热解条件下煤孔隙裂隙演化的显微CT实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤的热解称为煤的干馏或热分解,煤热解的结果是生成气体(煤气)、液体(焦油)、固体(半焦或焦炭)等产品,煤气、半焦和焦油是洁净或改质燃料,这些燃料是石油天然气的替代品,又是很好的化工原料。用热解的方法生产洁净或改质的燃料,既可减少燃煤造成的环境污染,又能充分利用煤中所含的较高经济价值的化合物,具有保护环境、节能和合理利用煤资源的广泛意义。煤热解是煤转化的关键步骤,煤气化、液化、焦化和燃烧都要经过或发生热解过程。煤炭地下气化、低阶煤的热力改性、煤的原位热解和煤炭自燃都伴随煤的热解,而这些技术都是实现绿色煤炭的关键技术,热解取得的研究成果对这些关键技术都具有直接的指导作用。煤的热解反应发生在煤固体表面,许多表面是与孔隙裂隙结构相关联的,孔隙裂隙结构影响着煤的热解活性和反应性。综合考虑,热解过程中煤的孔隙裂隙结构变化研究不仅是煤的原位热解中的基础性研究,也是煤炭地下气化、液化和煤的改性提质等煤炭热加工技术的基础性研究,对我国煤炭的可持续发展意义重大。
     本课题通过对国内多种煤阶的大块度煤样进行热解实验,利用先进的CT225KvFCB微焦点CT扫描,重建其三维细观结构,分析热解温度对煤的细观孔隙裂隙结构的影响。主要研究内容及结果如下:
     1、利用μCT225KvFCB显微CT系统结合自制高温气氛炉,对(?)1mm的煤样进行扫描实验,研究不同温度下不同煤样的孔隙结构演化特征,得到如下结论:
     褐煤和气煤的孔隙率,逾渗概率随温度的升高而单调增加,比表面积随温度的升高先增加后减小,褐煤比表面积峰值点为400℃,气煤比表面积的峰值点为200℃。200℃为气煤和褐煤孔隙结构的突变温度。褐煤比表面积在所有煤种中最小,温度高于200℃后,气煤的孔隙率在所有煤种中最高。
     焦煤、瘦煤和Ⅱ级无烟煤的孔隙率、比表面积和逾渗概率随温度的升高先增加后减小。焦煤和Ⅱ级无烟煤的峰值温度点为500℃,焦煤的比表面积在所有煤种中最大。瘦煤随温度的变化较缓慢,峰值点为400℃。
     2、在已有研究的基础之上,建立了孔隙孔径分维数,孔隙体积分维数和孔隙表面积分维数,对五种煤样不同温度下的孔隙分形维数进行研究分析,得到如下结论:
     五种煤中,褐煤的孔径分布分维数最小,气煤的孔径分布分维数较大,Ⅱ级无烟煤孔径分布分维数随温度的升高几乎不变,在常温到300℃的低温段,不同煤种的孔径分布分维数大小为:气煤>Ⅱ级无烟煤>焦煤>瘦煤>褐煤。
     气煤、焦煤和瘦煤的体积分维数很大,接近于3,随温度的升高几乎不变。Ⅱ级无烟煤的体积分维数变化量最大,褐煤次之,温度高于200℃后,二者的体积分维数也接近于3,随温度升高变化很小。200℃时,五种煤的体积分维数都高于2.96。
     褐煤和气煤的表面积分维数随温度的升高而增加,焦煤和Ⅱ级无烟煤的表面积分维数先增加后减小,峰值点为500℃,瘦煤的表面积分维数随温度的升高几乎不变。
     3、利用μCT225KvFCB显微CT系统结合自制高温气氛炉,对(?)7mm煤进行扫描实验,研究不同温度下不同煤样的裂隙产生、发展的演化规律,得到如下结论:
     裂隙大都产生于煤质较软的软煤质中,或产生于软硬煤质的交界面,遇到硬质颗粒或硬质带后止裂,有的止裂后的裂隙在更高的温度下会穿越硬质颗粒或硬质条带继续扩展,多数裂隙在温度的作用下会顺层理扩展。
     褐煤、气煤、焦煤、贫煤和Ⅱ级无烟煤的裂隙随温度的升高具有急剧产生的特点。200℃时,褐煤急剧产生大量雁行状和网状裂隙,气煤急剧产生了大量的网状裂隙,Ⅱ级无烟煤急剧产生了大量的缩聚裂隙和垂直层理的裂隙。300℃时,焦煤急剧产生了大量的蜂窝状裂隙,贫煤急剧产生了大量糜粒状裂隙、缩聚裂隙和雁行状裂隙。
     瘦煤随温度的升高,裂隙的产生扩展很平缓,先后出现了失水裂隙(100℃)、平行层理裂隙(200℃)、蜂窝状裂隙(300℃)和似静压裂隙(500℃),蜂窝状裂隙较多。
     随温度的升高产生的裂隙很少,裂隙扩展较慢。
     4、利用裂隙数量——尺度的方法,建立了裂隙分形维数计算公式,对七种煤样不同温度下的裂隙进行了分形研究,得到如下结论:随温度的升高,Ⅱ级无烟煤的裂隙分维数单调减小,Ⅲ级无烟煤的裂隙分维数单调增加,褐煤、气煤、焦煤、瘦煤和贫煤的裂隙分维数先增加后减小。褐煤的裂隙分维数峰值点为300℃,气煤的为200℃,焦煤的为300℃,瘦煤和贫煤的为400℃。从常温到裂隙分维数的峰值点,裂隙主要以产生和扩展为主,从峰值点到600℃,裂隙主要以扩展——搭接——连通为模式。
     5、通过对七种煤的孔隙裂隙结构随温度的变化研究,综合分析得到几点结论:(1)气煤、褐煤、Ⅱ级无烟煤和焦煤的孔隙裂隙受温度影响较大,在200℃(焦煤300℃),孔隙率达到了30%,逾渗概率达到了25%,裂隙急剧产生,裂隙分维数增量达到最大,对这四种煤而言,热解可以在较低温度提高它们的渗透性。(2)瘦煤和贫煤裂隙受温度影响较大,产生的裂隙种类较多,400℃,裂隙发育最好,分维数达到最大,渗透性在300℃后提高很大。(3)Ⅲ级无烟煤随温度升高产生的裂隙很少,受温度影响不大。(4)常温到300℃,热破裂对孔隙裂隙的产生起主要作用,300℃-600℃,热解对孔隙和裂隙的扩展起主要作用。
The pyrolysis is also called carbonization or heat decomposition, it can produce gas coal, tar and semi-coke or coke, which are lustration or modified fuel, and can substitute petroleum and natural gas, and are also good chemical raw material. This method that the pyrolysis produce lustration and modified fuel both reduces environment pollution by burning coal and makes the most of the better economic value compounds in coal, it is important that it can protect environment as well as reasonably use coal resource and save energy sources. The pyrolysis is the key step of coal transformation, it must occur during gasification, liquefaction, coking and burning of coal. The pyrolysis is the first step of Underground coal gasification, modified low rank coal, in-situ pyrolysis of coal and spontaneous combustion of coal which are the key technologies to the environmental coal, so the research findings of the pyrolysis have effect on those key technologies directly. The pyrolysis occurs on the surface of coal matter, which is related to pores and cracks in coal, so pore structure and crack distribution can influence the activity and reactivity of pyrolysis. Overall consideration, the research on the evolution of pore and crack in pyrolysis is the basic research on both in-situ pyrolysis of coal and hot processing of coal such as Underground coal gasification, liquefaction, modified low rank coal, it is important to sustainable development of coal industry in our country.
     In this article, the pyrolysis characteristics of many ranks of coal at home are studied. The three-dimensional mecro-structure is rebuild by scanning coal samples with advancedμCT225KvFCB. The effect of temperature on pore and crack is analyzed. Main contents and conclusions are as follows:
     1. UsingμCT225KvFCB system and high temperature atmosphere furnace made by oneself, scanning F 1mm coal samples, studying the pore structure characteristic under different temperatures, we can draw conclusions as follows:
     The porosity and percolation probability of lignite and gas coal increase monotonously with temperature, specific surface area first increases then decreases, the specific surface area of lignite has peak value at 400℃, the specific surface area of gas coal has peak value at 200℃.200℃is the mutation temperature of pore structure of lignite and gas coal. The specific surface area of lignite is minimum in all coal samples, the porosity of gas coal is maximum above 200℃.
     The porosity, specific surface area and percolation probability of coking coal, lean coal andⅡanthracite first increase and then decrease.500℃is the peak temperature of coking coal andⅡanthracite, the specific surface area of coking coal is the largest in all coal samples. The evolvement of the pore structure of lean coal is gentle,400℃is its peak temperature.
     2. On the basis of already research, creating aperture fractal dimension, pore volume fractal dimension and surface area fractal dimension, analyzing the pore fractal dimensions of five ranks of coal under different temperatures, we can draw conclusions as follows:
     In five ranks of coal, the aperture fractal dimension of lignite is minimum, which of gas coal is bigger, which ofⅡanthracite is almost immutable. From room temperature to 300℃, the aperture of kinds of coal is in sequence:gas coal >Ⅱanthracite> coking coal> lean coal> lignite. The pore volum fractal dimensions of gas coal, coking coal and lean coal are almost constant value 3 with temperature, increment of the pore volume fractal dimension ofⅡanthracite is maximum, that of lignite second. The pore volume fractal dimensions ofⅡanthracite and lignite are close to 3 and almost immutable with temperature. At 200℃or above, the pore volume fractal dimensions of five ranks of coas are bigger than 2.96. The surface area fractal dimensions of lignite and gas coal increase with temperature, those of coking coal andⅡanthracite first increase thenⅡdecrease, and have max value at 500℃. The surface area fractal dimension of lean coal is almost immutable with temperature.
     3. WithμCT225KvFCB system and high temperature atmosphere furnace made by oneself, scanning F 7mm coal samples, studying the evolvement of crack emergence and expansion with temperature, we can draw conclusions as follows:the cracks emerge in soft coal matter mostly, or in boundary of soft and hard coal matter, the crack arrest is caught by hard grain and hard strip. The crack arrest can go through hard grain and hard strip to go on expanding at higher temperature.
     The cracks of lignite, gas coal, coking coal, poor coal andⅡanthracite produce suddenly. At 200℃, lignite produces large numbers of echelon and net cracks suddenly, gas coal produces large numbers of net cracks suddenly,Ⅱanthracite suddenly produces large numbers of polycondensation cracks and cracks perpendicular to seam. At 300℃, coking coal suddenly produces many honeycombed cracks, poor coal suddenly produces numbers of rotten grain cracks and polycondensation cracks and echelon cracks.
     The emergence and expansion of lean coal gradually take place with temperature, dehydrated cracks arise at 100℃, cracks parallel to seam arise at 200℃, and more honeycombed cracks arise at 300℃, like-pressing cracks arise at 500℃.
     Few cracks ofⅢanthracite arise and they expand slowly with temperature.
     4. We establish the crack fractal dimension expressions on the basis of crack quantity-scale, and doing crack fractal research on seven ranks of coal spoken of earlier, and drawing conclusions as follows:
     The fractal dimension ofⅡanthracite decreases monotonically with temperature, which ofⅢanthracite increases monotonically with temperature, that of others coal first increases then decreases. To lignite and coking coal, 300℃is peak temperature at which their crack fractal dimensions reach maximum,200℃is peak temperature of gas coal,400℃is peak temperature of lean coal and poor coal. From room temperature to peak temperature, crack mainly arise and expand, from peak temperature to 600℃, crack mainly expand, overlap and connect.
     5. Through comprehensive analyzing the evolvement of the pore and crack of above seven kinds of coal with temperature, we draw some conclusions:(1) The change of temperature has great effect on the pore and crack structure of lignite, gas coal, coking coal andⅡanthracite, at 200℃(to coking coal at 300℃), porosity reach 30%, percolation probability reach 25%, many cracks suddenly arise, the increment of crack fractal dimension is maximum, thus theirs permeability can be improved at low temperature to these four kinds of coal. (2) The change of temperature has great effect on crack of lean coal and poor coal, in which many kinds of cracks produce. At 400℃, crack fractal dimension reaches maximum, crack full develops. (3) The change of temperature has little effect on the crack ofⅢanthracite, few cracks produce in pyrolysis. (4) From room temperature to 300℃, thermal cracking has primary role on production of pores and cracks. From 300℃to 600℃, pyrolysis has primary role on the expansion of pores and cracks.
引文
[1]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002:210-300.
    [2]Seewald JS, Eglinton LB, One YL.An experimental study of organie — inorganie interactions During vitrinite maturation[J].Geoehimieaet CosmochimieaAeta,2000, 64(9):1577~1591.
    [3]张军,袁建伟,徐益谦.矿物质对煤粉热解的影响[J].燃烧科学与技术,1998,4(1):64-68.
    [4]缪岩,蒋君衍,张鹤声.煤催化热解过程的动力学研究[J].燃烧科学与技术,1995,1(4):140-150.
    [5]saghuis H J, Ferreiral L C, Judd M R.Volatile material in coal effect to inheret mineral matter[J].Fuel,1991,70(3):471~479.
    [6]李凡,张永发,谢克昌.矿物质对煤显微组分热分解的影响[J].燃料化学学报,1992,20(3):300-308.
    [7]Unger P E, Suugberg E M.Molecular weight distribution of tars Produced by flash Pyrolysis Of coal[J], Fuel,1984,63:606~611.
    [8]Solomon P R, Serio M A, Carangelo R M, Markham J R.Very rapid coal Pyrolysis[J].Fuel,1986,65:182-191.
    [9]Teo K C, Watkinson A P. Rapid Pyrolysis of Canadians coal in a miniature spouted bed reactor[J].Fuel,1986,65:949-959.
    [10]Maria M. etal. Fuel.1983,62:1393
    [11]周军,张海,吕俊复.高温下热解温度对煤焦孔隙结构的影响[J].燃料化学学报,2007 35(2):155-159.
    [12]王明敏,张建胜,张守玉.热解条件对煤焦比表面积及孔隙分布的影响[J].煤炭学报,2008,33(1):76-79.
    [13]丘纪华.煤粉在热分解过程中比表面积和孔隙结构的变化[J].燃料化学学报,199422(3):316-320.
    [14]张佳丽,谌伦建,张如意.热解温度与煤焦微结构及分形特征关系研究[J].煤炭转 化,2004,27(2):26-29.
    [15]冯子军,万志军,赵阳升.高温三轴应力下无烟煤、气煤煤体渗透特性的试验研究.岩石力学与工程学报[J],2010,29(4):689-696.
    [16]李志强,鲜学福,隆晴明.不同温度应力条件下煤体渗透率实验研究[J].中国矿业大学学报,2004,38(4):523-527.
    [17]Close J C. Natural fracture in coal[A].Studies in geology 38:Hydrocarbons from coal[C]. Tulsa:AAPG,1993,:119~132.
    [18]Gamson P, Beamish B, Johnson David. Effect of coal microstructure and secondary mineralization on methane recovery [J]. Geological Special Publication,1998,199:165~179.
    [19]霍永忠.煤层气储层的显微孔裂隙成因分类及其应用[J].煤田地质与勘探,1998,26(6):28-32.
    [20]王生维,陈钟惠,张明.煤基岩块孔裂隙特征及其在煤层气产出中的意义[J].地球科学——中国地质大学学报,1995,20(5):557-562.
    [21]傅雪海.中国煤层气勘探开发的哲学思考[J].1999,15(10):62-64.
    [22]张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40-44.
    [23]张慧,李小彦,郝琦.中国煤的扫描电子显微镜研究[M].北京:地质出版社,2003.
    [24]Gan H, Nandi S P,Walker P L. Nature of porosity in American coal[J].Fuel,269~277.
    [25]郝琦.煤的显微形态特征及其成因探讨[J].煤炭学报,1987(4):51-57.
    [26]张素新,肖红艳.煤储层中微孔隙和微裂隙的扫描电镜研究[J].电子显微学报,2000,19(4):531-532.
    [27]张新民,张遂安,钟玲文等.中国的煤层甲烷[M].陕西西安:陕西科学技术出版社,1991:36-51.
    [28]秦勇.中国高煤级煤的显微岩石学特征及结构演化[M].中国矿业大学出版社,1995:48-134.
    [29]吴俊,金奎励,童有德等.煤孔隙理论及在煤瓦斯突出和抽放中的应用.煤炭学报,1991,16(3):86-95.
    [30]陈萍,唐修义,低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,200126(5):552-556.
    [31]桑树勋,朱炎铭.煤吸附气体的固气作用机理——煤孔隙结构与固气作用[J]。天然气工业,2005 25(1):13-15.
    [32]张红日,杨思敬.煤的低温氮吸附实验研究.山东矿业学院学报[J],199312(3):245-249.
    [33]Stevenson MD,Pinczewski WV,Somers ML and Bagio SE,1991,Adsorpt ion/desorption of multicomponent gas mixtures at in-seam conditions,SPE,23026
    [34]Stork Engineering Consultancy B V,1999, Draft report for assessment of Leading technology options for abatement of CO2 emissions:IEA greenhouse gas R&D programme.
    [35]StuffkenJ,1957, De mi jngasafgifte van kolenlagen, PhD thesis(in Dutch),TH Delft, Delft.
    [36]Suda T, FujiiM, YoshidaK, IijimaM, Seto T and Mitsuoka S,1992, Development of flue gas carbond ioxide recovery technology, in:Blok K, Turkenburg WC, Hendriks CA and Steinberg M(eds.), proceedings of First International Conference on Carbon Dioxide Removal, Pergamon Press, Amsterdam.
    [37]Williams RH,1999, Toward zero emissions for coal roles for inorganicm embranes in proceedings of International symposium toward zero emissions:the challenge for hydrocarbons, Rome.
    [38]Wilson MA, Wrubleski RM and YarboroughL,1992, Recovery of C02 from power plant f lue gases using amines, in:Blok K, Turkenburg WC, Hendriks CA and Steinberg M(eds.), proceedings of First International Conference on Carbon Dioxide Removal, Pergamon Press, Amsterdam, pp 325-331.
    [39]Wolf K-HAA, Barzandji 0, Bruining J and de Rooij M,1999a, Feasibility study of C02-sequestration and Coalbed Methane Production. Report on modeling work, economics and related laboratory experiments on enhanced coalbed methane production by liquid carbon dioxide injection, NOVEM Technical Report, Contract no.2 34130/9001, TU Delft, Delft.
    [40]Wolf K-HAA, Westerink HHE, van Delft PTP and BruiningJ,1997, Coalbed methane p roduction in the Netherlands, an inventory, TU Delft/NOVEM, Delft.
    [41]Battistelli, A, C.Calore and K. Pruess. The Simulator TOUGH2/EWASG for Modeling.
    [42]Geothermal Reservoirs with Brines and Non-Condensible Gas, Geothermics,26(4): 37~464,1997.
    [43]Chang, Y.B, M.T. Lim, G.A. Pope and K. nSepehrnoori. CO2 Flow Patterns Under Multiphase Flow:Heterogeneou Field-Scale Conditions, SPE Reservoir engineering, pp.208 —216,1994.
    [44]Chapman, N, J. Andersson, P. Bogorinski, J. Carrera,J. Groundwater Flow and Transport Models for Radioactive Waste Disposal — Six Years of Experience from the INTRAVAL Project, in the Proceedings of an NEA/SKI Symposium, Paris, France,1994,10; 45~58.
    [45]Gunter W.D, Wiwchar, H, Perkins, E. Disposal of CO2-Rich Green house Gases: Extension of the'Time Scale of Experiment for CO2-Sequestering Reactions by Geochemical-Modeling, Mineral. andPetrol,1997,59:121~140.
    [46]Jing L,L Knight, F. Kautsky. DECOVALEX:IT-Project. Technical Report Task IA and 1B. SwedisNuclear Power Inspectorate, SKT Report,199898~3.
    [47]Jing L, C.F. Tsang, O.Stephansson.DECOVALEX:an International Co-operative Research Project on Mathematical Models of Coupled T-H-M Processes for Safety Analysis of Radioactive Waste Repositories. Int.J.Rock Mech. Min. Sci.&Geomech,1995,32(5):389~ 398.
    [48]A.D. Alexeev, E.V. Ulyanova. Latent methane in fossil coal[J]. Fuel,83 (2004) 1407~ 1411.
    [49]A.D. Alexeev, T.A. Vasilenko, E.V. Ulyanova. Phase states of methane in fossil coal[J]. Solid State Communications,130 (2004):669~673.
    [50]A.D. Alexeev, T.A. Vasilenko, E.V. Ulyanova. Closed porosity in fossil coal[J]. Fuel,78 (1999):635~638.
    [51]A.D. Alexeev, E.P. Feldman, T.A. Vasilenko. Methane desorption from a coal-bed[J]. Fuel,86 (2007):2574~2580.
    [52]于洪观,宋吉勇等.煤层中甲烷水合物存在可能性探讨[J].天燃气工业,200626(8):41-43.
    [53]Zuzana Weishauptov.Bound forms of methane in the porous system of coal[J]. Fuel, 77(1998):71~76.
    [54]Z Weishauptova. Bond forms of methane in porous system of coal Ⅱ[J]. Fuel,83 (2004):1759~1764.
    [55]崔永君,李育辉等.煤吸附甲烷的特征曲线及其在煤层研究中的作用[J].科学通报,2005,50(增1):76-81.
    [56]崔永君,张群等.不同煤级煤对CH4、N2和C02单组分气体的吸附[J].天然气工业,2005,25(1):61-66.
    [57]李小彦,解光新.孔隙结构在煤层气运移过程中的作用——以沁水盆地为例[J].天然气地球科学,2004 15(4):341-344.
    [58]王文峰,徐磊,傅雪海.应用分形理论研究煤孔隙结构[J].中国煤田地质,2002,14(2):24-27.
    [59]ALEXEEV A D, FELDMAN E P, VASILENKO T A. Alteration of methane pressure in the closed pores of fossil coal[J].Fuel,2000,79(8):939~943.
    [60]A.P. Radlinskia, M. Mastalerzb. Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal[J].International Journal of Coal Geology,59 (2004):245~271.
    [61]Clarksoncr, Bustinrm. Variation in micropore capacity and size distribution with composition in bituminous coal of the Western Canadian Sedimentary Basin:Implications for coalbed methane potential [J].Fuel,1996,75(13):1483~1498.
    [62]Thompson A H. Katz A J, Krohn C E. The microgeometry and transport properties of sandtones [J].Advances in physic,1987,36(5):625~629.
    [63]Kueper, Bernard H., Abbott, Wesley and Farquhar,Graham. Experimental observations of multiphase flow in heterogeneous porous media [J]. Journal of Contaminant Hydrology,1989(5):83-95.
    [64]Kaluarachchi, J. J., and J. C. Parker. An efficient finite element method for modeling multiphase flow[J].Water Resources Research,1989,25(1):43-54.
    [65]Kueper, B. H., and E. O. Frind, Two-phase flow in heterogeneous porous media: Model development[J]. Water Resources Research,1991,27(6):1049-1057.
    [66]Kueper, B. H., and E. O. Frind, Two-phase flow in heterogeneous porous media:Model application [J].Water Resources Research,1991,27(6):1059-1070.
    [67]Faust, C.R., J.H.Guswa, J.W.Mercer, Simulation of three-dimensional flow of immiscible fluids within and below the unsaturated zone[J]. Water Resources Research,1989, 25(12):2449-2464.
    [68]AnguloR F, Alvarado V, Gonzalez H. Fractal dimensions from mercury intrusion capillary tests[R]. SPE23695,1992.
    [69]马新仿,张士诚,郎兆新.用分段回归方法计算孔隙结构的分形维数[J].石油大学学报,2004,28(6):54-62.
    [70]马新仿,张士诚,郎兆新.分形理论在岩石孔隙结构研究中的应用[J].岩石力学与 工程学报,2003 22(增1):2164-2167.
    [71]傅雪海,秦勇,薛秀廉.分形理论在煤储层物性研究中的应用[J].煤,2000,9(4):1-3.
    [72]王文峰,徐磊,傅雪海.应用分形理论研究煤孔隙结构[J].中国煤田地质,2002,14(2):26-28.
    [73]赵爱红,廖毅,唐修义.煤的孔隙结构分形定量研究[J].煤炭学报,1998,23(4):439-442.
    [74]胡宝林,张志龙,车遥等.鄂尔多斯盆地煤储层孔隙分形特征研究[J].淮南工业学院学报,2002,22(4):1-4.
    [75]Manuel Maria Mahamud, Marta F. Novo. The use of fractal analysis in the textural characterization of coal[J]. Fuel,87 (2008):222~231.
    [76]张玉涛,王德明,仲晓星.煤孔隙分形特征及其随温度的变化规律[J].煤炭科学技术,2007,35(11):73-76.
    [77]Wang Xiaoliang, He Rong, Chen Yongli. Evolution of porous fractal properties during coal devolatilization[J]. Fuel,87 (2008):878~884.
    [78]Seidle G.R. Arri L.E.Use of conventional reservoir models for coalbed methane simulation. Paper CIM/SPE90-118 Presented at the CIN/SPE International Technical Meeting Calgary. Alberta June 10-13 1990:1-10.
    [79]Schraufnagel R.A. Hill D.G, McBane R.A. Coalbed methane-a decade of success Paper SPE28581 presented at the 60th Annual Technical Conference & Exhibition, New Olieans LA Sept.25-28.1994:161-173.
    [80]王晓亮,何榕,陈永利.煤颗粒热解过程中孔隙分形维数变化的数值模拟[J].清华大学学报(自然科学版),2008,48(2)244-247.
    [81]鞠付栋,陈汉平,杨海平.煤气化过程中焦炭的表面孔隙结构及其分形特征.中国电机工程学报,2010 30(8):9-15.
    [82]胡松,孙学信,向军.淮南煤焦颗粒内部孔隙结构在燃烧过程中的变化[J].化工学报.2003 54(1):107-111.
    [83]康天合,靳钟铭,赵阳升.煤体内裂隙的结构特征与分布规律研究[J].西安矿业学院学报,1994,14(4):318-323.
    [84]李小彦.1998.煤储层裂隙研究方法辨析[J].中国煤田地质,10(1):30-31.
    [85]张胜利.1995.煤层割理的形成机理及在煤层气勘探开发评价中的意义[J].煤田地质与勘探,(1):27-30.
    [86]苏现波.煤层气储集层的孔隙特征[J].焦作工学院学报,1998,17(1):6-11.
    [87]霍永忠,张爱云.煤层气储层的显微孔裂隙成因分类及其应用[J].煤田地质与勘探,1998,26(6):28-32.
    [88]张慧,王晓刚,员争荣等.煤中显微裂隙的成因类型及其研究意义[J].岩石矿物学杂志,2002,21(3):278-284.
    [89]杨起,韩德鑫.中国煤田地质学(上册)[M].北京:地质出版社,1979.
    [90]王生维,张明,庄小丽.煤储层裂隙形成机理及其研究意义[J].地球科学——中国地质大学学报.1996,21(6):637-640.
    [91]钟玲文.煤内生裂隙的成因[J]。中国煤田地质,2004,16(3):6-9.
    [92]康天合,赵阳升,靳钟铭.煤体裂隙尺度分布的分形研究[J].煤炭学报,1995,20(4):393-398.
    [93]魏锦平,张建平,靳钟铭.裂隙煤体压裂机理的分形研究[J].矿山压力与顶板管,2005 (№2):112-114.
    [94]冯增朝,赵阳升,文再明.岩体裂缝面数量三维分形分布规律研究[J].岩石力学与工程学报,2005,24(4):601-609.
    [95]冯增朝,赵阳升.岩体裂缝分维数与岩体强度的相关性研究[J].岩石力学与工程学报,2003,22(增1):2180-2182.
    [96]赵阳升,文再明,冯增朝.岩体裂隙面数量的三维分形分布仿真理论与技术[J].岩石力学与工程学报,24(6):994-998.
    [97]赵阳升,马宇,段康廉.岩层裂隙分形分布相关规律研究[J].岩石力学工程与学报,2002,21(2):219-222.
    [98]胡耀青,赵阳升,杨栋等.煤体的渗透性与裂隙分维的关系[J].岩石力学与工程学报,2002,21(10):1452-1456.
    [99]许满贵,徐精彩,王国旗.煤层露头火区孔与裂隙的分形特征[J].矿业安全与环保,2003,30(5):1-4.
    [100]冯增朝,赵阳升,文再明.煤岩体孔隙裂隙双重介质逾渗机理研究[J].岩石力学与工程学报,2005,25(2):236-240.
    [101]冯增朝,赵阳升,吕兆兴.二维孔隙裂隙双重介质逾渗规律研究[J],物理学报, 2007,56(05):2796~2802
    [102]Johnson B, Gangi A F, Handin J. Thermal cracking of rock subject to slow uniform temperature changes[J].Proc 19th US Symp. Rock Mech,1978,259~267.
    [102]Heuze F E. High-temperature mechanical,physical and thermal properties of granitic rocks a review[J] Int.J.Rock Mech.Min.Sci,1983,20(1):3~10.
    [103]Fredrich J T, Wong T F. Micromechanics of thermally induced cracking in three crustalrocks[J].J.Geo.Res,1986,91(12):12743~12764.
    [104]Jones C, Keaney G, Meredlth P G,etal. Acoustic emission and fluid permeability measurements on thermally cracked rocks[J]. Phys.Chem.Earth,1997,22(1):13~17.
    [105]Darot M. Permeability of thermally cracked granite[J], Geophysics Research Letters, 1992,19:869~872.
    [106]陈颙.岩石物理学[M].北京:北京大学出版社,2001.
    [107]赵阳升.高温岩体地热开发导论[M].北京:科学出版社,2004.
    [108]吴晓东.岩石热开裂影响因素分析[J].石油钻探技术,2003,31(5):24-27.
    [109]刘均荣,吴晓东.岩石热增渗机理初探[J],石油钻采工艺,2003,25(5):43-46.
    [110]张元中,楚泽涵,陈颙.岩石热开裂研究现状及其应用前景[J],特种油气藏,1999,6(2):1-5.
    [112]周克群,楚泽涵,张元中等.岩石热开裂与检测方法研究[J],岩石力学与工程学报,2000,19(4):412-416.
    [113]Heard H C. Thermal expansion and inferred permeability of climax quartz monzonite to 300℃ and 2716MPa[J]. Int.J.Rock Mech.Min.Sci,1980,17:289~296.
    [114]Somerton W H, Gupta V S. Role of fluxing agents in thermal alteration of sandstones [J]. Journal of Petroleum Technology,1965,17(5):585~588.
    [115]Homand-Etienne F,Honpert R. Thermally induced micro cracking in granites: characterization and analysis[J]. Int.J.Rock Mech.Min.Sci,1989,26(2):124~134.
    [116]陈颙,吴晓东,张祖勤.岩石热开裂的实验研究[J].科学通报,1999,44(8):880-883.
    [117]梁冰,高红梅,兰永伟.岩石渗透率与温度关系的理论分析和试验研究[J],岩石力学与工程学报,2005,24(12):2009-2012.
    [118]张渊,张贤,赵阳升.砂岩的热破裂过程[J],地球物理学报,2005,48(3):656-659.
    [119]左建平,谢和平,周宏伟等.不同温度作用下砂岩热开裂的实验研究[J],地球物理学报,50(4):1150-1155.
    [120]左建平.温度—应力共同作用下砂岩破坏的细观机制与强度特征[D],北京,中国矿业大学,2006.
    [121]李皋,孟英峰,董兆雄等.砂岩储集层微波加热产生微裂缝的机理及意义[J].石油勘探与开发,2007,34(1):93-97.
    [122]康志勤,赵阳升,孟巧荣,油页岩热破裂规律显微CT实验研究[J].地球物理学报,2009,52(3):842-850.
    [123]康志勤,赵阳升,杨栋.油页岩热破裂规律分形理论研究[J].岩石力学与工程学报,2010 29(1):90-96.
    [124]尹小涛,党发宁,丁卫华等.基于单轴压缩CT实验的砂岩破损机制[J].岩石力学与工程学报,2006,25(Supp.2):3891~3897.
    [125]杨更社,刘慧.基于CT图像处理的岩石损伤特性研究[J].煤炭学报,2007,32(5):463-468.
    [126]任建喜,杨更社,葛修润.裂隙花岗岩卸围压作用下损伤破坏机理CT检测[J].长安大学学报(自然科学版),2002,22(6):46-49.
    [127]葛修润,任建喜,蒲毅彬等.岩石细观损伤扩展规律的CT实时试验[J].中国科学(E辑),2000,30(2):104-111.
    [128]葛修润,任建喜,蒲毅彬等.煤岩三轴细观损伤演化规律的CT动态实验[J].岩石力学与工程学报,1999,18(5):497-520.
    [129]赖远明,吴紫汪,朱元林等.大坂山隧道围岩冻融损伤的CT分析[J].冰川冻土,2000,22(3):206-210.
    [130]杨更社,蒲毅彬.冻融循环条件下岩石损伤扩展研究初探[J].煤炭学报,2002,27(4):357-360.
    [131]丁卫华.岩石内部破裂过程的CT动态监测[D].西安:西安理工大学[博士学位论文],2001.
    [132]赵阳升,孟巧荣,康天合等.显微CT试验技术与花岗岩热破裂特征的细观研究[J].岩石力学与工程学报,2008,27(1):28-34.
    [133]Ron C K, Wong. Mobilized Strength Components of Athab-asca Oil Sand in Triaxial Compression [J]. In:Can Geotech,1999(36):718~735.
    [134]任建喜.岩石损伤扩展特性实验分析及其本构模型与数值模拟研究[D].武汉:中国科学院武汉岩土力学研究所[博士学位论文],2000.
    [135]任建喜,罗应,刘文刚等.CT检测技术在岩石加卸载破坏机理研究中的应用[J].冰川冻土,2002,24(5):672-675.
    [136]易敏,黄瑞瑶,孙良田.测量储层多孔介质孔隙度及其分布的新方法[J].西南石油学院学报,2004,26(1):43-46.
    [137]王家禄,高建,刘莉.应用CT技术研究岩石孔隙变化特征[J].石油学报,2009,30(6):887-895.
    [138]陈鹏.中国煤炭性质分类和利用.北京,化学工业出版社,2007.3,259-265.
    [139]谢和平.分形理论在采矿科学中的应用与展望[J].科学中国人,1996,12(1):4-8.
    [140]傅雪海,秦勇等.煤储层孔、裂隙系统分形研究[J].中国矿业大学学报,2001(5):225-228.
    [141]高安秀村著,沈步明,常子文译.分数维[M].北京:地震出版社,1988.
    [142]谢和平,张永平,宋晓秋等.分形几何——数学基础与应用[M].重庆:重庆大学出版社,1996.121-131.
    [143]Perfect,E. Kay.B D. Applications of fractals in soil and tillage research:a veview[J]. Soil & Tillage Research,1995,36:1~20.
    [144]Dullien F A L.多孔介质—流体渗移与孔隙结构(中译本)·北京:石油工业出版社,1990,45-53.
    [145]周宏伟,谢和平.多孔介质孔隙度与比表面积的分形描述[J].西安矿业学院学报,1997,17(2):97-102.
    [146]赵阳升,矿山岩石流体力学[M],煤炭工业出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700