煤的气化反应行为及气化为基础的先进能源动力系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是社会经济发展的重要支柱。鉴于我国富煤少油气的能源国情,大力发展洁净煤技术是实现我国能源安全的重要保证。本文综合了煤气化的基础研究和应用研究两个方面的内容,重点对煤的气化反应行为、高阶煤的催化气化反应特性、煤气化反应器模型库的建立以及催化气化转化代用天然气(substitute natural gas, SNG)等主要方面开展了研究工作。
     在煤的气化反应行为的研究中发现,压力对煤热解过程中的影响机制与该阶段的热解产物及煤的热物理性质密切相关。实验结果表明热解压力存在一最佳值使得煤焦表面结构的发展最为有利,对于神府煤来说最佳压力为0.8MPa。同时,加压热解也对煤焦的化学结构产生了显著的影响,主要表现为含氧官能团的减少以及骨架结构的生长。利用分形收缩核模型对煤焦的气化反应动力学的分析发现煤焦的气化反应性的影响关键在于表面结构特性,气化反应动力学参数的变化与煤焦的表面结构特性的变化表现出一致性。而对气化反应过程中不同转化率的煤焦表面结构特征的分析发现高变质程度煤倾向于显著的表面发展过程,而低变质程度煤则更趋于立体发展的特点。为了描述煤焦表面结构特性发展的随机性,本文利用分形理论对气化过程中煤焦表面结构特性进行了分析,发现不同孔径范围的孔隙结构具有不同的分形维数和演变特征,主要表现为微观孔隙的生长和宏观孔隙的塌缩。此外,研究发现,灰分在煤焦表面结构发展中具有双重作用,特别是低变质程度煤。考虑到高阶煤气化反应性较差,利用添加催化剂研究高阶煤的气化反应动力学,发现不同的催化剂具有不同的适用温度范围,且催化作用与添加量并不存在明显的线性关系。对碱金属、碱土金属和过渡金属三种金属盐催化剂的综合比较来看,钙盐比较适合作为高阶煤气化反应的催化剂。
     在煤气化反应器的模拟研究方面,本文建立了基于炉内反应过程和综合热力过程的详细气化炉流程模型和模型库,模拟了运行条件对各典型反应器的运行性能的影响,发现不同的气化炉具有不同的运行性能,这也决定了其运行的经济性及应用领域。
     最后,围绕国家能源形势,本文综合分析目前各种SNG生产技术,并结合国内外的研究进展指出了工艺改进的方向。利用简化流程模型模拟了煤直接转化运行性能,得到的SNG产率为0.703Nm3/kg煤。通过对比煤与生物质的差异,在直接转化工艺基础上提出了生物质直接转化SNG的工艺,模拟得到的生物质直接转化SNG产率为0.320Nm3/kg生物质。
Energy is one of the motivity of the society and economy development. In China, coal is the primary energy supply. Development of Clean Coal Technology (CCT) is the way to protect the energy safety now and hereafter. This thesis focuses on the coal gasification, one of the most important CCTs, and both fundamental research and application research were conducted. In the fundamental research, coal gasification behavior, including coal reactivity, coal surface structure development at atmospheric pressure, coal pressurized pyrolysis characteristics and high rank coal catalysis characteristics, were analyzed. While in the application research part, major gasifier process models based on Aspen Plus and gasification based substitute natural gas (SNG) production technology were developed and simulated to predict the operation performance.
     Coal gasification behavior is critical in the gasifier design and operation. It is found that pyrolysis pressure influences the volatile evolution process, and the volatile evolution process in different temperature range is closly related to the pyrolysis products and the coal (char) thermal properties and then makes a different char physical surface. The optimum pressure exists which produces a more developed physical structure and this reveals the balance between surface tension and the viscosity. Because of the enlargement of volatile-char reaction time and the increase of char secondary pyrolysis reaction, system pressure also influences char chemical structure, which shows the grow of the skelecton and the decrease of the oxygen contained function group with pressure increase. It is also found that char reactivity is closely related to char surface structure by introducing fractal shringking core model. The characteristics of char from different carbon conversion reveals that char from different rank coal go through different development regime, the high rank coal char shows little trend to interspace development while the low rank coal char physical surface structure experieces the first grow up stage and then the ruin which is inclined to spacial development. The fractal dimensions variations of different pore radius range were found which could be explained by the pore enlargement and breakage. Also, ash plays a key role in char physical structure development, especially for low rank coal. The catalysis effect of AAEM and transition metal salts in high rank coal gasification was also investigated. It is found that, there is less correlation between addtion amont and catalysis effect and different catalysis have different application temperature.
     In order to verify the performance and the design method of typical coal gasifier process model based on ASPEN PLUS was developed, including the detailed fixed bec gasifier model, fluidized bed gasifier model and entrained flow gasifier model. The detailec gasifier model combines the coal gasification reaction process in the gasifier and the laten heat recovery process and it is shown that different gasifier have different operatior performance, which determines the gasifier application and its operation economy.
     At last, in view of the trend in China energy supply adjustment, the current substitute natural gas (SNG) production technologies were reviewd. Based on the SNG productior research and development in the world, improvements on Exxon Catalytic Coa Gasification Process (CCG) were proposed. Simulation shows the improved CCG process SNG yield is 0.703 Nm3/kg Coal. Also, it is found that biomass is more suitable for catalytic gasification to produce SNG, and a novel biomass based direct SNG productior process was proposed. The simulated SNG yield is 0.320 Nm3/kg biomass.
引文
[1]任娜,能源安全与当代大国关系[博士学位论文].华中科技大学图书馆,2007.
    [2]赵坤,新时期中国石油能源安全战略探析[硕士学位论文].华中科技大学图书馆,2009.
    [3]师琼,洁净煤技术的发展简史[硕士学位论文].华中科技大学图书馆,2007.
    [4]T. Attwood, V. Fung, and W.W. Clark, Market opportunities for coal gasification in China. Journal of Cleaner Production,2003.11(4):p.473-479.
    [5]A.-G. Collot, Matching gasification technologies to coal properties. International Journal of Coal Geology,2006.65(3-4):p.191-212.
    [6]V.H. Shellhorse, J.H. Garstang, P.K. Herbert, et al. Applications using the fixed-bed gasification process, in American Power Conference,57th Annual Meeting..1995. Chicago, IL, USA:Illinois Inst. Technol.
    [7]D.H. Archer, D. Berg, and E.V. Somers, FLUIDIZED BED GASIFICATION AND COMBUSTION FOR POWER GENERATION.1975:p.288-313.
    [8]S.J. Wohadlo, D.P. Olson, and W.G. Bair, CONTROLLING FLUIDIZED-BED GASIFICATION. Coal Processing Technology,1979.5:p.107-111.
    [9]J.B. Yasinsky, ADVANCES IN FLUIDIZED BED GASIFICATION PROCESS 1 DEVELOPMENT. Combustion,1979.50(8):p.15-21.
    [10]沙兴中,杨南星,煤的气化与应用.上海:华东理工大学出版社,1995.
    [11]曾纪龙,大型煤制甲醇的气化和合成工艺选择.煤化工,2005(5):p.1-5.
    [12]王乃继,纪任山,王昕等,含氧燃料—甲醇合成技术发展现状分析(一).洁净煤技术,2004(01):p.29-34.
    [13]肖海成,迟克彬,孔凡华等, 超临界相合成甲醇新工艺研究.天然气化工,2002.27(4):p.1-2+6.
    [14]常雁红,韩怡卓,王心葵,二甲醚的生产、应用及下游产品的开发.天然气化工,2000.25(3):p.45-49+54.
    [15]周卫国,二甲醚生产、应用及市场.上海化工,2001(10).p.31-35.
    [16]刘勇,张杰杉,曹宇,二甲醚一步法合成技术进展.天然气化工,2000.20(5):p.79-83+1-0.
    [17]胡浩,叶丽萍,应卫勇等,国外甲醇制烯烃生产工艺与反应器开发现状.现代化工,2008.28(1):p.82-86.
    [18]王俐,醋酸生产技术进展.石油化工,2005.34(8):p.797-801.
    [19]C. Luo, T. Watanabe, M. Nakamura, et al., Development of FBR measurement of char reactivity to carbon dioxide at elevated temperatures. Fuel,2001.80(2):p. 233-243.
    [20]R.C. Messenbock, N.P. Paterson, D.R. Dugwell, et al., Factors governing reactivity in low temperature coal gasification. Part 1. An attempt to correlate results from a suite of coals with experiments on maceral concentrates. Fuel,2000.79(2):p. 109-121.
    [21]Cousins, N. Paterson, D.R. Dugwell, et al., An Investigation of the Reactivity of Chars Formed in Fluidized Bed Gasifiers:The Effect of Reaction Conditions and Particle Size on Coal Char Reactivity. Energy Fuels,2006.20(6):p.2489-2497.
    [22]Sharma, H. Kadooka, T. Kyotani, et al., Effect of Microstructural Changes on Gasification Reactivity of Coal Chars during Low Temperature Gasification.2002. p.54-61.
    [23]Arenillas, C. Pevida, F. Rubiera, et al., Comparison between the reactivity of coal and synthetic coal models[small star, filled]. Fuel,2003.82(15-17):p.2001-2006.
    [24]S. Kucukbayrak, H. Haykin-Acma, A. Ersoy-Mericboyu, et al., Effect of lignite properties on reactivity of lignite. Energy Conversion and Management,2001.42(5): p.613-626.
    [25]P. Fott and P. Straka, Effect of pore diffusion on reactivity of lump coke. Fuel,1987. 66(9):p.1281-1288.
    [26]徐秀峰,顾永达,陈诵英,煤焦气化反应的影响因素和反应机理的研究进展.煤炭转化,1996.19(2):p.48-53.
    [27]Q. Liu, H. Hu, Q. Zhou, et al., Effect of inorganic matter on reactivity and kinetics of coal pyrolysis. Fuel,2004.83(6):p.713-718.
    [28]R. Gopalakrishnan and C.H. Bartholomew, Effects of CaO, High-Temperature Treatment, Carbon Structure, and Coal Rank on Intrinsic Char Oxidation Rates. 1996. p.689-695.
    [29]L. Lemaignen, Y. Zhuo, G.P. Reed, et al., Factors governing reactivity in low temperature coal gasification. Part Ⅱ. An attempt to correlate conversions with inorganic and mineral constituents. Fuel,2002.81(3):p.315-326.
    [30]R.P.W.J. Struis, C. von Scala, S. Stucki, et al., Gasification reactivity of charcoal with CO2. Part Ⅱ:Metal catalysis as a function of conversion. Chemical Engineering Science,2002.57(17):p.3593-3602.
    [31]D.M. Quyn, H. Wu, J.-i. Hayashi, et al., Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅳ Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity[small star, filled]. Fuel,2003.82(5):p.587-593.
    [32]H. Wu, J.-I. Hayashi, T. Chiba, et al., Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅴ. Combined effects of Na concentration and char structure on char reactivity. Fuel,2004.83(1):p.23-30.
    [33]X. Li, J.-i. Hayashi, and C.-Z. Li, Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅶ. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air. Fuel,2006.85(10-11):p.1509-1517.
    [34]P. Samaras, E. Diamadopoulos, and G.P. Sakellaropoulos, The effect of mineral matter and pyrolysis conditions on the gasification of Greek lignite by carbon dioxide. Fuel,1996.75(9):p.1108-1114.
    [35]赵明举,谢克昌,凌大琦,煤中矿物质在煤气化中的作用.煤炭转化,1989(1):p.23-29.
    [36]T. Ganga Devi and M.P. Kannan, Calcium catalysis in air gasification of cellulosic chars. Fuel,1998.77(15):p.1825-1830.
    [37]P. Ehrburger, F. Addoun, and J.-B. Donnet, Effect of mineral matter of coals on the microporosity of charcoals. Fuel,1988.67(9):p.1228-1231.
    [38]黄戒介,林器,煤中矿物质在煤气化反应中的作用.大连工学院学报,1987.26(2):p.39-46.
    [39]张林仙,黄戒介,房倚天等,中国典型无烟煤中矿物质对气化活性的影响.中国矿业大学学报,2005.34(5):p.585-590.
    [40]H.Y. Cai, A. Megaritis, R. Messenbock, et al., Pyrolysis of coal maceral concentrates under pf-combustion conditions ( Ⅰ):changes in volatile release and char combustibility as a function of rank. Fuel,1998.77(12):p.1273-1282.
    [41]Y.-H. Huang, H. Yamashita, and A. Tomita, Gasification reactivities of coal macerals. Fuel Processing Technology,1991.29(1-2):p.75-84.
    [42]M.J.G. Alonso, A.G. Borrego, D. Avarez, et al., A reactivity study of chars obtained at different temperatures in relation to their petrographic characteristics. Fuel Processing Technology,2001.69(3):p.257-272.
    [43]F. Czechowski and H. Kidawa, Reactivity and susceptibility to porosity development of coal maceral chars on steam and carbon dioxide gasification. Fuel Processing Technology,1991.29(1-2):p.57-73.
    [44]王国金,戴和武,史国昌,西曲煤显微组分化学结构的研究.中国矿业大学学报,1992.21(4):p.97-103.
    [45]孙庆雷,李文,李保庆,神木煤显微组分热解气化的对比研究.中国矿业大学学报,2001.30(6):p.564-569.
    [46]Q. Sun, W. Li, H. Chen, et al., The variation of structural characteristics of macerals during pyrolysis [small star, filled]. Fuel,2003.82(6):p.669-676.
    [47]丁华,煤及其显微组分的热解气化反应特性研究[硕士学位论文].华中科技大学图书馆,2006.
    [48]Megaritis, R.C. Messenbock, I.N. Chatzakis, et al., High-pressure pyrolysis and CO2-gasification of coal maceral concentrates:conversions and char combustion reactivities. Fuel,1999.78(8):p.871-882.
    [49]S. Kajitani, H. Matsuda, N. Suzuki, et al., Influence of High-Temperature and High-Pressure Pyrolysis Conditions on Gasification Reactivity of Coal Chars with Carbon Dioxide. KAGAKU KOGAKU RONBUNSHU,2004.30(1):p.29-35.
    [50]M.J.G. Alonso, A.G. Borrego, D. Alvarez, et al., Influence of pyrolysis temperature on char optical texture and reactivity. Journal of Analytical and Applied Pyrolysis, 2001.58-59:p.887-909.
    [51]J.S. Gupta and S.K. Bhatia, A modified discrete random pore model allowing for different initial surface reactivity. Carbon,2000.38(1):p.47-58.
    [52]H.Y. Cai, A.J. Goll, I.N. Chatzakis, et al., Combustion reactivity and morphological change in coal chars:Effect of pyrolysis temperature, heating rate and pressure. Fuel,1996.75(1):p.15-24.
    [53]N.V. Russell, J.R. Gibbins, and J. Williamson, Structural ordering in high temperature coal chars and the effect on reactivity. Fuel,1999.78(7):p.803-807.
    [54]Oberlin and G. Terriere, Graphitization studies of anthracites by high resolution electron microscopy. Carbon,1975.13(5):p.367-376.
    [55]Oberlin and G. Terriere, Graphitization studies of soft carbons and anthracites by electron microscopy. Carbon,1973.11(6):p.672-672.
    [56]周军,张海,吕俊复等,高温下热解温度对煤焦孔隙结构的影响.燃料化学学报,2007.35(2):p.155-159.
    [57]H. Liu, C. Luo, M. Toyota, et al., Mineral reaction and morphology change during gasification of coal in CO2 at elevated temperatures[small star, filled]. Fuel,2003. 82(5):p.523-530.
    [58]唐黎华,吴勇强,朱学栋等,高温下制焦温度对煤焦气化活性的影响.燃料化学学报,2002.30(1):p.16-20.
    [59]范晓雷,张薇,周志杰等,热解压力及气氛对神府煤焦气化反应活性的影响.燃料化学学报,2005.33(5):p.530-533.
    [60]A.J. Guell and R. Kandiyoti, Development of a gas-sweep facility for the direct capture of pyrolysis tars in a variable heating rate high-pressure wire-mesh .reactor. 1993. p.943-952.
    [61]V. Seebauer, J. Petek, and G. Staudinger, Effects of particle size, heating rate and pressure on measurement of pyrolysis kinetics by thermogravimetric analysis. Fuel, 1997.76(13):p.1277-1282.
    [62]H. Yeasmin, J.F. Mathews, and S. Ouyang, Rapid devolatilisation of Yallourn brown coal at high pressures and temperatures. Fuel,1999.78(1):p.11-24.
    [63]T.F. Wall, G.-s. Liu, H.-w. Wu, et al., The effects of pressure on coal reactions during pulverised coal combustion and gasification. Progress in Energy and Combustion Science,2002.28(5):p.405-433.
    [64]R.C. Messenbok, D.R. Dugwell, and R. Kandiyoti, CO2 and steam-gasification in a high-pressure wire-mesh reactor:the reactivity of Daw Mill coal and combustion reactivity of its chars. Fuel,1999.78(7):p.781-793.
    [65]Megaritis, R.C. Messenbock, A.G. Collot, et al., Internal consistency of coal gasification reactivities determined in bench-scale reactors:effect of pyrolysis conditions on char reactivities under high-pressure CO2. Fuel,1998.77(13):p. 1411-1420.
    [66]H.W. Wu, G. Bryant, K. Benfell, et al., An experimental study on the effect of system pressure on char structure of an Australian bituminous coal. Energy & Fuels, 2000.14(2):p.282-290.
    [67]C.R. Monson, G.J. Germane, A.U. Blackham, et al., Char oxidation at elevated pressures. Combustion and Flame,1995.100(4):p.669-683.
    [68]D.R. Jenkins, Effect of coke shrinkage and plastic layer deformation on gas pressure in a coke oven. Fuel,2002.81(4):p.461-465.
    [69]J.L. Yu, D. Harris, J. Lucas, et al., Effect of pressure on char formation during pyrolysis of pulverized coal. Energy & Fuels,2004.18(5):p.1346-1353.
    [70]V. Strezov, J.A. Lucas, and T.F. Wall, Effect of pressure on the swelling of density separated coal particles. Fuel,2005.84(10):p.1238-1245.
    [71]D. Zeng, EFFECTS OF PRESSURE ON COAL PYROLYSIS AT HIGH HEATING RATES AND CHAR COMBUSTION.2005, Brigham Young University, p.244.
    [72]J. Tomeczek and S. Gil, Volatiles release and porosity evolution during high pressure coal pyrolysis. Fuel,2003.82(3):p.285-292.
    [73]H. Liu, M. Kaneko, C. Luo, et al., Effect of pyrolysis time on the gasification reactivity of char with CO2 at elevated temperatures. Fuel,2004.83(7-8):p. 1055-1061.
    [74]Emelianov, A. Eremin, E. Gurentsov, et al., Time and temperature dependence of carbon particle growth in various shock wave pyrolysis processes. Proceedings of the Combustion Institute,2005.30(1):p.1433-1440.
    [75]V. Strezov, J.A. Lucas, T.J. Evans, et al., Effect of heating rate on the thermal properties and devolatilisation of coal. Journal of Thermal Analysis and Calorimetry, 2004.78(2):p.385-397.
    [76]G.Q. Lu and D.D. Do, Structure changes of coal reject char during pyrolysis at low heating rates. Fuel Processing Technology,1991.28(3):p.247-258.
    [77]T.K. Gale, C.H. Bartholomew, and T.H. Fletcher, Decreases in the swelling and porosity of bituminous coals during devolatilization at high heating rates. Combustion and Flame,1995.100(1-2):p.94-100.
    [78]T.K. Gale, G.H. Bartholomew, and T.H. Fletcher, Effects of Pyrolysis Heating Rate on Intrinsic Reactivities of Coal Chars.1996. p.766-775.
    [79]M.S. Solum, R.J. Pugmire, and D.M. Grant, Carbon-13 solid-state NMR of Argonne-premium coals.1989. p.187-193.
    [80]T.H. Fletcher, M.S. Solum, D.M. Grant, et al., Chemical structure of char in the transition from devolatilization to combustion.1992. p.643-650.
    [81]R.K. Sharma, J.B. Wooten, V.L. Baliga, et al., Characterization of chars from biomass-derived materials:pectin chars. Fuel,2001.80(12):p.1825-1836.
    [82]R.K. Sharma, M.R. Hajaligol, P.A. Martoglio Smith, et al., Characterization of Char from Pyrolysis of Chlorogenic Acid.2000. p.1083-1093.
    [83]H. Kawashima and O. Yamada, A modified solid-state 13C CP/MAS NMR for the study of coal. Fuel Processing Technology,1999.61(3):p.279-287.
    [84]P. Tekely, D. Nicole, J.j. Delpuech, et al., Chemical structure changes in coals after low-temperature oxidation and demineralization by acid treatment as revealed by high resolution solid state 13C NMR. Fuel Processing Technology,1987.15:p. 225-231.
    [85]T. Yoshida and Y. Maekawa, Characterization of coal structure by CP/MAS carbon-13 NMR spectrometry. Fuel Processing Technology,1987.15:p.385-395.
    [86]K. Kidena, S. Murata, and M. Nomura, Studies on the Chemical Structural Change during Carbonization Process.1996. p.672-678.
    [87]Senneca, P. Salatino, and S. Masi, Microstructural changes and loss of gasification reactivity of chars upon heat treatment. Fuel,1998.77(13):p.1483-1493.
    [88]Z. Lu, M.M. Maroto-Valer, and H.H. Schobert, Role of active sites in the steam activation of high unburned carbon fly ashes. Fuel,2008.87(12):p.2598-2605.
    [89]N. Yoshizawa, K. Maruyama, T. Yamashita, et al., Dependence of microscopic structure and swelling property of DTF chars upon heat-treatment temperature. Fuel, 2006.85(14-15):p.2064-2070.
    [90]L. Lu, C. Kong, V. Sahajwalla, et al., Char structural ordering during pyrolysis and combustion and its influence on char reactivity. Fuel,2002.81(9):p.1215-1225.
    [91]N. Yoshizawa, K. Maruyama, Y. Yamada, et al., XRD evaluation of CO2 activation process of coal-and coconut shell-based carbons. Fuel,2000.79(12):p.1461-1466.
    [92]H. Takagi, K. Maruyama, N. Yoshizawa, et al., XRD analysis of carbon stacking structure in coal during heat treatment. Fuel,2004.83(17-18):p.2427-2433.
    [93]T.F. Yen, J.G. Erdman, and S.S. Pollack, Investigation of the Structure of Petroleum Asphaltenes by X-Ray Diffraction.1961. p.1587-1594.
    [94]L. Lu, V. Sahajwalla, C. Kong, et al., Quantitative X-ray diffraction analysis and its application to various coals. Carbon,2001.39(12):p.1821-1833.
    [95]J. Ibarra, E. Munoz, and R. Moliner, FTIR study of the evolution of coal structure during the coalification process. Organic Geochemistry,1996.24(6-7):p.725-735.
    [96]J.V. Ibarra and R. Moliner, Coal characterization using pyrolysis-FTIR. Journal of Analytical and Applied Pyrolysis,1991.20:p.171-184.
    [97]M.J. Iglesias, A. Jimenez, F. Laggoun-Defarge, et al., FTIR Study of Pure Vitrains and Associated Coals.1995. p.458-466.
    [98]X. Li, J.-i. Hayashi, and C.-Z. Li, FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel,2006.85(12-13): p.1700-1707.
    [99]M. Mastalerz and R. Marc Bustin, Electron microprobe and micro-FTIR analyses applied to maceral chemistry. International Journal of Coal Geology,1993.24(1-4): p.333-345.
    [100]P.R. Solomon and R.M. Carangelo, FTIR analaysis of coal.1. techniques and determination of hydroxyl concentrations. Fuel,1982.61(7):p.663-669.
    [101]G. de la Puente, M.J. Iglesias, E. Fuente, et al., Changes in the structure of coals of different rank due to oxidation--effects on pyrolysis behaviour. Journal of Analytical and Applied Pyrolysis,1998.47(1):p.33-42.
    [102]G.A. Zickler, B. Smarsly, N. Gierlinger, et al., A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy. Carbon,2006.44(15):p.3239-3246.
    [103]L. Lu, V. Sahajwalla, and D. Harris, Coal char reactivity and structural evolution during combustion—Factors influencing blast furnace pulverized coal injection operation. Metallurgical and Materials Transactions B,2001.32(5):p.811-820.
    [104]Goyal, R.F. Zabransky, and A. Rehmat, Gasification kinetics of Western Kentucky bituminous coal char.1989. p.1767-1778.
    [105]D.P. Ye, J.B. Agnew, and D.K. Zhang, Gasification of a South Australian low-rank coal with carbon dioxide and steam:kinetics and reactivity studies. Fuel,1998. 77(11):p.1209-1219.
    [106]R.C. Everson, H.W.J.P. Neomagus, H. Kasaini, et al., Reaction kinetics of pulverized coal-chars derived from inertinite-rich coal discards:Gasification with carbon dioxide and steam. Fuel,2006.85(7-8):p.1076-1082.
    [107]R.C. Everson, H.W.J.P. Neomagus, and D. Njapha, Kinetic analysis of non-isothermal thermogravimetric analyser results using a new method for the evaluation of the temperature integral and multi-heating rates. Fuel,2006.85(3):p. 418-422.
    [108]L.H. Serensen, J. Saastamoinen, and J.E. Hustad, Evaluation of char reactivity data by different shrinking-core models. Fuel,1996.75(11):p.1294-1300.
    [109]R.C. Everson, H.W.J.P. Neomagus, R. Kaitano, et al., Properties of high ash coal-char particles derived from inertinite-rich coal:II. Gasification kinetics with carbon dioxide. Fuel. In Press, Uncorrected Proof.
    [110]Y. Zhang, M. Ashizawa, S. Kajitani, et al., Proposal of a semi-empirical kinetic model to reconcile with gasification reactivity profiles of biomass chars. Fuel,2008. 87(4-5):p.475-481.
    [111]S. Kajitani, N. Suzuki, M. Ashizawa, et al., CO2 gasification rate analysis of coal char in entrained flow coal gasifier. Fuel,2006.85(2):p.163-169.
    [112]S. Kajitani, S. Hara, and H. Matsuda, Gasification rate analysis of coal char with a pressurized drop tube furnace. Fuel,2002.81(5):p.539-546.
    [113]J. Ochoa, M.C. Cassanello, P.R. Bonelli, et al., CO2 gasification of Argentinean coal chars:a kinetic characterization. Fuel Processing Technology,2001.74(3):p. 161-176.
    [114]G.S. Liu, H.R. Rezaei, J.A. Lucas, et al., Modelling of a pressurised entrained flow coal gasifier:the effect of reaction kinetics and char structure. Fuel,2000.79(14):p. 1767-1779.
    [115]G. Liu, P. Benyon, K.E. Benfell, et al., The porous structure of bituminous coal chars and its influence on combustion and gasification under chemically controlled conditions. Fuel,2000.79(6):p.617-626.
    [116]S.K. Bhatia, Reactivity of chars and carbons:New insights through molecular modeling.1998. p.2478-2493.
    [117]A.J. Guell and R. Kandiyoti, Development of a gas-sweep facility for the direct capture of pyrolysis tars in a variable heating rate high-pressure wire-mesh reactor. Energy and Fuels,1993.7(6):p.943-952.
    [118]J. Yu, D. Harris, J. Lucas, et al., Effect of pressure on char formation during pyrolysis of pulverized coal. Energy and Fuels,2004.18(5):p.1346-1353.
    [119]V. Strezov, J.A. Lucas, and T.F. Wall. Effect of pressure on the swelling of density separated coal particles.2005:Elsevier Ltd.
    [120]D. Zeng, Effects of pressure on coal pyrolysis at high heating rates and char combustion.2005, Brigham Young University:United States - Utah. p.221.
    [121]H. Wu, G. Bryant, K. Benfell, et al., Experimental study on the effect of system pressure on char structure of an Australian bituminous coal. Energy and Fuels,2000. 14(2):p.282-290.
    [122]J. Yu, J.A. Lucas, and T.F. Wall, Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties:A review. Progress in Energy and Combustion Science,2007.33(2):p.135-170.
    [123]K. Miura, H. Nakagawa, S.-I. Nakai, et al. Analysis of gasification reaction of coke formed using a miniature tubing-bomb reactor and a pressurized drop tube furnace at high pressure and high temperature.2004:Elsevier Ltd.
    [124]R.C. Messenbock, D.R. Dugwell, and R. Kandiyoti, CO2 and steam-gasification in a high-pressure wire-mesh reactor:The reactivity of Daw Mill coal and combustion reactivity of its chars. Fuel,1999.78(7):p.781-793.
    [125]G.S. Liu, H.R. Rezaei, J.A. Lucas, et al., Modelling of a pressurized entrained flow coal gasifier:The effect of reaction kinetics and char structure. Fuel,2000.79(14):p. 1767-1779.
    [126]R. Gadiou, Y. Bouzidi, and G. Prado, The devolatilisation of millimetre sized coal particles at high heating rate:The influence of pressure on the structure and reactivity of the char. Fuel,2002.81(16):p.2121-2130.
    [127]K. Matsuoka, H. Akiho, W.-c. Xu, et al., The physical character of coal char formed during rapid pyrolysis at high pressure. Fuel,2005.84(1):p.63-69.
    [128]H. Yeasmin, J.F. Mathews, and S. Ouyang, Rapid devolatilization of Yallourn brown coal at high pressures and temperatures. Fuel,1999.78(1):p.11-24.
    [129]Sathe, J.-I. Hayashi, and C.-Z. Li, Release of volatiles from the pyrolysis of a Victorian lignite at elevated pressures. Fuel,2002.81(9):p.1171-1178.
    [130]J.W. Cumming, Reactivity of coals via a weighted mean activation energy. Fuel, 1984.63(10):p.1436-1440.
    [131]S. Nomura and K.M. Thomas, The effect of swelling pressure during coal carbonization on coke porosity. Fuel,1996.75(2):p.187-194.
    [132]K. Jamil, J.I. Hayashi, and C.Z. Li, Pyrolysis of a Victorian brown coal and gasification of nascent char in CO2 atmosphere in a wire-mesh reactor. Fuel,2004. 83(7-8):p.833-843.
    [133]K. Miura, M. Makino, and P.L. Silveston, Correlation of gasification reactivities with char properties and pyrolysis conditions using low rank Canadian coals. Fuel, 1990.69(5):p.580-589.
    [134]S. Niksa, G.-S. Liu, and R.H. Hurt, Coal conversion submodels for design applications at elevated pressures. Part I. Devolatilization and char oxidation. Progress in Energy and Combustion Science,2003.29(5):p.425-477.
    [135]P.R. Solomon and R.M. Carangelo, FT-i.r. analysis of coal:2. Aliphatic and aromatic hydrogen concentration. Fuel,1988.67(7):p.949-959.
    [136]Koch, A. Krzton, G. Finqueneisel, et al., A study of carbonaceous char oxidation in air by semi-quantitative FTIR spectroscopy. Fuel,1998.77(6):p.563-569.
    [137]C.W. Lee, A.W. Scaroni, and R.G. Jenkins, Effect of pressure on the devolatilization and swelling behaviour of a softening coal during rapid heating. Fuel,1991.70(8):p. 957-965.
    [138]D.W.v. Krevelen, Coal:Typology-Physics-Chemistry-Constitution.3rd ed. Coal Constitution.1993, Arnhem, The Netherlands:Elsevier.
    [139]J.V. Ibarra, E. Munoz, and R. Moliner, FTIR study of the evolution of coal structure during the coalification process. Organic Geochemistry,1996.24(6-7 pt 2):p. 725-735.
    [140]郭汉贤,应用化工动力学.北京:化学工业出版社,2003.
    [141]D.G. Roberts and D.J. Harris, A kinetic analysis of coal char gasification reactions at high pressures. Energy and Fuels,2006.20(6):p.2314-2320.
    [142]B.B. Mandelbrot, The Fractal Geometry of Nature.1982, New York:W. H. Freeman and Company.
    [143]Senneca, P. Russo, P. Salatino, et al., The relevance of thermal annealing to the evolution of coal char gasification reactivity. Carbon,1997.35(1):p.141-151.
    [144]Feng, S.K. Bhatia, and J.C. Barry, Structural ordering of coal char during heat treatment and its impact on reactivity. Carbon,2002.40(4):p.481-496.
    [145]D.G. Roberts, D.J. Harris, and T.F. Wall, On the effects of high pressure and heating rate during coal pyrolysis on char gasification reactivity. Energy and Fuels,2003. 17(4):p.887-895.
    [146]P.R. Solomon and T.H. Fletcher, Impact of coal pyrolysis on combustion. Symposium (International) on Combustion,1994.25(1):p.463-474.
    [147]Z. Dong, M. Clark, T. Gunderson, et al. Swelling properties and intrinsic reactivities of coal chars produced at elevated pressures and high heating rates.2005. Chicago, IL, United states:Elsevier Ltd.
    [148]Molina and F. Mondragon, Reactivity of coal gasification with steam and CO2. Fuel, 1998.77(15):p.1831-1839.
    [149]H. Lorenz, E. Carrea, M. Tamura, et al., Role of char surface structure development in pulverized fuel combustion. Fuel,2000.79(10):p.1161-1172.
    [150]Megaritis, R.C. Messenbock, A.G. Collot, et al., Internal consistency of coal gasification reactivities determined in bench-scale reactors:Effect of pyrolysis conditions on char reactivities under high-pressure CO2. Fuel,1998.77(13):p. 1411-1420.
    [151]项友谦,K.Hedden,固体燃料转化过程动力学数据的确定.煤气与热力,1986(3):p.4-11.
    [152]G. Liu, P. Benyon, K.E. Benfell, et al., Porous structure of bituminous coal chars and its influence on combustion and gasification under chemically controlled conditions. Fuel,2000.79(6):p.617-626.
    [153]K.E. Benfell, Assessment of char morphology in high pressure pyrolysis and combustion, in Department of Geology.2001, University of Newcastle.
    [154]K.E. Benfell, G.-S. Liu, D.G. Roberts, et al., Modeling char combustion:The influence of parent coal petrography and pyrolysis pressure on the structure and intrinsic reactivity of its char. Proceedings of the Combustion Institute,2000.28(2): p.2233-2241.
    [155]Q. Chen, R. He, X. Xu, et al., Experimental study on pore structure and apparent kinetic parameters of char combustion in kinetics-controlled regime. Energy and Fuels,2004; 18(5):p.1562-1568.
    [156]R.H. Hurt, A.F. Sarofim, and J.P. Longwell, Role of microporous surface area in the gasification of chars from a sub-bituminous coal. Fuel,1991.70(9):p.1079-1082.
    [157]M.W. Glass, STEREOLOGICAL ANALYSIS OF THE MACROPORE STRUCTURE OF CHARS PRODUCED UNDER VARIOUS PYROLYSIS CONDITIONS AND THE INFLUENCE OF MACROPORE STRUCTURE ON CHAR GASIFICATION RATES IN THE PRESENCE OF STRONG DIFFUSIONAL LIMITATIONS.1987, Rice University:United States-Texas, p. 197.
    [158]Feng and S.K. Bhatia, Variation of the pore structure of coal chars during gasification. Carbon,2003.41(3):p.507-523.
    [159]G.Q. Lu, Evolution of pore structure of high-ash char during activation. Fuel,1994. 73(1):p.145-147.
    [160]K.S.W. SING, D.H. EVERETT, R.A.W. HAUL, et al., Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure & Appllied Chemistry,1985.57(4):p.603-619.
    [161]Arenas and F. Chejne, The effect of the activating agent and temperature on the porosity development of physically activated coal chars. Carbon,2004.42(12-13):p. 2451-2455.
    [162]J.B. Parra, J.C. De Sousa, J.J. Pis, et al., Effect of gasification on the porous characteristics of activated carbons from a semianthracite. Carbon,1995.33(6):p. 801-807.
    [163]W.I. Friesen and R.J. Mikula, Mercury porosimetry of coals:Pore volume distribution and compressibility. Fuel,1988.67(11):p.1516-1520.
    [164]W.I. Friesen and O.I. Ogunsola, Mercury porosimetry of upgraded western Canadian coals. Fuel,1995.74(4):p.604-609.
    [165]R. He, X. Xu, C. Chen, et al., Evolution of pore fractal dimensions for burning porous chars. Fuel,1998.77(12):p.1291-1295.
    [166]S. Hu, X. Sun, J. Xiang, et al., Correlation characteristics and simulations of the fractal structure of coal char. Communications in Nonlinear Science and Numerical Simulation,2004.9(3):p.291-303.
    [167]S.J. Huang, Y.C. Yu, T.Y. Lee, et al., Correlations and characterization of porous solids by fractal dimension and porosity. Physica A,1999.274(3-4):p.419-32.
    [168]N.R. Khalili, M. Pan, and G. Sandi, Determination of fractal dimensions of solid carbons from gas and liquid phase adsorption isotherms. Carbon,2000.38(4):p. 573-588.
    [169]E.M. Cuerda-Correa, M.A. Diaz-Diez, A. Macias-Garcia, et al., Determination of the fractal dimension of activated carbons:Two alternative methods. Applied Surface Science,2006.252(17):p.6102-5.
    [170]P.R. Crippa, C. Giorcelli, and L. Zeise, Determination of surface characteristics and fractal dimensions of natural and synthetic eumelanins from nitrogen adsorption isotherms. Langmuir,2003.19(2):p.348-353.
    [171]邵敬爱,城市污水污泥热解试验与模型研究[博士学位论文].华中科技大学,2008.
    [172]Avnir and M. Jaroniec, An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials. Langmuir,1989 5(6):p.1431-1433.
    [173]J.C.P. Broekhoff and J.H. de Boer, Studies on pore systems in catalysts:Ⅸ. Calculation of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores A. Fundamental equations. Journal of Catalysis,1967.9(1):p.8-14.
    [174]J.H. de Boer, J.C.P. Broekhoff, B.G. Linsen, et al., Studies on pore systems in catalysts:Ⅷ. The adsorption of krypton and of nitrogen on graphitized carbon. Journal of Catalysis,1967.7(2):p.135-139.
    [175]J.C.P. Broekhoff and J.H. de Boer, Studies on pore systems in catalysts:ⅩⅢ. Pore distributions from the desorption branch of a nitrogen sorption isotherm in the case of cylindrical pores B. Applications. Journal of Catalysis,1968.10(4):p.377-390.
    [176]J.C.P. Broekhoff and J.H. de Boer, Studies on pore systems in catalysts:Ⅻ. Pore distributions from the desorption branch of a nitrogen sorption isotherm in the case of cylindrical pores A. An analysis of the capillary evaporation process. Journal of Catalysis,1968.10(4):p.368-376.
    [177]J.C.P. Broekhoff and J.H. de Boer, Studies on pore systems in catalysts:ⅩⅣ. Calculation of the cumulative distribution functions for slit-shaped pores from the desorption branch of a nitrogen sorption isotherm. Journal of Catalysis,1968.10(4): p.391-400.
    [178]B.C. Lippens, B.G. Linsen, and J.H.d. Boer, Studies on pore systems in catalysts Ⅰ. The adsorption of nitrogen; apparatus and calculation. Journal of Catalysis,1964. 3(1):p.32-37.
    [179]Ballal and K. Zygourakis, EVOLUTION OF PORE SURFACE AREA DURING NONCATALYTIC GAS-SOLID REACTIONS-1. MODEL DEVELOPMENT. Industrial and Engineering Chemistry Research,1987.26(5):p.911-921.
    [180]Ballal and K. Zygourakis, EVOLUTION OF PORE SURFACE AREA DURING NONCATALYTIC GAS-SOLID REACTIONS.2. EXPERIMENTAL RESULTS AND MODEL VALIDATION. Industrial and Engineering Chemistry Research, 1987.26(9):p.1787-1796.
    [181]C.W. Sandmann Jr and K. Zygourakis, EVOLUTION OF PORE STRUCTURE DURING GAS-SOLID REACTIONS:DISCRETE MODELS. Chemical Engineering Science,1986.41(4):p.733-739.
    [182]Kantorovich, Ⅱand E. Bar-Ziv, Role of the pore structure in the fragmentation of highly porous char particles. Combustion and Flame,1998.113(4):p.532-541.
    [183]F.Y. Wang and S.K. Bhatia, A generalised dynamic model for char particle gasification with structure evolution and peripheral fragmentation. Chemical Engineering Science,2001.56(12):p.3683-3697.
    [184]G.A. Simons, STRUCTURE OF COAL CHAR-2. PORE COMBINATION. Combustion Science and Technology,1979.19(5-6):p.227-235.
    [185]G.A. Simons and M.L. Finson, STRUCTURE OF COAL CHAR-1. PORE BRANCHING. Combustion Science and Technology,1979.19(5-6):p.217-255.
    [186]任有中,符建,煤焦孔洞的结构特性及其标度理论.工程热物理学报,1995(03):p.376-380.
    [187]Liu, C. Luo, M. Kaneko, et al., Unification of gasification kinetics of char in CO2 at elevated temperatures with a modified random pore model. Energy and Fuels,2003. 17(4):p.961-970.
    [188]Gozmen, L. Artok, G. Erbatur, et al., Direct Liquefaction of High-Sulfur Coals: Effects of the Catalyst, the Solvent, and the Mineral Matter. Energy & Fuel,2002. 16(5):p.1040-1047.
    [189]P. Salatino, O. Senneca, and S. Masi, Gasification of a coal char by oxygen and carbon dioxide. Carbon,1998.36(4):p.443-452.
    [190]R.H. Hurt, A.F. Sarofim, and J.P. Longwell, Role of microporous surface area in uncatalyzed carbon gasification. Energy and Fuels,1991.5(2):p.290-299.
    [191]K. Zygourakis, Effect of pyrolysis conditions on the macropore structure of coal-derived chars. Energy and Fuels,1993.7(1):p.33-41.
    [192]GO. Cakal, H. Yucel, and A.G. Guruz, Physical and chemical properties of selected Turkish lignites and their pyrolysis and gasification rates determined by thermogravimetric analysis. Journal of Analytical and Applied Pyrolysis,2007. 80(1):p.262-268.
    [193]M. Grigore, R. Sakurovs, D. French, et al., Coke gasification:The influence and behavior of inherent catalytic mineral matter. Energy and Fuels,2009.23(4):p. 2075-2085.
    [194]Begin, I. Gerard, A. Albiniak, et al., Pore structure and reactivity of chars obtained by pyrolysis of coking coals containing MoC15. Fuel,1999.78(10):p.1195-1202.
    [195]C.-Z. Li, Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal. Fuel,2007.86(12-13):p. 1664-1683.
    [196]Y.D. Yeboah, Y. Xu, A. Sheth, et al., Catalytic gasification of coal using eutectic salts:Identification of eutectics. Carbon,2003.41(2):p.203-214.
    [197]Sheth, Y.D. Yeboah, A. Godavarty, et al., Catalytic gasification of coal using eutectic salts:Reaction kinetics with binary and ternary eutectic catalysts. Fuel,2003.82(3): p.305-317.
    [198]A.C. Sheth, C. Sastry, Y.D. Yeboah, et al., Catalytic gasification of coal using eutectic salts:Reaction kinetics for hydrogasification using binary and ternary eutectic catalysts. Fuel,2004.83(4-5):p.557-572.
    [199]Sharma, I. Saito, and T. Takanohashi, Effect of steam partial pressure on gasification rate and gas composition of product gas from catalytic steam gasification of hypercoal. Energy and Fuels,2009.23(10):p.4887-4892.
    [200]Wang, K. Sakanishi, I. Saito, et al., High-yield hydrogen production by steam gasification of HyperCoal (ash-free coal extract) with potassium carbonate: Comparison with raw coal. Energy and Fuels,2005.19(5):p.2114-2120.
    [201]Sharma, H. Kawashima, I. Saito, et al., Structural characteristics and gasification reactivity of chars prepared from K2CO3 mixed HyperCoals and coals. Energy and Fuels,2009.23(4):p.1888-1895.
    [202]X. Li and C.-Z. Li, Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅷ. Catalysis and changes in char structure during gasification in steam. Fuel, 2006.85(10-11):p.1518-1525.
    [203]X. Li, H. Wu, J.-I. Hayashi, et al., Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅳ. Further investigation into the effects of volatile-char interactions. Fuel,2004.83(10):p.1273-1279.
    [204]D.M. Quyn, H. Wu, J.-I. Hayashi, et al., Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅳ. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity. Fuel,2003.82(5):p.587-593.
    [205]H. Wu, D.M. Quyn, and C.-Z. Li, Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅲ. The importance of the interactions between volatiles and char at high temperature. Fuel,2002.81(8):p.1033-1039.
    [206]D.M. Quyn, H. Wu, S.P. Bhattacharya, et al., Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅱ. Effects of chemical form and valence. Fuel,2002. 81(2):p.151-158.
    [207]D.M. Quyn, H. Wu, and C.-Z. Li, Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅰ. Volatilisation of Na and Cl from a set of NaCl-loaded samples. Fuel,2002.8.1(2):p.143-149.
    [208]Matsuoka, T. Yamashita, K. Kuramoto, et al., Transformation of alkali and alkaline earth metals in low rank coal during gasification. Fuel,2008.87(6):p.885-893.
    [209]G. Domazetis, J. Liesegang, and B.D. James, Studies of inorganics added to low-rank coals for catalytic gasification. Fuel Processing Technology,2005.86(5):p. 463-486.
    [210]W.J. Lee and S.D. Kim, Catalytic activity of alkali and transition metal salt mixtures for steam-char gasification. Fuel,1995.74(9):p.1387-1393.
    [211]S. Li and Y. Cheng, Catalytic gasification of gas-coal char in CO2. Fuel,1995.74(3): p.456-458.
    [212]G.D. Ballal, A STUDY OF CHAR GASIFICATION REACTIONS (COAL CONVERSION, COMBUSTION, CATALYTIC, MODELING, PORE STRUCTURE).1986, Rice University:United States-Texas, p.221.
    [213]徐振刚,刘国海,于涌年,煤催化气化反应的收缩核模型.化工学报,1988(04):p.488-494.
    [214]张泽凯,王黎,刘业奎等,煤催化气化的修正缩核反应模型研究.西安交通大学学报,2003(11):p.1190-1193.
    [215]H.R. Batchelder and R.M. Busche, Kinetics of Coal Gasification-Design of Atmospheric Pressure Gasifiers. Industrial & Engineering Chemistry,1954.46(12): p.2501-2508
    [216]L.L. Newman and J.P. McGee, Oxygen Gasification of Coal. Industrial & Engineering Chemistry,1956.48 (7):p.1112-1117.
    [217]Z. Yuehong, W. Hao, and X. Zhihong, Conceptual design and simulation study of a co-gasification technology. Energy Conversion and Management,2006.47(11-12): p.1416-1428.
    [218]X. Li, J.R. Grace, A.P. Watkinson, et al., Equilibrium modeling of gasification:a free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Fuel,2001.80(2):p.195-207.
    [219]Zheng and E. Furinsky, Comparison of Shell, Texaco, BGL and KRW gasifiers as part of IGCC plant computer simulations. Energy Conversion and Management, 2005.46(11-12):p.1767-1779.
    [220]牛苗任,王增莹,张志文等,气流床气化炉内气体浓度的分布规律.燃烧科学与技术,2009(01):p.66-73.
    [221]Chen, M. Horio, and T. Kojima, Numerical simulation of entrained flow coal gasifiers. Part II:effects of operating conditions on gasifier performance. Chemical Engineering Science,2000.55(18):p.3875-3883.
    [222]Chen, M. Horio, and T. Kojima, Numerical simulation of entrained flow coal gasifiers. Part I:modeling of coal gasification in an entrained flow gasifier. Chemical Engineering Science,2000.55(18):p.3861-3874.
    [223]H. Watanabe and M. Otaka, Numerical simulation of coal gasification in entrained flow coal gasifier. Fuel,2006.85(12-13):p.1935-1943.
    [224]Niu,Z. Yan, Q. Guo, et al., Experimental measurement of gas concentration distribution in an impinging entrained-flow gasifier. Fuel Processing Technology, 2008.89(11):p.1060-1068.
    [225]Slezak, J.M. Kuhlman, L.J. Shadle, et al., CFD simulation of entrained-flow coal gasification:Coal particle density/sizefraction effects. Powder Technology,2010.
    [226]Merrick, Mathematical models of the thermal decomposition of coal:1. The evolution of volatile matter. Fuel,1983.62(5):p.534-539.
    [227]G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engineering Science,1972.27(6):p.1197-203.
    [228]Prabir Basu, Combustion and Gasification in Fluidized Beds. CRC/Taylor & Francis, 2006.
    [229]I.E. Grossmann and J. Davidson, Computation of restricted chemical equilibria. Computers & amp; Chemical Engineering,1982.6(2):p.181-4.
    [230]C.W. White and W.D. Seider, Computation of phase and chemical equilibrium, part IV:Approach to chemical equilibrium. AIChE Journal,1980.27(3):p.466-471.
    [231]吴韬,何元,王辅臣等,大型渣油气化炉激冷室热质传递过程模拟.大氮肥,1997.20(3):p.42-46.
    [232]P.K. Chatterjee, A.B. Datta, and K.M. Kundu, Fluidized bed gasification of coal. Canadian Journal of Chemical Engineering,1995.73(2):p.204-204.
    [233]刘德昌,陈汉平,张世红等,循环流化床锅炉运行及事故处理.北京:中国电力出版社,2006.
    [234]王明华,李政,麻林巍,坑口煤制代用天然气的技术经济性分析及发展路线构思.现代化工,2008(03):p.13-16.
    [235]“十一五”十大重点节能工程实施意见.www.bizpro.gov.cn/website/search/download.jsp?pa_id=369.
    [236]能源发展“十一五”规划.www.ccchina.gov.cn/WebSite/CCChina/UpFile/Filel 86.pdf.
    [237]H. Maruyama, K. Nomura, S. Wasaka, et al., Coal Conversion Technologies for Securing Energy in Asian Countries. Energy & Environment,2002.13(4):p. 539-551.
    [238]Tandon, Low temperature and elevated pressure steam gasification of Illinois coal. 1996, Southern Illinois University at Carbondale:United States-Illinois, p.273.
    [239]N.C. Nahas, EXXON CATALYTIC COAL GASIFICATION PROCESS FUNDAMENTALS TO FLOWSHEETS. Fuel,1983.62(2):p.239-241.
    [240]H.A. Marshall and F.C.R.M. Smits. EXXON CATALYTIC COAL GASIFICATION PROCESS AND LARGE PILOT PLANT DEVELOPMENT PROGRAM.1982. Pittsburgh, PA, USA:Univ of Pittsburgh.
    [241]G.H. Anderson and G.P. Smith. EXXON PROCESS FOR CATALYTIC COAL GASIFICATION.1982. Washington, DC, USA:American Gas Assoc.
    [242]Anon, EXXON CATALYTIC COAL GASIFICATION. Hydrocarbon Processing, 1984.63(4):p.92.
    [243]W.R. Epperly and H.M. Siegel. Catalytic coal gasification for SNG production. 1976. New York, NY, USA:American Inst. Chem. Engrs.
    [244]N.C. Nahas. CATALYTIC COAL GASIFICATION.1982. Florham Park, NJ, USA: Exxon Res and Eng Co.
    [245]H.A. Marshall and F.C.R.M. Smits, CATALYTIC COAL GASIFICATION PROCESS AND LARGE PILOT PLANT DEVELOPMENT PROGRAM. Industrial Heating,1982.49(11):p.22-24.
    [246]N.C. Nahas and J.E. Gallagher, Jr. Catalytic gasification predevelopment research. 1978. Warrendale, PA, USA:Soc. Automotive Engrs.
    [247]P.D. Sunavala and V.B. Chikarmane, SYNTHETIC NATURAL GAS FROM COAL BY THE EXXON CATALYTIC COAL GASIFICATION PROCESS. Journal of Scientific and Industrial Research,1984.43(5):p.269-275.
    [248]J.M. Eakman, R.D. Wesselhoft, J.J. Dunkleman, et al., GASIFIER OPERATION AND MODELING IN THE EXXON CATALYTIC COAL GASIFICATION PROCESS. Coal Processing Technology,1980.6:p.146-158.
    [249]Okuyama, N. Komatsu, T. Shigehisa, et al., Hyper-coal process to produce the ash-free coal. Fuel Processing Technology,2004.85(8-10):p.947-967.
    [250]F.V.S. Lopes, C.A. Grande, A.M. Ribeiro, et al., Adsorption of H2, CO2, CH4, CO, N2 and H2O in activated carbon and zeolite for hydrogen production. Separation Science and Technology,2009.44(5):p.1045-1073.
    [251]C.M. vander Meijden, H.J. Veringa, and L.P.L.M; Rabou, The production of synthetic natural gas (SNG):A comparison of three wood gasification systems for energy balance and overall efficiency. Biomass and Bioenergy,2010.34(3):p. 302-311.
    [252]C.M. Van Der Meijden, H.J. Veringa, B.J. Vreugdenhil, et al., Bioenergy Ⅱ: Scale-up of the milena biomass gasification process. International Journal of Chemical Reactor Engineering,2009.7.
    [253]M.J. Prins, K.J. Ptasinski, and F.J.J.G. Janssen, Torrefaction of wood. Part 2. Analysis of products. Journal of Analytical and Applied Pyrolysis,2006.77(1):p. 35-40.
    [254]M.J. Prins, K.J. Ptasinski, and F.J.J.G. Janssen, Torrefaction of wood. Part 1. Weight loss kinetics. Journal of Analytical and Applied Pyrolysis,2006.77(1):p.28-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700