动态气流环境下气味烟羽仿真与气味源定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动机器人气味源定位研究始于二十世纪九十年代,主要研究利用配备有气味浓度及其它传感器的移动机器人搜寻事先未知的气味释放源头的问题。该研究涉及传感及信息处理、移动机器人学、计算智能、流体力学和仿生学等多个研究领域,在有毒/有害气体泄露检测、火源探测、灾后搜救和深海热泉勘察等方面具有广阔的应用前景。
     从气味源释放的气味分子在空气中扩散形成的空间分布称为烟羽。对气味烟羽进行计算机仿真一方面可以帮助理解浓度分布情况,另一方面可以作为气味源定位实验的辅助手段。本文围绕移动机器人气味源定位和气味烟羽仿真问题,重点开展了以下研究工作。
     采用多尺度分析方法研究了室外近地面单点风速在不同时间尺度下的脉动特征。室外环境中烟羽的扩散受风场的控制,但目前尚不清楚不同尺度风速脉动具有哪些规律。针对此问题,使用经验模态分解方法将风速序列分解得到多个时间尺度的风速脉动信号,并分析了这些脉动信号的自相关性、样本熵和湍动能,以及各尺度脉动信号对风稳定度的影响。结果表明,风速脉动信号在小尺度上具有不规则性,在大尺度上则表现出周期性,而时间尺度在8s至240s范围内的风速信号是造成风向变化的主要原因。
     为了研究风场中风向分布的均匀性,提出了区域内风向一致性指标。通过比较风向一致性指标与风速之间的关系表明,风速越大则区域内的风向越均匀,风速越小则区域内风向的差别越大。
     采用动力学异同性分析和相关性分析方法研究了不同位置的风速序列之间的关系。结果表明风场中距离越近、地形越相似位置的风速序列的动力学属性越相近,相关性越强。
     针对现有的烟羽仿真模型的不足,建立了基于实测风场数据的烟羽仿真环境。仿真风场由实测风场通过时间插值和空间插值获得,烟羽模型则采用经过修改的基于细丝的大气扩散模型,并建立了金属氧化物半导体传感器模型。仿真烟羽与实测烟羽的对比结果表明两者间具有相似的瞬时和统计特征。
     提出了基于模拟退火的气味源定位算法。该算法使用模拟退火策略选择浓度场的最大值,也就是气味源。通过室外场景下的仿真以及室内场景下的实验验证了本文提出的算法可以准确地定位气味源,并能够有效地克服风场和浓度波动造成的影响,且可避开局部最优。
Mobile robot odor source localization (OSL) research, which aims to find one ormultiple previously unknown odor sources using one or multiple mobile robotsequipped with odor concentration and other auxiliary sensors, began from1990s. Thisresearch is related to the fields such as sensing and information processing, mobilerobotics, computation intelligence, hydrodynamics and bionics. It is expected that theOSL research will have a wide application in toxic/harmful gas leak detection, firesource monitor, post-disaster rescue and deep-sea hydrothermal vent exploration.
     Odor molecules released from their source and diffused in the air form an odorplume. The simulation of the odor plume on the one hand can help to understand theconcentration distribution; on the other hand can be a good auxiliary for the OSLexperiments. Focusing on the mobile robot odor source localization and odor plumesimulation problems, the achievement of this dissertation can be concluded asfollows.
     The multi-scale analysis method is adopted to study the pulsant characteristics ofsingle-point wind velocities under multiple time scales. In outdoor environments, thedispersion of the odor plume is dominated by the wind. However, the characteristicsof the pulsant wind velocities of different time scales are not clear yet. To address thisproblem, the multi-scale pulsant signals of the wind velocities are derived byempirical mode decomposition method, and the autocorrelation, sample entropy andturbulent energy of these pulsant signals are analysed. The impact of these pulsantsignals on wind steadiness is also investigated. Results show that the small-scalepulsant signals are more irregular than the large-scale ones. The pulsant signals underthe time scales from8s to240s are the main causes of the wind direction fluctuation.
     To study the uniformity of the wind direction in the wind field, the spatialwind-direction consistency index is proposed. The comparison between the spatialwind-direction consistency index and the wind speed shows that the wind direction ismore uniform when there is higher wind speed and vice versa.
     The dynamic conformity and correlation analysis methods are used to investigatethe relationship of the wind velocities in different locations. Results show that thecorrelation and the similarity of the dynamics properties of the wind velocitysequences recorded at the positions being close to each other and having similar terrain are more significant.
     In view of the drawbacks of current odor plume simulation models, a real winddata based odor plume simulation environment is built. The simulation wind field isderived using temporal interpolation and spatial interpolation of the real wind fielddata. The modified filament based atmospheric dispersion model is used as the plumemodel. The metal oxide semiconductor gas sensor model is also built. The comparisonof the simulated plume and real plume shows that they have similar instantaneous andstatistical characteristics.
     A simulated annealing based odor source localization algorithm is put forward.The algorithm obtains the maximum of the concentration field, which is exactly theodor source, employing a simulated-annealing strategy. The simulation on the openoutdoor scene and the experiments in the indoor scene verify that the proposedalgorithm is able to locate the odor source accurately. At the same time, the influencesof wind and concentration fluctuation can be overcome, and the local extrema can beavoided.
引文
[1] R. T. Carde, A. Mafra-Neto. Effect of pheromone plume structure on moth orientation topheromone[J]. Perspectives on Insect Pheromones. New Frontiers,1996,275-290.
    [2] U. S. Bhalla, J. M. Bower. Multiday recordings from olfactory bulb neurons in awake freelymoving rats: spatially and temporally organized variability in odorant response properties[J].Journal of computational neuroscience,1997,4(3):221-256.
    [3] B. A. Craven, E. G. Paterson, G. S. Settles. The fluid dynamics of canine olfaction: uniquenasal airflow patterns as an explanation of macrosmia[J]. J. R. Soc. Interface,2010,2010(7):933-943.
    [4] J. M. Gardiner, J. Atema. Sharks need the lateral line to locate odor sources: rheotaxis andeddy chemotaxis[J]. The Journal of Experimental Biology,2007,210(3):1925-1934.
    [5]匡兴红,邵惠鹤.无线传感器网络在气体源预估定位中的应用[J].华东理工大学学报(自然科学版),2006,(7):780-783.
    [6] M. P. Michaelides, C. G. Panayiotou. Plume source position estimation using sensornetworks[C].20th IEEE International Symposium on Intelligent Control, ISIC '05and the13th Mediterranean Conference on Control and Automation, MED '05, Limassol, Cyprus,2005,731-736.
    [7] S. Vijayakumaran, Y. Levinbook, T. F. Wong. Maximum likelihood localization of adiffusive point source using binary observations[J]. IEEE Transactions on Signal Processing,2007,55(2):665-676.
    [8] H. Ishida, Y. Wada, H. Matsukura. Chemical Sensing in Robotic Applications: a Review[J].IEEE Sensors Journal,2012,12(11):3163-3173.
    [9] N. J. Nilsson. A mobile automaton: an application of artificial intelligence techniques[R].DTIC Document,1969.
    [10] R. Rozas, J. Morales, D. Vega. Artificial smell detection for robotic navigation[C]. The5thInternational Conference on Advanced Robotics, Pisa, Italy,1991,1730-1733.
    [11] A. J. Lilienthal, A. Loutfi, T. Duckett. Airborne chemical sensing with mobile robots[J].Sensors,2006,6(11):1616-1678.
    [12]孟庆浩,李飞.主动嗅觉研究现状[J].机器人,2006,28(1):89-96.
    [13] H. Ishida, Y. Kagawa, T. Nakamoto, et al. Odor-source localization in the clean room by anautonomous mobile sensing system[J]. Sensors and Actuators B,1996,33(1996):115-121.
    [14] W. Li, J. A. Farrell, S. Pang, et al. Moth-Inspired Chemical Plume Tracing on anAutonomous Underwater Vehicle[J]. IEEE Transactions on Robotics,2006,22(2):292-307.
    [15] M. Larcombe, J. R. Halsall. Robotics in nuclear engineering: Computer-assistedteleoperation in hazardous environments with particular reference to radiation fields[M].London: Graham&Trotman,1984.
    [16] V. Genovese, P. Dario, R. Magni, et al. Self Organizing Behavior And Swarm IntelligenceIn A Pack Of Mobile Miniature Robots In Search Of Pollutants[C]. The1992IEEE/RSJInternational Conference on Intelligent Robots and Systems,1992,1575-1582.
    [17] G. Sandini, G. Lucarini, M. Varoli. Gradient driven self-organizing systems[C]. TheIEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, Jpn,1993,429-440.
    [18]李飞.湍动气流主控环境下多机器人气味源定位[D].博士,天津大学,2009.
    [19] G. Kowadlo, R. A. Russell. Robot odor localization: a taxonomy and survey[J]. TheInternational Journal of Robotics Research,2008,27(8):869-894.
    [20]王俭,赵鹤鸣.面向气味跟踪与定位的机器人变步长搜索算法[J].计算机工程与应用,2009,(2):243-245.
    [21] R. A. Russell. Locating underground chemical sources by tracking chemical gradients in3dimensions[C].2004IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), Sendai, Japan,2004,325-330.
    [22] J. Adler. Chemotaxis in bacteria[J]. Science,1966,153(737):708.
    [23]张蔚文,张灼.细菌化学趋向性机理的研究进展[J].微生物学通报,1993,(3):175-179.
    [24]王俭,唐波,赵鹤鸣.均匀扩散下机器人变步长气味源搜索算法[J].苏州大学学报(工科版),2008,(3):21-24.
    [25] J. Murlis, J. S. Elkinton, R. T. Carde. Odor plumes and how insects use them[J]. Annualreview of entomology,1992,37(1):505-532.
    [26] L. Marques, U. Nunes, A. T. De Almeida. Odour Searching with Autonomous MobileRobots: an Evolutionary-Based Approach[C]. IEEE International Conference on AdvancedRobotics, USA,2003,494-500.
    [27] W. D. Smyth, J. N. Moum.3D Turbulence[M]. New York: Academic Press,2001.
    [28] R. Kanzaki, N. Sugi, T. Shibuya. Self-generated Zigzag Turning of Bombyx mori Malesduring Pheromone-mediated Upwind Walking (Physology)[J]. Zoological science,1992,9(3):515-527.
    [29] D. Burkhardt, W. Schleidt, H. Altner. Signals in the animal world[M]. New York:McGraw-Hill,1967.
    [30] H. Sch ne, C. Strausfield. Spatial orientation. The spatial control of behavior in animals andman[M]. University Press,1984.
    [31]李吉功.室外时变气流环境下机器人气味源定位[D].博士,天津大学,2010.
    [32] J. O. Hinze. Turbulence: An introduction to its mechanisms and theory[M]. New York:McGraw-Hill,1959.
    [33] G. L. Brown, A. Roshko. On density effects and large structure in turbulent mixing layers[J].Journal of Fluid Mechanics,1974,64(04):775-816.
    [34] B. Kruijt, Y. Malhi, J. Lloyd, et al. Turbulence statistics above and within two Amazon rainforest canopies[J]. Boundary-Layer Meteorology,2000,94(2):297-331.
    [35] M. G. Villani, H. P. Schmid, H. Su, et al. Turbulence statistics measurements in a northernhardwood forest[J]. Boundary-layer meteorology,2003,108(3):343-364.
    [36] F. Boettcher, J. Peinke. Small and large scale fluctuations in atmospheric wind speeds[J].Stochastic environmental research and risk assessment,2007,21(3):299-308.
    [37] L. Liu, F. Hu, X. Cheng, et al. Probability density functions of velocity increments in theatmospheric boundary layer[J]. Boundary-layer meteorology,2010,134(2):243-255.
    [38]柳亦兵,李虎,马志勇等.风速时间序列的非线性特性分析[J].华北电力大学学报,2008,35(6):99-102.
    [39] L. Mahrt. Weak-wind mesoscale meandering in the nocturnal boundary layer[J].Environmental Fluid Mechanics,2007,7(4):331-347.
    [40] A. L. Hiscox, D. R. Miller, C. J. Nappo. Plume meander and dispersion in a stable boundarylayer[J]. Journal of Geophysical Research,2010,115(D21):1-12.
    [41] C. J. Nappo, A. L. Hiscox, D. R. Miller. A Note on Turbulence Stationarity and WindPersistence within the Stable Planetary Boundary Layer[J]. Boundary-Layer Meteorol,2010,2010(136):165-174.
    [42]冯涛,付遵涛,毛江玉.北京地区气候变量的多分形特征研究[J].地球物理学报,2010,53(9):2037-2044.
    [43] G. Poveda-Jaramillo, C. E. Puente. Strange attractors in atmospheric boundary-layerturbulence[J]. Boundary-Layer Meteorology,1993,64(1-2):175-197.
    [44] A. Campanharo, F. M. Ramos, E. Macau, et al. Searching chaos and coherent structures inthe atmospheric turbulence above the Amazon forest[J]. Philosophical Transactions of theRoyal Society A: Mathematical, Physical and Engineering Sciences,2008,366(1865):579-589.
    [45] G. Lu, M. Zhang. Study on simulation of mobile robot active olfaction based onbiological-inspired kinesis response and tropotaxis behavior[C].2nd InternationalConference on Intelligent Human-Machine Systems and Cybernetics, IHMSC2010,Nanjing, China,2010,220-223.
    [46] E. Balkovsky, B. I. Shraiman. Olfactory search at high Reynolds number[J]. Proceedings ofthe National Academy of Sciences,2002,99(20):12589-12593.
    [47] J. A. Farrell, J. Murlis, X. Long, et al. Filament-Based Atmospheric Dispersion Model toAchieve Short Time-Scale Structure of Odor Plumes[J]. Environmental Fluid Mechanics,2002,2002(2):143-169.
    [48] J. Sutton, W. Li. Development of CPT_M3D for Multiple Chemical Plume Tracing andSource Identification[C].2008Seventh International Conference on Machine Learning andApplications, San Diego, CA, United States,2008,470-475.
    [49] Y. Tian, A. Zhang. Simulation Environment and Guidance System for AUV TracingChemical Plume in3-Dimensions[C].2nd International AsiaConference on Informatics inControl, Automation and Robotics,2010,5.
    [50] Z. Liu, T. Lu. A simulation framework for plume-tracing research[C]. The2008Australasian Conference on Robotics and Automation, Canberra, Australia,2008
    [51] Q. Liu, C. S. Li, X. T. Guan. Simulation study on robot active olfaction based onconcentration and equilateral triangle search[C].2010IEEE International Conference onRobotics and Biomimetics, ROBIO2010, Tianjin, China,2010,625-628.
    [52] G. Cui, X. Zhang, Y. Liu, et al. Research on the mobile robot's odor source localization bybiomimetics[C].2010IEEE International Conference on Robotics and Biomimetics, ROBIO2010, Tianjin, China,2010,1160-1164.
    [53] M. Nielsen, P. C. Chatwin, H. E. J rgensen, et al. Concentration Fluctuations in GasReleases by Industrial Accidents: Final Report[R]. Ris National Laboratory, Roskilde,Denmark,2002.
    [54] X. Jiang, Q. Meng, Y. Wang, et al. Numerical Simulation of Odor Plume in IndoorVentilated Environments for Studying Odor Source Localization with Mobile Robots[C].2012IEEE International Conference on Robotics and Biomimetics, ROBIO2012,Guangzhou, China,2012
    [55] Y. Wada, M. Trincavelli, Y. Fukazawa, et al. Collecting a Database for Studying GasDistribution Mapping and Gas Source Localization with Mobile Robots[C]. The5thInternational Conference on the Advanced Mechatronics, Osaka, Japan,2010,6.
    [56] A. Lilienthal, T. Duckett. Creating gas concentration gridmaps with a mobile robot[C].2003IEEE/RSJ International Conference on Intelligent Robots and Systems,(IROS2003),2003,118-123.
    [57] A. T. Hayes, A. Martinoli, R. M. Goodman. Distributed Odor Source Localization[J]. IEEESensors Journal,2002,2(3):260-271.
    [58] R. A. Russell, A. Bab-Hadiashar, R. L. Shepherd, et al. A comparison of reactive robotchemotaxis algorithms[J]. Robotics and Autonomous Systems,2003,45(2003):83-97.
    [59] Z. Pasternak, F. Bartumeus, F. W. Grasso. Levy-taxis: a novel search strategy for fndingodor plumes in turbulent flow-dominated environments[J]. Journal of Physics A:Mathematical and Theoretical,2009,2009(42):434010.
    [60] Y. Wang, Q. Meng, W. Yang, et al. Experimental Comparison of Spiral and ZigzagAlgorithms for Odor Plume Finding in An Outdoor Natural Airflow Environment[C].5thInternational Conference on the Advanced Mechatronics, Osaka, Japan,2010,171-176.
    [61] R. A. Russell. Chemical source location and the robomole project[C]. Australian Conferenceon Robotics and Automation,2003
    [62]王俭,季剑岚,陈卫东.基于行为特征的机器人变步长气味源搜索算法[J].系统仿真学报,2009,(17):5427-5430.
    [63] N. Ghods, M. Krstic. Source Seeking With Very Slow or Drifting Sensors[J]. Journal ofDynamic Systems, Measurement, and Control,2011,133(2011):44504.
    [64] V. Braitenberg. Vehicles: Experiments in synthetic psychology[M]. MIT press,1986.
    [65] Y. Kuwana, S. Nagasawa, I. Shimoyama, et al. Synthesis of the pheromone-orientedbehaviour of silkworm moths by a mobile robot with moth antennae as pheromonesensors[J]. Biosensors and Bioelectronics,1999,14(2):195-202.
    [66] L. Marques, A. T. De Almeida. Electronic nose-based odour source localization[C].6thInternational Workshop on Advanced Motion Control,2000,36-40.
    [67] F. W. Grasso, T. R. Consi, D. C. Mountain, et al. Biomimetic robot lobster performschemo-orientation in turbulence using a pair of spatially separated sensors: Progress andchallenges[J]. Robotics and Autonomous Systems,2000,30(1):115-131.
    [68] O. Holland, C. Melhuish. Some adaptive movements of animats with single symmetricalsensors[J]. From Animals to Animats,1996,4(1):55-64.
    [69] C. Lytridis, G. S. Virk, Y. Rebour, et al. Odor-based navigational strategies for mobileagents[J]. Adaptive Behavior,2001,9(3-4):171-187.
    [70] L. Marques, U. Nunes, A. T. De Almeida. Olfaction-based mobile robot navigation[J]. Thinsolid films,2002,418(1):51-58.
    [71] H. Ishida, T. Nakamoto, T. Moriizumi. Study of odor compass[C]. IEEE/SICE/RSJInternational Conference on Multisensor Fusion and Integration for Intelligent Systems,1996,222-226.
    [72] H. Ishida, A. Kobayashi, T. Nakamoto, et al. Three-dimensional odor compass[J]. IEEETransactions on Robotics and Automation,1999,15(2):251-257.
    [73] H. Ishida, K. Suetsugu, T. Nakamoto, et al. Study of autonomous mobile sensing system forlocalization of odor source using gas sensors and anemometric sensors[J]. Sensors andActuators A: Physical,1994,45(2):153-157.
    [74] W. Li, J. A. Farrell, R. T. Card. Tracking of fluid-advected odor plumes: strategies inspiredby insect orientation to pheromone[J]. Adaptive Behavior,2001,9(3-4):143-170.
    [75] R. A. Russell, D. Thiel, R. Deveza, et al. A robotic system to locate hazardous chemicalleaks[C].1995IEEE International Conference on Robotics and Automation,1995,556-561.
    [76] L. Marques, N. Almeida, A. T. De Almeida. Olfactory sensory system for odour-plumetracking and localization[C]. IEEE Sensors Conference,2003,418-423.
    [77] H. Ishida, G. Nakayama, T. Nakamoto, et al. Controlling a Gas/Odor Plume-Tracking RobotBased on Transient Responses of Gas Sensors[J]. IEEE Sensors Journal,2005,5(3):537-545.
    [78] Y. Kuwana, I. Shimoyama. A pheromone-guided mobile robot that behaves like a silkwormmoth with living antennae as pheromone sensors[J]. The International Journal of RoboticsResearch,1998,17(9):924-933.
    [79] P. Pyk, S. Bermúdez I Badia, U. Bernardet, et al. An artificial moth: Chemical sourcelocalization using a robot based neuronal model of moth optomotor anemotactic search[J].Autonomous Robots,2006,20(3):197-213.
    [80] R. A. Russell. Tracking Chemical Plumes in3-Dimensions[C]. Proceedings of IEEEInternational Conference on Robotics and Biomimetics, Kunming, China,2006,31-36.
    [81] T. Lochmatter, A. Martinoli. Tracking odor plumes in a laminar wind field with bio-inspiredalgorithms[C].11th International Symposium on Experimental Robotics, Athens, Greece,2009,473-482.
    [82] H. Ishida, M. Zhu, K. Johansson, et al. Three-dimensional gas/odor plume tracking withblimp[C]. Proc. ICEE,2004,117-120.
    [83]张小俊,张明路,孟庆浩等.一种基于动物捕食行为的机器人气味源定位策略[J].机器人,2008,(3):268-272.
    [84] H. Ishida, T. Nakamoto, T. Moriizumi. Remote sensing of gas/odor source location andconcentration distribution using mobile system[J]. Sensors and Actuators B: Chemical,1998,49(1):52-57.
    [85] G. Kowadlo, R. A. Russell. Na ve physics for effective odour localisation[C]. TheAustralian Conference on Robotics and Automation, Brisbane, Austrilia,2003
    [86] G. Kowadlo, R. A. Russell. Improving the robustness of na ve physics airflow mapping,using Bayesian reasoning on a multiple hypothesis tree[J]. Robotics and AutonomousSystems,2009,57(2009):723-737.
    [87] J. A. Farrell, S. Pang, W. Li. Plume Mapping via Hidden Markov Methods[J]. IEEETransactions on Systems, Man, and Cybernetics—Part B: Cybernetics,2003,33(6):850-863.
    [88] M. Vergassola, E. Villermaux, B. I. Shraiman.'Infotaxis' as a strategy for searching withoutgradients[J]. Nature,2007,2007(445):406-409.
    [89]李吉功,孟庆浩,李飞等.时变流场环境中机器人跟踪气味烟羽方法[J].自动化学报,2009,(10):1327-1333.
    [90] J. Li, Q. Meng, M. Zeng. An estimation-based plume tracing method in time-variantairflow-field via mobile robot[C].2009IEEE International Conference on Robotics andBiomimetics (ROBIO),2009,2249-2254.
    [91] J. Li, Q. Meng, Y. Wang, et al. Odor source localization using a mobile robot in outdoorairflow environments with a particle filter algorithm[J]. Autonomous Robots,2011,30(3):281-292.
    [92] P. Shuo. Plume source localization for AUV based autonomous hydrothermal ventdiscovery[C]. OCEANS2010,2010,1-8.
    [93] L. Marques, U. Nunes, A. De Almeida. Cooperative odour field exploration with geneticalgorithms[C].5th Portuguese Conference on Automatic Control (CONTROLO2002),2002,138-143.
    [94]石志标,孙江波.基于遗传算法的机器人主动嗅觉研究[J].东北电力大学学报,2011,31(1):61-64.
    [95]李俊彩,孟庆浩,梁琼.基于进化梯度搜索的机器人主动嗅觉仿真研究[J].机器人,2007,29(3):234-238.
    [96] W. Jatmiko, K. Sekiyama, T. Fukuda. A mobile robots PSO-based for odor sourcelocalization in dynamic advection-diffusion environment[C].2006IEEE/RSJ InternationalConference on Intelligent Robots and Systems,2006,4527-4532.
    [97] W. Jatmiko, P. Mursanto, B. Kusumoputro, et al. Modified PSO algorithm based on flow ofwind for odor source localization problems in dynamic environments[J]. Wseas transactionson Systems,2008,7(2):106-113.
    [98] F. Li, Q. Meng, S. Bai, et al. Probability-PSO algorithm for multi-robot based odor sourcelocalization in ventilated indoor environments[J]. Intelligent Robotics and Applications,2008,1206-1215.
    [99]李飞,孟庆浩,李吉功等.基于P-PSO算法的室内有障碍通风环境下的多机器人气味源搜索[J].自动化学报,2009,(012):1573-1579.
    [100] Q. H. Meng, W. X. Yang, Y. Wang, et al. Collective Odor Source Estimation and Search inTime-Variant Airflow Environments Using Mobile Robots[J]. Sensors,2011,11(11):10415-10443.
    [101] L. Marques, U. Nunes, A. T. de Almeida. Particle swarm-based olfactory guided search[J].Autonomous Robots,2006,20(3):277-287.
    [102]黄炘.基于粒子群优化的机器人主动嗅觉研究[D].硕士,天津大学,2007.
    [103] Q. Lu, P. Luo. A Learning Particle Swarm Optimization for Odor Source Localization[J].International Journal of Automation and Computing,2011,8(3):371-380.
    [104] D. W. Gong, Y. Zhang, C. L. Qi. Localising odour source using multi-robot andanemotaxis-based particle swarm optimisation[J]. Control Theory&Applications, IET,2012,6(11):1661-1670.
    [105] D. Gong, C. Qi, Y. Zhang, et al. Modified particle swarm optimization for odor sourcelocalization of multi-robot[C].2011IEEE Congress on Evolutionary Computation (CEC),New Orleans, United States,2011,130-136.
    [106]孟庆浩,李飞,张明路等.湍流烟羽环境下多机器人主动嗅觉实现方法研究[J].自动化学报,2008,34(10):1281-1290.
    [107] Q. Meng, W. Yang, Y. Wang, et al. Adapting an Ant Colony Metaphor for Multi-RobotChemical Plume Tracing[J]. Sensors,2012,12(4):4737-4763.
    [108]白双.基于强化学习蚁群算法的主动嗅觉[D].硕士,天津大学,2009.
    [109] Y. Zou, D. Luo. A Modified Ant Colony Algorithm Used for Multi-robot Odor SourceLocalization[J]. Advanced Intelligent Computing Theories and Applications,2008,5227(2008):502-509.
    [110] Y. Zou, D. Luo, W. Chen. Swarm robotic odor source localization using ant colonyalgorithm[C].2009IEEE International Conference on Control and Automation, ICCA2009,Christchurch, New Zealand,2009,792-796.
    [111]骆德汉,邹宇华,庄家俊.基于修正蚁群算法的多机器人气味源定位策略研究[J].机器人,2008,(6):536-541.
    [112] Y. Zhang, X. Ma, Y. Miao. Localization of multiple odor sources using modified glowwormswarm optimization with collective robots[C].201130th Chinese Control Conference(CCC),2011,1899-1904.
    [113] D. Zarzhitsky, D. F. Spears. Swarm approach to chemical source localization[C].2005IEEEInternational Conference on Systems, Man and Cybernetics,2005,1435-1440.
    [114] D. Zarzhitsky, D. Spears, D. Thayer, et al. Agent-based chemical plume tracing using fluiddynamics[J]. Formal Approaches to Agent-Based Systems,2005,146-160.
    [115] D. Martinez, L. Perrinet. Cooperation between vision and olfaction in a koala robot[C].2002,51-53.
    [116] H. Ishida, H. Tanaka, H. Taniguchi, et al. Mobile robot navigation using vision and olfactionto search for a gas/odor source[J]. Autonomous Robot,2006,2006(20):231-238.
    [117] G. Kowadlo, D. Rawlinson, R. A. Russell, et al. Bi-modal search using complementarysensing (olfaction/vision) for odour source localisation[C]. The IEEE InternationalConference on Robotics and Automation,2006
    [118]蒋萍.融合机器人视/嗅觉信息的气体泄漏源定位[D].博士,天津大学,2010.
    [119] Y. Wang, Q. Meng, M. Zeng. Vision-Aided Spiral-Surge Algorithm for Odor SourceLocalization in Indoor Natural Ventilated Environments[J]. Mechanical Engineering andTechnology,2012,125(2012):751-755.
    [120] A. Lilienthal, T. Duckett. Experimental analysis of smelling Braitenberg vehicles[J].Environment,2003,5(2003):10.
    [121] A. Lilienthal, D. Reiman, A. Zell. Gas source tracing with a mobile robot using an adaptedmoth strategy[J]. Autonome Mobile Systeme2003,2003,150-160.
    [122] A. H. Purnamadjaja, R. A. Russell. Pheromone communication: implementation ofnecrophoric bee behaviour in a robot swarm[C].2004IEEE Conference on Robotics,Automation and Mechatronics,2004,638-643.
    [123] L. Liang, J. Li, J. Jia, et al. A new approach to biomimetic robots for odor sourcelocalization[C]. IEEE International Conference on Robotics and Biomimetics, ROBIO,Kunming, China,2006,840-845.
    [124] G. Ferri, E. Caselli, V. Mattoli, et al. SPIRAL: A novel biologically-inspired algorithm forgas/odor source localization in an indoor environment with no strong airflow[J]. Roboticsand Autonomous Systems,2009,57(2009):393-402.
    [125] A. Lilienthal, H. Ulmer, H. Frohlich, et al. Gas source declaration with a mobile robot[C].2004IEEE International Conference on Robotics and Automation,2004,1430-1435.
    [126] F. Li, Q. H. Meng, J. W. Sun, et al. Single odor source declaration by using multiplerobots[C]. The13th International Symposium on Olfaction and Electronic Nose, Brescia,Italy,2009,73.
    [127] W. Li. Abstraction of odor source declaration algorithm from moth-inspired plume tracingstrategies[C]. IEEE International Conference on Robotics and Biomimetics, ROBIO2006,2006,1024-1029.
    [128] J. G. Li, Q. H. Meng, Y. Wang, et al. Single odor source declaration in outdoor time-variantairflow environments[C].2010IEEE International Conference on Robotics andBiomimetics, ROBIO2010, Tianjin, China,2010,143-148.
    [129]李敏,蒋维楣,李昕等.大气边界层湍流的动力非平稳性的验证[J].地球物理学报,2005,48(3):493-500.
    [130] N. E. Huang, Z. Shen, S. R. Long, et al. The empirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the RoyalSociety of London. Series A: Mathematical, Physical and Engineering Sciences,1998,454(1971):903-995.
    [131] J. S. Richman, J. R. Moorman. Physiological time-series analysis using approximate entropyand sample entropy[J]. American Journal of Physiology-Heart and Circulatory Physiology,2000,278(6): H2039-H2049.
    [132]李春贵,裴留庆.一种识别混沌时间序列动力学异同性的方法[J].物理学报,2003,(09):2114-2120.
    [133]肖筱南,赵来军,党林立.现代数值计算方法[M].北京:北京大学出版社,2003.
    [134] B. B. Mandelbrot. Fractals: form, change and dimension[J]. San Francisko: WH Freemannand Company,1977,
    [135] M. F. Barnsley. Fractal functions and interpolation[J]. Constructive approximation,1986,2(1):303-329.
    [136]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].北京:清华大学出版社,2006,
    [137] M. Reggente, A. J. Lilienthal. The3D-Kernel DM+V/W algorithm: Using wind informationin three dimensional gas distribution modelling with a mobile robot[C]. Sensors,2010IEEE,2010,999-1004.
    [138] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, et al. Equation of state calculations byfast computing machines[J]. The Journal of Chemical Physics,1953,21(6):1087.
    [139] S. Kirkpatrick, C. D. Gelatt Jr, M. P. Vecchi. Optimization by simulated annealing[J].Science,1983,220(4598):671-680.
    [140]康立山,谢云,尤矢勇等.非数值并行算法:模拟退火算法[M].北京:科学出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700