D-呋喃阿洛糖衍生物的合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以α-D-葡萄糖(1)为原料,合成了10个D-呋喃阿洛糖衍生物。重点对环状碳酸酯和苄基化等保护基的合成以及选择性除去1,2-氧-异丙叉保护基进行了研究。
     通过α-D-葡萄糖(1)的异丙叉保护反应制备了1,2:5,6-氧-二异丙叉基-α-D-呋喃葡萄糖(2),收率50%;以PDC(重铬酸吡啶盐)氧化-硼氢化钠还原反应得到1,2:5,6-氧-二异丙叉基-α-D-呋喃阿洛糖(3),两步收率为58.0%;研究了以稀硫酸(0.5%)做催化剂,选择性水解制备了1,2-氧-异丙叉基-α-D-呋喃阿洛糖(4),收率94.0%。
     研究了化合物4和碳酸二乙酯在NaHCO3作用下的酯交换反应,合成了1,2-氧-异丙叉基-α-D-呋喃阿洛糖-5,6碳酸酯(5),收率48.9%;研究了化合物3的乙酰化、选择性水解(2步收率86.3%)得到了3-氧-乙酰基-1,2-氧-异丙叉基-α-D-呋喃阿洛糖化合物(8),化合物8和体光气反应合成了3-氧-乙酰基-1,2-氧-异丙叉基-α-D-呋喃阿洛糖-5,6碳酸酯(9),收率93.2%;用2,3-二氯-5,6-二氰基-1,4-苯醌(DDQ)做催化剂,在乙腈的水溶液中化合物8和9在不同反应条件下合成了D-呋喃阿洛糖-5,6碳酸酯(6)和3-乙酰基-D-呋喃阿洛糖-5,6-碳酸酯(10),收率分别为67.2%和67.8%。
     研究了化合物4的苄基化、氯乙酰化和乙酰化等保护反应,分别合成了3,5,6-氧-三苄基-1,2-氧-异丙叉基-α-D-呋喃阿洛糖(11)、3,5,6-氧-三氯乙酰基-1,2-氧-异丙叉基-α-D-呋喃阿洛糖(13)和3,5,6-氧-三乙酰基-1,2-氧-异丙叉基-α-D-呋喃阿洛糖(15),收率分别是71.6%、94.7%和92.3%;用DDQ做催化剂,用乙腈的水溶液做溶剂,在不同的反应条件下合成了除去了异丙叉保护基的化合物3,5,6-氧-三苄基-D-呋喃阿洛糖(12)、3,5,6-氧-三氯乙酰基-D-呋喃阿洛糖(15)和3,5,6-氧-三乙酰基-D-呋喃阿洛糖(16),收率分别是82.7%、67.6%和65.7%;用10%H2SO4做催化剂,由化合物12也可以合成化合物11 ,收率是87.4%。
     本论文中的D-呋喃阿洛糖衍生物5、6和9-16均经1H-NMR鉴定。其中化合物5、6、9、10、13、14和16未见文献报道。
Withα-D-glucose (1) as starting material, ten D-allofuranose derivatives were prepared. Particularly, synthetic methods of cyclic carbonate, benzylation and 1,2-O-isopropylidene group selective hydrolysis were studied intensively.
     1,2:5,6-O-diisopropylidene-α-D-gluofuranose (2) was synthesized by isopropylidenation reaction fromα-D-gluofuranose. The yield was 50.1%. 1,2:5,6-O-diisopropylidene-α-D-allofuranose (3) was synthesized by PDC-Ac2O oxidation and NaBH4 reduction. Above two steps overall yield was 58.0%. Selective hydrolysis reaction was studied to synthesize 1,2-O-isopropylidene-α-D-allofuranose (4) with dilute solution of H2SO4 (0.5%). The yield was 94.0%.
     In the presence of a catalytic amount of sodium dicarbonate, ester exchange reaction was studied between compound 4 and diethyl carbonate. Thus 1,2-O-isopropylidene-α-D-allofuranose 5,6-carbonate (5) was synthesized with moderate yield (48.9%). 3-O-Acetyl-1,2-O-isopropylidene-α-D-allofuranose 8 was synthesized from 3 by acetylation and selective hydrolysis. Two steps overall yield was 86.3%. Bis(trichlormethyl)carbonate (triphosgene)was used to synthesize 3-O-acetyl-1,2-O- isopropylidene-α-D-allofuranose 5,6-carbonate(9) from compound 8 with high yield (93.2%). In the presence of a catalytic amount of 2,3-dichloro-5,6-dicynao-1,4-benzoquinone(DDQ), D-allofuranose 5,6-carbonate(6) and 3-acetyl-D-allofuranose 5,6-carbonate(10) were synthesized from compound 8 and 9 under different conditions in aqueous acetonitrile.
     3,5,6-Tri-O-benzyl-1,2-O-isopropylidene-α-D-allofuranose (11), 3,5,6-tri-O- chloroacetyl-1,2-O-isopropylidene-α-D-allofuranose (13) and 3,5,6-tri-O-acetyl-1,2 -O-isopropylidene-α-D-allofuranose (15) were synthesized from 4 by benzylation, chloroacetylation and acetylation, respectively. The yield was 71.6%, 94.7% and 92.3%, respectively. In the presence of a catalytic amount of 2,3-dichloro-5,6-dicynao -1,4-benzoquinone(DDQ), 3,5,6-tri-O-benzyl-D-allofuranose (12), 3,5,6-tri-O-chloro- acetyl-D-allofuranose (14) and 3,5,6-tri-O-acetyl-D-allofuranose (16) were synthesized from compound 11,13 and 15 under different conditions in aqueous acetonitrile. The yield was 82.7%, 67.6% and 65.7%, respectively. An alternative route was by 10% sulfuric acid hydrolysis from compound 11 to 12 with hige yield 87.4%.
     D-Allofuranose derivatives, 5,6 and 9-16,obtained in this paper were characterized by 1H-NMR spectra. Compounds, 5, 6, 9, 10, 13,14 and 16, were not been reported previously.
引文
[1]张惟杰,糖复合物生化研究技术,杭州:浙江大学出版社,1999,1~6
    [2] Dwek R A, Clycobiology: towards understanding the function of sugars, Chem. Rev., 1996, 96:683~720
    [3]郭振楚,糖类化学,北京:化学工业出版社,2005, 1~13;59~65;69~71
    [4]何森健,得田雅明,板野俊文等,稀有它的生物活性的利用方法及配合了稀有糖的组合物,中国专利,03817231,2005-08-14
    [5]张卫红,D-阿洛糖及衍生物的合成及应用研究:[博士学位论文],天津;天津大学,2004
    [6]孔繁祚,糖化学,北京:科学出版社,2005,31~32;51~53;85~87
    [7]张力田,碳水化合物化学,北京:轻工业出版社,1988, 22~123
    [8]徐寿昌,有机化学,北京:高等教育出版社,1993,439~440
    [9]曹治权,层析显色试剂手册,北京:商业出版社,1986,80~95
    [10] Angyal S J ,Beveridge R J,The synthesis of 1,6-andydrofuranoses, Aust. J. Chem. , 1978, 31: 1151~1155
    [11] Susan J S, Hidemasa Y,Conrad S, Synthesis of1,2-anhydro-3,4,6-tri-O-benzyl -β-D-mannopyranose ,Carbohydr. Res. , 1979,74: 327~332
    [12] Hidemasa Y, Conrad S, Synthesis of 1,2-anhydro-3,4,6-tri-O-benzyl-α-D-gluco- pyranose, Carbohydr. Res. , 1980,81: 192~195
    [13] Du Y, Kong F, A facile synthesis of 1, 2-anhydroglycofuranose benzyl ethers , Carbohydr. Res. , 1995,36: 427~430
    [14] Kong F, Schuerch C, Improved synthesis of substituted 2,6-dioxabicyclo[3.1.1] heptanes: 1,3-anhydro-2,4,6-tri-O-benzyl- and 1,3-anhydro-2,4,6-tri-O-p-bromo- benz-yl-β-D-mannopyranose , Carbohydr. Res. , 1983,112: 141~147
    [15] Good F, Schuerch C, Improved synthesis of substituted 2,6-dioxabicyclo[3.1.1] heptanes:1,3-anhydro-2,4,6-tri-O-benzyl-2,4,6-tri-O-p-bromobenzyl- and -2,4,6 -tri-O-p-methylbenzyl-β-D-glucopyranose, Carbohydr. Res., 1984, 125: 165~171
    [16] Lops J, Schuerch C, Syntheses of 1,4-Anhydro-2,3,6-tri-O-methyl-D-galactose and 1,4-Anhydro-2,3-di-O-methyl-L-arabinose J. Org. Chem. ,1965, 30: 3591~ 3593
    [17] Sanjay K S, Alexei A K, Jesper W,et al,LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition, Chem. Commun. , 1998, 455~456
    [18] Weita D J, Bednarski M D, Synthesis of acyclic sugars aldehydes by ozonolysis of oximes, J. Org.Chem. ,1989, 54: 4957~4959
    [19] Wolfrom M L, Crum J D, Meller J B, et al, The action of diazomethane on the tetraacates of aldhydo-D(and L)-arabinose, J. Am. Chem. Soc. ,1959, 81: 243~244
    [20]张壮鑫,陈纪军,周俊,云南匙羹藤甙A和B的结构,云南植物研究, 1991, 13(1): 75~80
    [21] Sahin F P, Ezer N, Cails I, Three acylated flavone glycoside from Sideritis ozturkii Aytac&Aksoy, Phytochemisty, 2004, 65(14): 2095~099
    [22] Wanda K, Klaudia M, A guaianolide alloside and other constituents from Picris kamtschatica, Phytochemisty, 2002, 61(8):891~894
    [23] Jette C, Jerzy W J, Natural glycosides containing allpyranose from the passion fruit plant and circular dichroism of benzaldehyde cyanohydrin glycosides ,Org. Lett. ,2001, 14(3):2193~2195
    [24]马耀辉,邓岚,苏任,等,中国专利, 02133562, 2006-12-27
    [25]李子成,陈淑桦,蒋宁,核苷类抗病毒药物的研究进展,化学研究与应用, 2002, 14(1):15~20
    [26] Johann H, Erich Z, Balzarini J, er al, Side-chain derivatives of biologically active nucleosides:Side-chain analogs of 3'azido-3'-deoxythymidine(ATZ), J. Med. Chem,1992,35: 3016~3023
    [27]王元兰,于松林,李水芳等, 1,2:5,6-双-O-异丙叉基-3-C-(1-甲氧羰基)-乙-α-D-呋喃阿洛糖的合成,株洲师范高等专科学报,2003, 8: 9~12
    [28] Nawai S, Sanjay J, Neelima S, et al , Synthesis of some new disubstituted- and deoxytrisubstitutes-α-D-allofuranoses, Arkivoc, 2005(ⅲ): 156~164
    [29] Rosenthal A, Nguyen L, Branched-chain sugar nuclesoides.Ⅰ.9-[3-deoxy-3-C- (2'-hydroxyethyl)-β-D-allofuranosyl]adenine and 9-[3-deoxy-3-C- (2'-hydro- xyethyl)-β-D-ribofuranosyl]adenine, J. Org Chem., 1969, 34(4): 1029~1034
    [30] Rajan P, Narayan C B, Atanu R, et al, A simple route to optically active,functionalized five-,six- and seven-membered carbocyclic derivatives, Tetrahedron, 1996, 52(34): 11265~11272
    [31] Tony K M S, Yong L Z, Ring-selective synthesis of O-hetercycles from acylic 3-allyl-monosacharides via intramolecular nitron-alkene cycloaddition, Tetrahedron, 2001, 57: 1573~1579
    [32] Jose M C, Mercedes R F, Sythesis of fused triazole-piperidinoses: a free radical cyclization approach, Tetrahedron Lett., 2000,41: 381~384
    [33] Jose M C, Mercedes R F, Free radical cyclization onto differently substitutes 1,2,3-triazole installed in sugar template, J. Org. Chem., 2001, 66: 3717~3725
    [34] Thomas E J, Chen A, Wilson P D, Steroselective synthesis of thymine polyoxin C using an allylic trifluoroacetimidate-triflurlactamide rearrangement, J. Chem. Soc. Perkin Trans.1, 1999, 3305~3310
    [35]许家喜,杨俊海,糖肽的合成,化学通报, 1998, 3: 22~29
    [36] Bouifraden S, Lavergne J P, Martinez J, et al, Diasteroselective synthesis of glycosl-α-aminoacides, Treahedron: Asymmetry, 1997, 8(6): 949~955
    [37] [美]西奥拉多.W.格林著,范如霖译,有机合成中的保护基,上海:上海科学文献出版社, 1984, 80~96
    [38] [美] Greene T W著,华东理工大学有机化学教研组译,有机合成中的保护基上海:华东理工大学出版社,2004, 201~223;241-243
    [39] Signe M C, Hennk F H, Troels K, Mola-Scale synthesis of 1,2:5,6-di-O-iso propylidene-α-allofuranose: DMSO oxidation of 1,2:5,6-di-O-isopropylideng-α-glucofuranose and subsequent sodium borohydrade reduction, Organ Process Resarch & development, 2004, 778~780
    [40] Koch T, Henrik H F, Synthesis of allofuranose, US, 6858726, 2005-02-22
    [41]祁世波,L-核糖的化学合成:[硕士学位论文],天津;天津大学,2007
    [42]张利梅,张卫红,冯亚青等,α-D-呋喃阿洛糖衍生物的合成,化学工业与工程, 2004,21(6):414~417
    [43] Hans P, Christine G, Untersuchngen zur darstellung von 5-amino-desoxyhen- xuronsauren, Chem. Ber., 1977,110: 2150~2157
    [44] Walter A S, Aleksander Z, Kamal N T, A new , facile method for cleavage and dithioaacetals in carbohydrate derivatives, Tetrahedron Lett., 1986, 27(33): 3827~3830
    [45] Jose M G F, Carmen O M, Alberto M M,et al, A mild and efficient procedure to remove acctal and dithioacetal procting groups in carbohydrate derivatives using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, Carbohydr. Res., 1995, 274: 263~268
    [46] Raymond DY, Julien P H V, John G M, 4'-Substituted nuclcosides . 4. Synthesis of some 4'-hydroxymethyl nucleosides , J. Org. Chem., 1979, 44: 1301~1309
    [47] Sasai H, Matsuno K, Suami T, Synthetic approach toward antibiotic tunicamycins—Ⅶsynthesis of tunicamine and tunicaminyl uracil derivative, J. Carbohydr. Chem. , 1985, 4(1): 99~112
    [48] Lourens G L, Koekemoer J M, The novel steresspecific synthesis of 11-oxaprostaglandin F2α, Tetrahedron Lett., 1975, 1319~3722
    [49] Yamada M, Kenichi E, Toshio K, D-Allose derivative and preparation method therefore, US, 4349546, 1982-09-14
    [50] Michael M, Flemming G H, Jesper W, 3'-C-Branched LNA-type nucleosides lockes in N-type furanose ring conformation:synthesis ,incorporation into oilgodeoxynuclestides, and hybridization studies, J. Org. Chem. , 2004, 69: 6310~6322
    [51] Ronsen B, Sudershan A K, Albert T V, Derivative ofα-D-glucofuranose orα-D-allofuranose and their intermediates rof preparing these derivatives, US, 4996195, 1991-02-26
    [52] Stefan P, An efficient syhthesis of enantiomeric ribonucleic acids from D-glucose, Helv. Chim. Acta, 1997, 80: 2286~2314
    [53]刘宏民,张福义,徐汶等,以氧化糖位原料的氨基糖衍生物的合成,化学学报, 2003, 61(7): 1149~1152
    [54]刘宏民,刘振中,徐汶等,葡萄糖氨基衍生物及其制备方法,中国专利,01101562, 2004-07-28
    [55] Liu S Y, Kulkami S S, Chou C H, et al, A concise synthesis of tetrahydroxy-LCB,α-galactosyl ceramide, and 1,4-deoxy-1,4-imino-L-ribitol via D-allosamines as key building blocks, J. Org. Chem., 2005, 71: 1226~1229
    [56]吴毓林,姚祝军,现代有机合成化学,北京:科学出版社,2001,26~28
    [57] Wistler M L, Woffrom M L, BeMiller J N,Methods in carbohydrate chemistry, NewYork: Acadamic Press, 1963,vol.Ⅱ,318~319
    [58] Soma W, Thomas G H, The oxidation of 1,2:5,5-di-isopropylidene-O-D-glucose by dimethylsulfoxide-aceric anhydride, Can. J. Chem., 1966, 44: 836~840
    [59] Fischer J C, Horto D, Grignard addition-reactions to glucosulose derivatives , Carbohydr. Res.,1977, 59(2): 477~503
    [60] Burke S D, Jung K Y, Philips J R, et al, An expeditions synthesis of the C(1)-C(14) subunit of halichondrin in B, Tetrahedron Lett., 1994, 35: 703~706
    [61] Park K H, Yoon Y J, Lee S G, Efficient cleavage of terminal acetonide group:Chriospecific synthesis of 2,5-deoxy-2,5-imino-D-mannitol, Tetrahedron Lett., 1994, 35: 9737~9740
    [62] Overend W G, Stacey M, Wiggins L F, Deoxy-sugars.PartⅣ. A synthesis of 2-deoxy-D-ribose from D-erythrose, J. Chem. Soc., 1949, 3:1358~1363
    [63] Mathew L, Sankararaman S, Mild and efficient photochemical and thermal deproction of thioacerals and ketals use DDQ, J. Org. Chem., 1993, 58: 7576~7577
    [64] Oku A, Kinugasa M, Kamada T, Deproctiong of acetals and siyl ethers by DDQ. Is DDQ a neutral catalyst? Chemistry Lett., 1993, 165~168
    [65] H?fle G, Steglich H, Vorbrüggen H, 4-Dialkylaminopyridines as highly active acylation catalysts, Angew. Chem., Int. Ed. Engl., 1978, 17: 569~583
    [66] Lehmann J, Ziser L, Space-modified, photoabile tetrasaccharides as analogues on maltopentose are versatile probes for porcine pancreatic alpha-amylse, Carbohydr. Res. , 1992, 225: 83~97
    [67] Du Y G, Kong F Z, Synthesis and glucosidic reaction of 1,2- anhydromanno-, lyxo-,gluco-,and xylofuranose perbenzyl ethers, J. Carbohydr. Chem., 1996, 15(7): 797~817
    [68] Bertoline M, Glaudemans C P J, The chloroacetyl grope in synthetic carbohydrate chemistry, Carbohyd.Res., 1970, 15: 263~270

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700