对成熟的流化床气化技术,对畜禽粪便的气化进行探索性研究。首先对畜禽粪便(猪粪、鸡粪、牛粪)和玉米秸进行了空气灼烧试验,探讨畜禽粪便的可气化性,在此基础上,进一步选择气化性能较好的牛粪进行流化床的气化试验,重点考查温度对气化效果、灰特性的影响及气化过程中碳氮元素的活动规律。主要结论如下:
     干燥的牛粪低位热值和秸秆类似,且牛粪的元素分析结果和秸秆基本相近,牛粪在干燥条件下适合进行气化等热化学转化。但粪便与玉米秸比较,玉米秸灰产量(小于10%)显著小于畜禽粪便灰产量(猪粪20%以上,鸡粪、牛粪30%),畜禽粪便氮(约25g/kg)和磷(约3g/kg)的挥发量多于玉米秸(氮约15g/kg,磷很少),而钾(约10g/kg)和钠(很少)的挥发量显著小于玉米秸(钾约25g/kg,钠约65g/kg)。因此,粪便热利用特别要注意灰分对气化的影响,及其氮的污染问题,而玉米秸特别要注意钾钠碱金属的问题。
     气化温度对气化效果有重要影响。随着气化温度(600-900℃)的升高,可燃气体产量不断地上升,从3.5m3/kg增大到4.4m3/kg;气体热值在750℃达到最大为3600kJ/m3;碳转化率和气体热值变化规律相似,在750℃达到最大为42.1%;气化效率先增大后减小,在800℃达到最大为46.1%。在本试验条件下,当量比在0.4-0.5、温度控制在750-800℃,牛粪气化效果较好,牛粪燃气热值为3600kJ/m3左右,产气率为3.8-4.0m3/kg,气化效率为45-50%,且不会造成含氮气体污染。
     气化温度对牛粪气化固体产物元素含量及活动规律的影响试验表明,随着气化温度不断上升(600-900℃),飞灰中重金属的浓度均不断上升,其中Cu浓度在900℃为274ug/g、Zn浓度在750℃时为537ug/g、Cr浓度在900℃时为269ug/g、Ni浓度在800℃时为166ug/g,超过了GB8173-87的限值。对底渣的元素分析发现,底渣K2O+Na2O含量较高,达18.6%,计算碱性氧化物指数AI为0.91,表明其有严重的结渣性;底渣中重金属Cu、Zn的浓度超过了GB8173-87的限值。飞灰和底渣需进一步处理才能安全利用。
     温度对气化产生的可燃气体中碳元素含量无明显影响,约为39-40%;随着气化温度不断上升(600-900℃),原料碳元素在固体中的含量从600℃的52.1%下降到800℃的14.3%,在液体中的碳含量从600℃的1.32%下降到900℃的0.39%。原料氮元素在气体(NH3+NOX)中的比例从10.9%下降到2.7%;固体中氮元素含量从600℃的51.1%下降到800℃的13.1%,液体中氮元素含量变化不明显。
Large amount of animal manure from concentrated animal feeding operations (CAFOs) has posed tremendous challenges to environment since there are limited technology choices for manure treatment. Anyway animal manure is not always deleterious, it would be valuable if the contained biomass is appropriately treated and used. Manure biomass gasification is a state-of-the-art technology for animal manure treatment and utilization, but there is a lacking knowledge in literatures, therefore this study was designed to look at the effects of temperature on the gasification of animal manure in fluidized bed via several experiments, firstly the gasification feasibility of animal manure (including swine manure, poultry manure and cattle manure) and corn stalk were investigated, and animal manure with the best gasification performance were selected for the subsequent trials, then selected animal manure was gasified in fluidized bed, and the effects of temperature on the gasification, ash characteristics, and carbon and nitrogen contents. The results shown that cattle manure has the best gasification performance and the detailed outcomes of effects of temperature on the gasification of cattle manure in fluid bed are as follows:
     The low calorific value and the elements contents of dried cattle manure are similar to corn stalk, so cattle manure was best in terms of gasification. Ash yield of corn stalk (less than 10%) was far less than that of both animal manure ash (pig manure>20%; poultry and cattle manure=30%). The amount of volatile nitrogen (about 25g/kg) and phosphorus (about 3g/kg) of animal manure were higher than the counterparts of corn stalks (nitrogen about 15g/kg, few phosphorus), but the amount of volatile potassium (about 10g/kg) and sodium (rarely) of manure were much less than the counterparts of corn stalks (potassium about 25g/kg, sodium about 65g/kg). Therefore, ash and nitrogen pollution problem in animal manure gasification and high K and Na alkali metal in corn stalks gasification should considered.
     Temperature was an important factor in animal manure gasification, gas yield increased from 3.5m3/kg to 4.4m3/kg with gasification temperature from 600℃to 900℃) and gas calorific value (GCV) peaked at around 750℃with the value of 3600 kJ/m3 . The carbon conversion shown the same pattern as GVC, with maximum of 42.1% at 750℃. The maximum value of gasification efficiency (46.1%) appeared at 800℃. Equivalence ratio (ER) of 0.4-0.5 in combination with temperature in between 750-800℃were optimized for cattle manure, under such condition the gas heat value about 3600kJ/m3, gas production rate of 3.8-4.0m3/kg, and gasification efficiency of 45-50% were obtained, and no nitrogen pollution was incurred.
     Temperature had effects on solid matter production and elements contents. the concentration of heavy metals in fly ash increased with gasification temperature in between 600℃to 900℃, the content of Cu was 274ug/g at 900℃, the content of Zn was 537ug/g at 750℃, the content of Cr was 269ug/g at 900℃, the content of Ni was 166ug/g at 800℃, exceeding the limit values of GB8173-87. The K2O+Na2O content in slag was 18.6%, the index of alkaline oxides (AI) was 0.91, which indicated that the contents of Cu and Zn in slag were higher than GB8173-87 limits. Both fly ash and bottom char should be further processed.
     Temperature had no evident effects on carbon contents of combustible gas produced from manure gasification, carbon contents in solid products were 52.1% and 14.3% at temperature of 600℃and 800℃, respectively, which indicated a declining trend with temperature increase. And carbon contents in the liquid products were 1.32% at 600℃and 0.39% at 900℃, it decreased with temperature. Nitrogen contents shown differents shapes, its contents in gas product decline from 10.9% to 2.7% when temperature increased from 600℃to 800℃, and nitrogen contents in solid product declined from 51.1% at 600℃to 13.1% at 800℃.
引文
1.何祥义,郭森魁,王华.动物粪便热解制取燃气的开发研究.昆明理工大学学报,1998,23(3): 82~84
    2.何小民,沃丁柱.牛粪气化性能研究.见:可再生能源规模化发展国际研讨会暨第三届泛长三角能源科技论坛.南京:2006,299~302
    3.郎芳,马晓茜,王晶晶.秸秆灰特性的研究.可再生能源,2007,25(4):25~28
    4.李刚.生物质气化过程中氮污染物形成机理研究.[硕士学位论文].天津:天津大学,2005
    5.李俊飞,王德汉,刘承昊,等.生物质气化灰渣和粉煤灰的农业化学行为比较.华南农业大学学报,2007,28(1):27~30
    6.廖翠萍,吴创之,颜涌捷.生物质气化发电厂灰渣中微量元素的分布与富集规律.燃料化学学报,2005,33(4):456~458
    7.刘荣厚,牛卫生,张大雷.生物质热化学转换技术.北京:化学工业出版社,2005
    8.刘荣厚,武丽娟,李天舒.生物质快速热裂解制取生物油的研究.见:中国农业工程学会2005学术年会论文集.2005,269~273
    9.刘艳阳.生物质热裂解制取生物油的试验研究.[硕士学位论文] .吉林:吉林农业大学,2005
    10.吕鹏梅,常杰,熊祖鸿,等.生物质在流化床中的空气-水蒸汽气化研究.燃料化学学报,2003,32(4):305~310
    11.毛玉如,方梦祥,骆仲泱,等.生物质能流化床转化利用技术实践.锅炉技术,2003,34(2):72~76
    12.米铁,张春林,刘武标,等.流化床作为生物质气化反应器试验研究.化学工程,2003,31(5):27~30
    13.尚斌.畜禽粪便热解特性试验研究.[硕士学位论文].北京:中国农业科学院研究生院,2007
    14.孙巍.流化床垃圾焚烧积灰特性研究及冷态积灰模拟试验.[硕士学位论文].杭州:浙江大学,2006
    15.涂德浴,董红敏,丁为民,等.畜禽粪便的热解特性和动力学研究.农业环境科学学报,2007,26(4):1538~1542
    16.涂德浴,董红敏,丁为民,等.畜禽粪便热化学转换特性和可行性分析研究.中国农业科技导报,2007,9(1):59~63
    17.涂德浴.畜禽粪便热解机理和气化研究.[博士学位论文].南京:南京农业大学,2007
    18.王磊,沈胜强,师新广,等.生物质气化过程中燃料氮迁移影响因素试验研究.太阳能学报,2007,28(12):1365~1368
    19.徐嘉.城市生活垃圾典型组分的流化床气化特性试验研究.[硕士学位论文].杭州:浙江大学,2004
    20.徐婧.生物质燃烧过程中碱金属析出的试验研究.[硕士学位论文].杭州:浙江大学,2006
    21.阎维平,陈吟颖.生物质燃料结渣特性分析与判别.华北电力大学学报,2007,34(1):49~54
    22.章骅,何品晶.城市生活垃圾焚烧灰渣的资源化利用.环境卫生工程,2002,10(1):6~9
    23.赵辉.生物质高温气流床气化制取合成气的机理试验研究.[博士学位论文].杭州:浙江大学,2007
    24.朱锡锋.生物质热解原理与技术.合肥:中国科学技术大学出版社,2006,10~12
    25. Ames J.Waste to Energy/Getting Rid of Manure Could Lead To Alternative Electricity.Fertilizer, 2002,33(32):257~258
    26. Annamalai K,Sweeten J,Mukhtar S,et al.Co-Firing Coal:Feedlot and Litter Biomass Co-Firing in Pulverized Fuel and Fixed Bed Burners.Texas:Texas Engineering Experiment Station,2003
    27. Annamalai K,Sweeten J M,Freeman M,et al.Co-firing of coal and cattle feedlot biomass (FB) Fuels,Part III fouling results from a 500000 BTU/h pilot plant scale boiler burner.Fuel,2003,82(10):1195~1200
    28. Annamalai K,Thien B,Sweeten J,et al.Co-firing of coal and cattle feedlot biomass (FB) fuels,Part II Performance results from 30 kW/t (100,000) BTU/h laboratory scale boiler burner.Fuel,2003,82(10):83~1193
    29. Arumugam S,Thien B,Annamalai K,et al.Feedlot biomass co-firing: a renewable energy alternative for coal-fired utilities.International Journal of Green Energy,2005,12(4):409~419
    30. Beck J,Schmalzbauer R,Jungbluth T,et al.Energy Recovery of Animal Waste by Pyrolysis.Land technik,2006,12(4):77~84
    31. Chang H.Energy and sustainability comparisons of anaerobic digestion and thermal technologies for processing animal waste.ASAE/CSAE annual international meeting,2004,8:1~11
    32. Collot G,Zhuo Y,Norton G.Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed-bed and fluidized bed reactors.Fuel,1999,78(6):661~679
    33. Demirbas A.Desulfurization of coal using biomass ash.Energy Sources,2002,24(12):1099~1105
    34. Dooher J.Hydrothermally Treated Biosolids Slurries as a Coal Cofire Fuel.in:The Proceedings of the 27th International Technical Conference on Coal Utilization & Fuel Systems (Volume II of II). Florida:2002
    35. Fantozzi F,Alessandro B,Leonardi D,et al.Evaluation of available technologies for chicken manure energy conversion and techno-economic assessment of a case study in Italy.in:Proceedings of ASME Turbo Expo 2004 Power for Land, Sea, and Air.Perugia:2004
    36. Geyter D.The role of sulphur in preventing bed agglomeration during combustion of biomass. Degree work presented to obtain a degree in Master.Ume? University,2006
    37. He B J,Zhang Y,Funk L.Thermochemical conversion of swine manure:an alternative process for waste treatment and renewable energy production.Transactions of the ASAE,2000,43(6):1827~1833
    38. He B J,Zhang Y,Yin Y,et al.Thermochemical conversion of swine manure: a process for reduce waste and produce liquid fuel.in:ASAE/CASE Annual International Meeting.Toronto,1999
    39. He B J,Zhang Y,Yin Y.Effects of Alternative Process Gases on the Thermochemical Conversion Process of Swine Manure.Transactions of the ASAE,2001,44(6):1873~1880
    40. He B J , Zhang Y , Yin Y.Preliminary Characterization of Raw Oil Products from the Thermochemical Conversion of Swine Manure.Transactions of the ASAE,2001,44(6):1865~1871
    41. He B J,Zhang Y,Funk L,et al.Thermochemical conversion of swine manure: an alternative process for waste treatment and renewable energy production.Journal of Electronic Packaging,2000,43(6):1827~1833
    42. He B J,Zhang Y,Yin Y,et al.Operating Temperature and Retention Time Effects on the Thermochemical Conversion Process of Swine Manure.Transactions of the ASAE,2000,43(6):1821~1825
    43. Jensen M,Timpe R,Laumb J.Advanced Heterogeneous Reburn Fuel from Coal and Hog Manure.North Dakota:University of North Dakota Energy & Environmental Research Center,2003
    44. Keener K.Characterization of Poultry Manure for Potential Co-Combustion with Coal in an Electricity Generation Plant.in : ASAE Annual International Meeting/CIGR XVth World Congress.Chicago,2002
    45. Kim S.Pyrolysis characteristics and kinetics of chicken litter.Waste Management,2007,27(1):135~140
    46. Koger J,Bull L,Burnette R etal.Gasification for Elimination of Swine Waste Solids with Recovery of Value-Added Products.North Carolina:North Carolina State University,2005
    47. Koger J,Wossink A,Kempen T,et al.Gasification of Belt-harvested Swine Waste.North Carolina:North Carolina State University,2004
    48. Koutcheiko S,Monreal M,Kodama H,et al.Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure.Bioresource Technology,2007,98:2459~2464
    49. Lima I,Marshal W E.Granular activated carbons from broiler manure:physical,chemical and adsorptive properties.Bioresource Technology,2005,96(6):699~706
    50. Lima I,Marshall W E.Utilization of turkey manure as granular activated carbon:Physical,chemicaland adsorptive properties.Waste Management,2005,25(7):726~732
    51. Loffler G,Wargadalam V J,Winter F.Catalytic effect of biomass ash on CO,CH4 and HCN oxidation underfluidized bed combustor conditions.Fuel,2002,81(6):711~717
    52. Matsumura Y,Hara, S,Yoshida T,et al.Novel Supercritical Water Gasification Using Suspended Activated Carbon Catalyst.in:The 8th International Symposium on Supercritical Fluids (ISSF 2006).Kyoto,2006
    53. Matthews C.畜牧业是对环境的一大威胁.[2007-08-05].http://www.fao.org/newsroom/zh/news/ 2006/1000448/index.html
    54. Megel A J.Assessment of Chemical and Physical Characteristics of Bottom,Cyclone and Baghouse Ashes from the Combustion of Manure.in:ASABE Annual International Meeting.Portland,2006
    55. Megel A.J.Investigation of Economically Viable Coproducts Developed from Ash from the Combustion of Manure.in:ASABE Annual International Meeting.Minneapolis,2007
    56. Michelsen H P,Flemming F,Kim D J,et al.Deposition and high temperature corrosion in a 10 MW straw fired boiler.Fuel Proc. Tech,1998,54:95~108
    57. Nakamura A,Kiyonaga E,Miura T,et al.Fundamental design of supercritical water gasification process using Chicken Manure.in : The 8th International Symposium on Supercritical Fluids.Kyoto,2006
    58. Ocfemia K S,Zhang Y.Development of a Small-Scale Reactor System for the Continuous Hydrothermal Processing of Swine Manure Into Oil.in : ASAE Annual International Meeting.Tampa,2005
    59. Ocfemia K S,Zhang Y,Funk T.Hydrothermal Processing of Swine Manure Into Oil Using a Continuous Reactor System:Development and Testing.Transactions of the ASABE,2006,49(2):533~541
    60. Ocfemia K S,Zhang Y,Funk T,et al.Hydrothermal Processing of Swine Manureto Oil Using a Continuous Reactor System : Effects of Operating Parameters on Oil Yield and Quality.Transactions of the ASABE,2006,49(6):1897~1904
    61. Pian,Yoshikawa K.Biomass-fueled,high-temperature,air-blown gasification systems.in:Energy Conversion Engineering Conference and Exhibit.Starkville:AIAA,2000,793~803
    62. Pian.Regenerative gasification systems operating on farm-waste and bioenergy-crop feedstocks.in:Energy Conversion Engineering Conference.Starkville:AIAA,2002,668~674
    63. Priyadarsan S,Annamalai K,Sweeten J M,et al.Waste to Energy:Fixed Bed Gasification of Feedlot and Chicken Litter Biomass.in:ASAE Annual International Meeting.Nevada,2003
    64. Priyadarsan S,Annamalai K,Sweeten M,et al.Co-gasification of blended coal with feedlot and chicken litter biomass.Proceedings of the Combustion Institute,2005,30(2):2973~2980
    65. Priyadarsan S,Annamalai K,Sweeten M,et al.Fixed?Bed Gasification of Feedlot Manure and Poultry Litter Biomass.Transactions of the ASAE,2004,47(5):1689~1696
    66. Qian Q,Machida M,Tatsumoto H.Preparation of activated carbons from cattle-manure compost by zinc chloride activation.Bioresource Technology,2007,98:353~360
    67. Reardon J,Lilley A,Smeenk J,et al.Demonstration of a Small Modular Biopower System Using Poultry Litter.Littleton:Community Power Corporation,2004
    68. Sami M,Annamalai K,Wooldridge M.Co-firing of coal and biomass fuel blends.Progress in Energy and Combustion Science,2001,27:171~214
    69. Schnitzer M I,Monreal M.The conversion of chicken manure to biooil by fast pyrolysisⅠAnalysis of chicken manure , biooils , and char by 13C and 1H NMR and FTIR spectrophotometry.Journal of Environmental Science and Health,2007,42(1):71~77
    70. Schnitzer M I,Monreal M.The conversion of chicken manure to biooil by fast pyrolysisⅡAnalysis of chicken manure, biooils, and char by curie-point pyrolysis-gas chromatography/mass spectrometry (CpPy-GC/MS) .Journal of Environmental Science and Health,2007,42(1):79~95
    71. Scott Q T,Charles M K,Darren M I.Removal of inorganic constituents of biomass feedstocks bymechanical dewatering and leaching.Biomass and Bioenergy,1997,12(4):241~252
    72. Serio M A,Kroo E,Wojtowicz M A,et al.An Improved Pyrolyzer for Solid Waste Resource Recovery in Space.in:32nd International Conference on Environmental Systems.Texas,2002
    73. Shinogi Y,Kanri Y.Pyrolysis of plant,animal and human waste:physical and chemical characterization of the pyrolytic products.Bioresource Technology,2003,90:241~247
    74. Singh K,Risse M,Worley J,et al.Adding Value to Poultry Litter using Fractionation,Pyrolysis,and Pelleting.in:ASABE Annual International Meeting.Minneapolis,2007
    75. Sweeten J.Combustion-Fuel Properties of Manure or Compost from Paved vs. Un-paved Cattle Feedlots.in:ASABE Annual International Meeting.Portland,2006
    76. Sweeten J M,Annamalai K,Thien B,et al.Co-firing of coal and cattle feedlot biomass (FB) fuels Part I. Feedlot biomass (cattle manure) fuel quality and characteristics.Fuel,2003,82(10):1167~1182
    77. Sweeten J M.Combustion-Fuel Properties of Manure or Compost from Paved vs. Un-paved Cattle Feedlots.in:ASABE Annual International Meeting.Portland,2006
    78. Thien B.Thermogravimetric analyses of coal,feedlot biomass and blends in inert and oxidizing atmospheres.in : 2001 International Joint Power Generation Conference (IJPGC 2001).NewOrleans,2001
    79. Vamvuka D,Zografos D.Predicting the behaviour of ash from agricultural wastes during combustion.Fuel,2004,83:2051~2057
    80. Wang B Q.Erosion-corrosion of coatings by biomass-fired boiler fly ash.Wear,1995,188(122):40~48
    81. Whitely N,Ozao R,Cao Y,et al.Multi-utilization of Chicken Litter as a Biomass Source PartⅡ. Pyrolysis.Energy & Fuels,2006,20(6):2666~2671
    82. Yanagida T,Minowa T,Shimizu Y,et al.Distribution of N,S,P,Cl,Ca,Si and K to liquid and solid phases during supercritical water gasification of chicken manure.in:The 8th International Symposium on Supercritical Fluids (ISSF 2006).Kyoto,2006
    83. Yusiharni B E,ZiadiA H,GilkesA R J.A laboratory and glasshouse evaluation of chicken litter ash,wood ash,and iron smelting slag as liming agents and P fertilizers.Australian Journal of Soil Research,2007,45:374~389
    84. Zhang Y.Continuous TCC Process:Producing oil from livestock manure.Resource,2004,11(9):7~8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700