砼坝减震气幕与土石坝溢流柔性护面的模型试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文第一部分从流固耦合理论出发,以有限元分析为主要研究手段,针对平面模型,计算了基于对库水不同处理方法,坝体的动力响应。表明水可压缩性对动水压力强度和分布具有较大影响。应用在平面波作用下液体-气体-固体动力系统的理论,分析了大坝隔震气幕的力学性态;应用基于理想气体状态方程的气幕隔震的压力有限元模型,对模型气幕的隔震效果进行了研究。
     计算结果表明气幕对大坝具有良好的隔震性能,可降低动水压力75%以上。
     针对平面模型,用初位移激震分几种工况进行实验。用位移传感器量测同一点的位移时程。动水压力用脉动压力传感器进行测量。在坝面上布置测点,取得测点的动水压力时程分布和沿坝面的分布。与计算结果相比,坝体动力反应的趋势大致相符。在坝面不完全布置气幕的情况下,无论是计算还是实验结果均可说明,坝面中部气室减震效果显著,且气幕减震在坝的中下部体现较明显。模型实验所得气幕隔震后,动水压力降低70%,与计算结果基本符合。证明了理论的正确性。
     为了研究高土石坝在大单宽流量下的稳定性,本文第二部分主要对几种不同的土石坝护面材料进行了探讨,根据材料的特性和各自的受力特点,提出选用一种新型的柔性护面材料—橡胶板作为土石坝的防护材料。
     采用多普勒激光测速仪对过流断面的流速分布进行了测量,并根据流速分布推求出坝面上橡胶板所受的水流剪应力,和水流对橡胶板的摩阻系数。从而验证了柔性溢洪道的可行性。
At the first part of the paper, based on the theory of interaction of fluid-solid, the FEM method is used to analyze the dynamic reaction of the model dam. The results show that the affection of compressible properties of water is large. The mechanical properties of the air cushion are studied theoretically. The FEM air isolation model based on the state equation of ideal gas is used to study the effects of air isolation. The calculation results suggest that air isolation can reduce the hydrodynamic pressure significantly and restrain the dam vibrations during earthquake. The air cushion will reduce hydrodynamic pressure for 75%.
    Forced vibration tests of the model dam, excited by the initial displacement, measurement have been carried out for several cases. The displacement time history is measured using the displacement sensor. Hydrodynamic pressure is measured with pressure sensors. The measuring points are placed on the model dam. According to the hydrodynamic pressure time history of the points, the distribution of hydrodynamic pressure along the dam is determined. The tendency of the dam dynamic response is basically agree with the calculation results. The hydrodynamic pressure is reduced for 70% with air cushion isolation. The result is basically agreed with the calculations and can verified the theory
    For the stability of earth-rock dams under flood discharge, in the second part of this paper, several kinds of slope-protection materials are studied. According to the material property, a type of new flexible slope-protection material applied to overflow earth-rock dams-rubber panel armoring-is presented. The velocity profiles along the channel section are measured using the Laser Doppler Anemometer. According to the velocity distribution, boundary shear and the coefficient of friction between the flow and rubber panel, is determined. The calculation results verified the feasibility of the flexible spillway.
引文
1. Westergaard, H. M., Water pressures on dams during earthquakes. Transactions. ASCE, 1933,98:418-472
    2. Zienkiewicz O. C., The finite element method, McGraw-Hill, 1977.
    3.杜庆华,吴有生,冯振兴.流固耦合振动问题的某些工程处理方法.固体力学学报,9,1(1988):49—61
    4. N. C. Pal, S. K. Bhattacharyya & P. K. Sinha. Coupled Slosh Dynamics of Liquid-Filled, Composite Cylindrical Tanks. Journal of Engineering Mechanics, 125(4), 1999:491-495
    5. O.C. Zienkiewicz & P. Bettess. Fluid-structure dynamic interacion and wave forces. An introduction to numerical treatment. InternationaJ Journal For Numerical Methods In Engineerin,13, 1978:1-16
    6. L. Olson & K. Bathe. Analysis of fluid-structure interactions. A direct sysmetric coupled formulation based on the fluid velocity potential. Computers Structures., 21,1985:21-32
    7.吴一红,谢省宗.水工结构流固耦合动力特性分析.水利学报,1995(1):27—34
    8.吴一红,李世琴,谢省宗.拱坝—库水—地基耦合系统坝身泄洪动力分析.水利学报,1996(11):6—12
    9.戴大农,王勖成,杜庆华.流固耦合系统动力响应的模态分析理论.固体力学学报,11,4(1990):306—312
    10. L. Olson & K. Bathe. Analysis of fluid-structure interactions. A direct sysmetric coupled formulation based on the fluid velocity potential. Computers Structures., 21, 1985:21-32
    11. W.J.T. Daniel. Modal method in finite element fluid-structure eigenvalue prohlems. International fournal For Numerical Methods In Engineering, 15(8), 1980:1161-1176
    12.牟建耀.流固耦合分析的模态综合法.常州工业技术学院学报(自然科学版).9,1996:82—90
    13.邢景堂,郑兆昌.基于弹性动力学变分原理的模态综合法研究.固体力学学报,2,1983:248—257
    14. Irons B M. Role of part-inversion in fluid-structure problems with mixed variables. AIAA JL., 8(1970):568
    15.邢景堂.考虑自由面线性波的流固耦合动力分析的两个变分公式.航空学报,9,11,1988:A568—A571
    16.邢景堂.线性流固耦合动力分析程序FSIAP92简介.航空学报,13,9,1992:A548—A551
    17. Saini S. S., Bettess P., Zienkiweicz O. C., Coupled hydrodynamic response of
    
    concrete gravity dams using finite and infinite elements, Earthquake Engineering and Structural dynamics, v6, 1978: 363-374.
    18. O.C. Zienkiewicz, K.K. Paul & E. Hinton. Cavitation in fluid-structure response (with pqrticular refference to dams under earthquake loading). Earthquake Engineering and Structural Dynamics, 11, 1983:463-481
    19. R.K. Singh, T. Kant & A. Kakodkar. Coupled shell-fluid interaction problems with degenerate shell and three-dimensional fluid elements. Computers & Structures. 38(5/6), 1991:515-528
    20. J.P.F.O'Connor & J.C. Boot. Solution procedure for the earthquake analysis of arch dam-reservoir systems with compressible water. Earthquake Engineering and Structural Dynamics, 16, 1988:757-773
    21.何发祥,拱坝动水压力及气幕隔震技术研究,2000.5,四川大学博士学位论文。
    22.王忠,坝库相互作用及抗震技术研究,2001,4,四川大学博士学位论文。
    23. Hanna Y G, Humar J L., Boundary element analysis of fluid-domain, J. Eng. Mech. Div. ASCE 108, EM2, 1982
    24. Antes H, Estorff O V. Analysis of absorption effects on the dynamic response of dam reservoir systems by BEM, Earthquake Engineering & Structural Dynamics, 15(8), 1987: 1023-1036.
    25.宋崇民,张楚汗,水坝抗震分析的动力边界元方法,地震工程与工程振动,1988(4)
    26. Tsai C H, Lee G C. Hydrodynamic pressure on gravity dams subject to ground motions, J Eng. Mech. Div. ASCE, 1989, 115(3):598-617.
    27. P. Bettess, O. C. Zienkiewicz, Diffraction and refraction of surface waves using finite and infinite elements, Inter. Jour. Numer. Meth. Engng., 1977, v11:1271-1290.
    28.张楚汗,赵崇斌,用无穷元研究断层对重力坝低级应力的影响,水利学报,1986,9:24-33。
    29. Zhang C H, Jin F, Pekau O A. Time domain procedure of FE-BE-IBE COUPLING FOR SEISMIC INTERACTION OF ARCH DAMS AND CANYONS. Earthquake Engineering & Structural Dynamics, 1995, 24(1): 651-666.
    30.徐艳杰,张楚汗,金峰,非线性拱坝—地基动力互相作用的FE—BE—IBE模型,清华大学学报(自然科学版),1998,38(11)99—103。
    31. R.W. Clough. Reservoir interaction effects on the dynamic response of arch dams. Proceedings of China-US Bilateral Workshop on Earthquake Engineering.1982:58-84.
    32. Ka-Lun Fork & A. K. Chopra. Earthquake analysis of arch dams including dam-water interaction, reservoir boundary absorption and foundation flexibility. Earthquake Engineering and Structural Dynamics, 14, 1986:155-184.
    
    
    33. A.K. Chopra.Earthquake response of gravity dams. Journal of Engineering Mechanics Division, ASCE, 96 (EM4), 1970:443-454
    34.卓家寿.裂隙岩体渗流场与位移场的耦合作用分析.全国岩石力学和工程第四次学术大会论文集,中国科学技术出版社.1996:197—203
    35. S. J. Mraz Ed. It's all in the springs. Machine Design, 7,1998:80-86
    36.易作刚.宽频多维减振器的设计.激光与红外,23,4,1994:44—46,43
    37.张文华,强杰.空气弹簧在钻井液振动筛上的使用性能浅析.石油机械,23,1995:39—42
    38.M.H.乔德里著,陈家远,孙诗杰,张治滨译.实用水力过渡过程.四川水力发电工程学会出版,1985年9月:259—263
    39.B.N.包亚尔斯基等.契尔克依和米阿特林电站拱坝气幕的设计.(俄刊)水工建设,10,1992:6—9
    40.B.B.科尼克等.米阿特林水电站拱坝试验性气幕的施工安装.(俄刊)水工建设,10,1992:9—10
    41.B.M.包亚尔斯基等.克里沃波罗什电站大坝试验性气幕的构造.(俄刊)水工建,10,1992:11—13
    42.B.B.科尼克等.克里沃波罗什电站大坝试验性气幕的安装,(俄刊)水工建,10,1992:13—15
    43.O.A.萨维诺夫等.带空气帷幕的水工建筑物抗震性数学模拟和理论研究.(俄刊)水工建,10,1992:16—18
    44.B.N.阿西科夫等.带气幕的水工建筑物与水介质相互作用现象的物理模拟试验.(俄刊)水工建,10,1992:18—24
    45.B.K.格勒利斯等.克里沃波罗水电站大坝的试验性气幕的原型试验.(俄刊)水工建,10,1992:25—28
    46. Lee Li. A seismic isolation measure for dams. Proceeding of Earthquake engineering Tenth world conference, Balkema, Rotterdam, 1992:2247-2250
    47. K.P. Lee, A Simplistic Model of Cyclic Heat Transfer Phenomena in Close Spaces, Proceedings of the 25th IECEC Paper No. 910171, 1991
    48. A.A. Kornhauser. Dynamic modeling of gas springs. Proceedings of 26th IECEC,5,1991:180-185
    49.朱德库,刘晓杰,马平,空气弹簧及其控制系统,山东科学技术出版社,山东济南,1989。
    50.赵洪伦,张广世,高速客车空气弹簧非线性横向刚度特性研究,铁道学报,1999,21(6)
    51.董文才,郭日修.气幕减阻研究进展.船泊力学,2(5),1998:73—78
    52.朱云翔,郭日修.气幕对弹性球壳振动影响的探讨.振动工程学报,9(3),1996:237—243
    53.朱云翔,郭日修.固体—气幕—液体耦合问题的水弹性分析.固体力学学报,17(2),1996:157—162
    
    
    54.朱云翔,郭日修.固体—气幕—液体耦合系统广义变分原理.固体力学学报,16(2),1995:163—170
    55.朱云翔,郭日修.气液两相流理论与气幕降噪.力学与进展.16(6),1994:1—7
    56.G.B.沃伯顿。结构的动力性态。地震出版社。1983:107。
    57.陈厚群,侯顺载,杨大伟。地震条件下拱坝库水相互作用的试验研究.水利学报.7.1989:29—39.
    58.吴媚铃。水工建筑物。清华大学出版社。1991。
    59.傅志安,凤家骥。混凝土面板堆石坝。华中理工大学出版社。1993。
    60.李世宁,李长林编著。过水土坝,吉林人民出版社,1983年5月。
    61. Snider S H. RCC overlay for embankment dams. Proceedings of the 1st International Conference on Water Resources, Part 1(of 2), Aug. 14-18,1995,323-327.
    62. Hansen K D and Mclean F G. Roller compacted concrete for overtopping protection and overview. Proceedings of the 1st International Conference on water Resources, Part 2(Of 2), Aug 14-18,1995,1016~1020.
    63. Weiss A. Construction technique of passing floods over earth dams. Transactions, ASCE, 1951, 116:1951.
    64. Wilkins J K. The flow of water through rockfill and its application to the design of dams. Proceedings and Australia-New Zealand Conference or Soil Mechanics and Foundations Engineering,1956:114.
    65. Curtis R P and Lawson J. Flow over and through rockfill banks. Journals of the Hydraulic Division, ASCE, Sept. 1967,93(6): 1-21.
    66. Parkin A K, Trollope D H and Lawson J D, Rockfill Structures subject to water flow. Journal of The Soil Mechanics and Foundations Division, ASCE, Nov. 1966, 92(6): 135-151.
    67. Parkin A K. Rockfill dams with inbuilt spillways. Part Ⅰ, Hydraulic characteristics, Report DR2. Department of Civil Engineering, University of Melbourne, Australia.
    68. Parkin A K. Rockfill dams with inbuilt spillways. Part Ⅱ, stability characteristics. Report DR3. Department of Civil Engineering, University of Melbourne, Australia.
    69. Pravdirets Y P and Slissky S M. Passing floodwaters over embankment dams. International Water Power and Dam Construction, 1981, 33(7): 30-32.
    70. Miller A P. Pravdivets Y P and Salov V A. Earth overflow dam. Hydrotechnical Construction (English translations of gidrotekhnicheskoe Stroitel Stvo), 1987, 21(8): 503-507.
    71. Pravdivets Y P. Industrial design of an earth overflow dam. Hydrotechnical Construction (English translation of Gidrotekbnicheskoe Stroitel Stvo), 1988,
    
    21(12):685—689.
    72. Prizell K H. Stepped spillway design for flow over embankments. Proceedings of the 1991 national conferences on Hydraulic Engineering, Naskville, TN, USA. July 29~Aug. 2, 1991: 118-123.
    73.陈小冰,陈圣平。混凝土面板堆石坝坝体过水保护。人民长江,1998,(6):27~29。
    74.徐天有,张晓宏。过水堆石坝钢筋笼护坡失稳临界条件。西北水电。1998,(2):34~35
    75.侍克斌,肖焕雄。过水土石坝(围堰)下游混凝土板护坡垫层的设计准则。水电站设计,1997,(2):13~18,29。
    76.袁银忠,黄细彬,傅宗甫.水流边界剪应力的量测及掺气水流固壁剪应力的特性.河海大学学报,v21,4,1993:16—20.
    77.章榛雄,董曾南,《粘性流体力学》,清华大学出版社,1998
    78. S. N. Ghosh. And. N. Roy. Boundary Shear Distribution in Open Channel Flow. J, Hydraulics Division, Proceedings Of ASCE, 1970
    79. Straub L.G, Andersion A. G. Self-Aerated Flow in Open Channel. Trans ASCE, 1960.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700