气幕防波堤试验与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
防波堤作为一种常见的港口、海岸工程结构,主要用于防御外海波浪对所掩护海域的侵袭,为船舶的停泊和作业提供平稳、安全水域和保护港内水工建筑物,故在港口工程中具有特殊地位。鉴于深水开敞海域环境恶劣,传统水工结构因工程造价高昂、技术复杂、施工困难等已不能适应深水港发展需要。因此,寻求合理、可靠的结构型式和切实可行的施工方法以保证其使用功能并降低造价为世界各国港口工程界所重视。
     气幕防波堤作为一种特殊形式的防波堤,与固定式防波堤相比,具有移动性、临时机动性、可重复使用、不受水深和地质条件限制、不影响水流、泥沙的运动条件,可以很容易通过抛锚固定或通过锚链固定在抛入水中的预制重物上等优点。另外气幕防波堤的重量轻、结构简单、造价低。因此气幕防波堤在水运、水产养殖,军事方面有良好的应用前景。
     本文从物理模型试验和数值模拟两方面出发,对气幕防波堤消波性能进行了初步探讨、分析和研究。在物理模型试验方面,基于重力相似准则关系,设计了一套气幕防波堤消波性能试验研究方案。分别考虑了不同入射波浪要素、不同供气量Q大小、不同喷气孔口直径、不同模型长度比尺条件下的气幕防波堤消波性能,并对气幕防波堤对波浪的反射作用做了分析。根据整理得到的试验数据并进行分析,给出了气幕防波堤消波性能相关结论。
     数值模拟方面,将空气和水看成是一种变密度单流体,视空气为不可压缩气体,利用有限体积法,结合连续方程和不可压缩雷诺平均N-S方程,并利用k-ε方程封闭方程组,采用VOF方法追踪空气和水的界面,进行了静水中单一气泡和气泡帷幕的数值模拟;进一步说明气幕防波堤的消波机理是由于气幕的存在而在水体中产生水平流的结论。
     其次,采用推板式造波实现了二维数值波浪水槽的建立,同时利用UDF实现了数值波浪水槽尾端消波过程,同时实现了气泡帷幕在波浪中的作用,进而完成了对气幕防波堤的数学模型;通过采用和试验相同波浪要素情况下气幕防波堤数值模拟研究,并对数值结果和试验结果进行了对比分析,说明本文气幕防波堤数学模型建立的合理性。此’外,空气的可压缩性对气幕防波堤消波性能影响在本文也进行了数值研究,并给出了相关结论。
     再次,通过建立好的气幕防波堤数学模型进行了气幕防波堤消波性能影响因素数值模拟研究,即从入射波浪要素和气幕防波堤自身结构参数两大方面考虑,对可能影响气幕防波堤消波性能的各个因素进行了数值模拟研究。并结合给出的相关结论,为气幕防波堤的实际应用提供可靠的有价值的依据。
     最后,对气幕防波堤供气量比尺λQ和长度比尺λL之间的关系进行了数值研究,并采用原型法和外推法对供气量比尺λQ和长度比尺λL之间的关系进行了初步探讨,进而和试验时得到的供气量相似关系进行了对比分析。同时对考虑空气可压缩性和不考虑空气可压缩性两种情况下得到的供气量比尺λQ和长度比尺λL之间的关系也进行了探讨。最后给出本文的相关结论。
Breakwater is a common kind of coastal engineering structures, as the important hydraulic structures to provide protection for many coastal activities from waves, and it is playing special and important role in mainly for providing stable and safe area to shipping. In deep waters, the traditional breakwaters can not be fit for the construction with execrable circumstance, furthermore, the traditional breakwater construction cost is expensive, the technology is complex and the construction is difficult, so it can't adapt to deep water harbour development needs. Therefore, reasonable and reliable structure and feasible construction method to assure the functionsofuse and reduce the cost are important for the world port engineering.
     Air bubbles breakwater is one of special breakwaters, so it has several specific characters of the mobile breakwater compared with stable breakwaters, such as mobility, temporality, cheapness, etc. it can not be restricted by the water depth and geological conditions, and it can easily be anchored by chain or through the precast bodies into water. Besides thses, it is pointed out as a special merit of the air bubbles breakwater form environment point of view not interrupt the exchange of water and the sediment of sands in harbors and facilities of air discharge are placed on the sea bottom. In addition, air bubbles breakwater has the other advantages, for the light weight, simple structure and low cost. Therefore, it has good application prospects in water transportation, aquaculture and military domain.
     This paper presents the experiment investigation and numerical simulation of the wave dissipating performance in air bubbles breakwater. In the physical model experiments, a set of air bubbles breakwater wave elimination performance test research plan are designed based on similarity criterion of gravity. In the proceeding of tests, the wave dissipating performance of air bubbles breakwater with different incident wave elements, the different air amount and the different orifice diameter under the condition of different length scales are studied, and the reflection action of wave motion are analysis at the same time. According to the arrangement of test data and analysis, same conclusions are given for the wave dissipating performance of air bubbles breakwater.
     Firstly, in the numerical simulation aspect, the two-phase fluid of water and air is assumed as a variable density fluid, the air is incompressible, the continuity equation, the Reynolds average equations and the standard k-εequations are selected as the governing equations, and the interface of water and air was traced by the VOF method and the finite volume method is used for solve the equations. The additional mass source was added to the continuity equation by the Macro of UDF. The single air bubble and the air bubbles curtain characteristics in calm water are conducted by numerical simulation, which give the further explanation that the wave dissipating mechanism of air bubbles breakwater is the horizontal flow caused by air bubbles curtain in water.
     Secondly, it is presented the 2-d numerical wave tank with the wave generation by pushing plate, and using UDF for wave elimination process at the end of wave tank, the air bubbles curtain is realized in the wave tank at the meanwhile, so the mathematical model of air bubbles breakwater is finished. By using the same wave elements and test cases, the wave dissipating performance of air bubbles breakwater are studied, then the numerical simulation results and experimental results are analyzed in this paper, it is aimed to certify the mathematical model rationality of the air bubbles breakwater. In addition, the effects of air compressibility on air bubbles breakwater wave damping performance are studied in this paper by numerical simulation, and the related conclusions are given.
     Thirdly, through the mathematical model establishment of air bubbles breakwater, the influencing factors, which maybe influence the wave dissipating performance of air bubbles breakwater, are studied by numerical simulation. Form two aspects, the incident wave elements and the structural parameters of air bubbles breakwater, are likely to affect the air bubbles breakwater wave elimination properties be simulated in this paper. Combining the given relevant conclusions, it provided reliable and valuable basis for the practical application of air bubbles breakwater.
     Finally, the relation of the air amount scale and the length scale in the air bubbles breakwater system are studied by numerical simulation and the preliminary discuss are made for the relationship between the air amount scale and the length scale with the prototype method and the extrapolation methodand. Then the comparations with the experimental results are conducted. Forthemore, the two cases with considering air compressibility and without considering air compressibility are also analyzed and discussed for the relationship between the air amount scale and the length scales.
引文
[1]邱大洪.海岸和近海工程学科中的科学技术问题[J].大连理工大学学报,2000,40(6):631-637.
    [2]李玉成.海洋工程技术进展与对发展我国海洋经济的思考[J].大连理工大学学报,2002,42(1):1-5.
    [3]王永学.海洋资源可持续开发与环境[J].国际学术动态,1998,(1):77-78.
    [4]邱大洪,王永学.21世纪海岸和近海工程的发展趋势[J].自然科学进展,2000,10(11):982-986.
    [5]韩理安.港口水工建筑物[M].人民交通出版社,2000.
    [6]俞聿修.斜坡式防波堤技术的新进展[J].港工技术,1995,(3):13-18.
    [7]谢世楞.深水防波堤技术的最新进展[J].港工技术,1994,(2):1-10.
    [8]俞聿修.直墙式防波堤技术的新进展[J].港工技术,1996,(1):1-7.
    [9]李炎保,张效铭,谷剑秋.框格式防波堤[J].港口工程,1995,(3):28-30.
    [10]谢世楞.90年代我国防波堤设计进展[J].水运工程,1999,(10):11-17.
    [11]Ming D., Chiew Y.M. Shoreline Changes behind Detached Breakwater [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,2000,126(2):63-70.
    [12]Readshaw J. S. The design of floating breakwater [C]. Proceedings of Second Conference on Floating Breakwaters, Seattle,1981.
    [13]曹根祥,蔡福康.炮台湾船舶基地固定透空式防波堤施工[J].水运工程,1995,(12):35-39.
    [14]王巨轮,朱承.透空式防波堤在大窑湾工程中的应用[J].水运工程,2000,317(6):13-17.
    [15]谢怀东.黄岐渔港新型透空式防波堤设计研究[J].河海大学学报,1997,25(4):42-46.
    [16]王国玉,王永学,李广伟.多层水平板透空式防波堤消浪性能试验研究[J].大连理工大学学报,2005,45(6):865-870.
    [17]王国玉,王永学.新型透空式防波堤结构试验研究[J].中国造船,2003,44(增刊):350-358.
    [18]童朝峰,严以新.浮式防波堤消浪特征研究[J].水运工程,2002,343(8):32-35.
    [19]王国玉.特种防波堤结构型式及水动力特性研究[D].大连:大连理工大学,2005.
    [20]王国玉,王永学,李广伟,程永舟.气幕式防波堤消波性能试验研究[J].中国造船,2004,45(增刊):103-109.
    [21]Bulson, P. S., Transportable breakwaters [J]. The Dock and Harbour Authority,1967, ⅩLⅧ (560):41-46.
    [22]Banies, W. D., The principles of operation of bubbling system [C]. Proceeding of the symposium on air bubbling, National Research Council, Canada,1961,12-22.
    [23]杨光煦.气泡帷幕防震设计与计算[J].爆破,1990,(2):48-52.
    [24]周睿等,冯顺山.气泡帷幕对水中冲击波波峰值压力衰减特性的研究[J].工程爆破,2001,7(2):13-17.
    [25]李泽华,白春华,刘庆明,张奇等.气泡帷幕减弱水中冲击波强度的研究[J].中国安全科学学报,1999,9(5):69-73.
    [26]杨光煦.水下爆破工程[M].北京:海洋出版社,1992.
    [27]Helumt. E. Analysis of the flow induced by air-bubble systems [C]. Proceedings of 11th Conference on Coastal Engineering, London, England,1968, Ⅱ:1016-1031.
    [28]Kurihara, M. On the study of a pneumatic breakwater in Japan [J]. Coastal Engineering in Japan, Japan S. C. E.,1965, Vol(Ⅷ).
    [29]Brasher, P., The Brasher air breakwater [J]. Compressed air magazine,1915, Vol(20): 7523-.
    [30]White, C. M., Admiralty Report ATR/MISC/1685,1943.
    [31]Taylor, G. I., Admiralty Report ATR/MISC/1259,1943.
    [32]Laurie, A. H., The German experiments on pneumatic breakwaters [J]. Dock and Harbour Authority,1955,36 (416):61-64.
    [33]Carr, J. H., Hydro. Structures Div., Caltech, Report N-64.2, Dec 1950.
    [34]Schiff, L. I., Hydro. Structures Div., Caltech, Report N-64.1, June 1949.
    [35]Hensen, W., Dock and Harbour Authority,1955,36 (416):57-60.
    [36]Wetzel, J. M., St. Anthony Falls Hydro. Lab., Minneapolis. Proj. Report No.46, May 1955.
    [37]Teplov, A. V., Moscow USSR 1954. Translation by Ministry of Supply, London, Dec.1958.
    [38]Kurihara, M., Movement of beach materials by wave motion [C]. Proc.3rd Conf. on Coastal Eng. in Japan. Nov.1956.
    [39]Straub, Bowers and Tarapore. St. Anthony Falls Hydro. Lab., Minneapolis. Tech. Report No.25, August 1959.
    [40]EVANS J T. Pneumatic and similar breakwaters [J]. Proceeding of the Royal Society of London. Series A, Mathematical and Physical Sciences,1955,231(1187):457-466.
    [41]Taylor G. The action of a surface current used as a breakwater [J]. Proceeding of the Royal Society of London. Series A, Mathematical and Physical Sciences,1955,231(1187): 466-478.
    [42]Simon Ince. Winter regime of a tidal inlet in the arctic and the use of air bubbles for the protection of wharf structures [J]. The 9th Conference on Coastal Engineering, Lisbon, Portugal. June 1964,521-532.
    [43]Bulson P. S. Currents produced by an air curtain in deep water [J]. The Dock and Harbour Authority,1961, XLII (487):15-22.
    [44]Green J. L. Pneumatic breakwaters to protect dredges [J]. Journal of the Waterway and Harbours Division.1961,87(ww2):67-87.
    [45]Bulson P. S. Bubble breakwaters with intermittent air supply [J]. The Dock and Harbour Authority,1963, ⅩLⅣ (514):129-134.
    [46]Bulson P. S. Large scale bubble breakwater experiments [J]. The Dock and Harbour Authority,1963, ⅩLⅣ (514):191-197.
    [47]Wiegel, R. L., Proc, A. S. C. E., Waterways and Harbors [J],1960, Vol.86, No. WW1, p.1
    [48]Bulson P. S. The theory and design of bubble breakwater [C]. Proceeding of 11th Conference on Coastal Engineering, London,1968. Ⅱ:995-1015.
    [49]R. E. Nece, E. P. Richey, V. seetharama Rao. Dissipation of deep water waves by hydraulic breakwaters [C]. Proceedings of 11th Conference on Coastal Engineering, London, England, 1968, Ⅱ:1032-1048.
    [50]Helumt. E. Analysis of the flow induced by air-bubble systems [C]. Proceedings of 11th Conference on Coastal Engineering, London, England,1968, Ⅱ:1016-1031.
    [51]Iver Brevik. Partial wave damping in pneumatic breakwaters [J]. Journal of the hydraulics division.1976. Vol.102, No:HY9,1167-1176.
    [52]Yuichi Iwagaki, Toshiyuki Asano, Tsutomu Honda. Combination effect of pneumatic breakwater and other type breakwater on wave damping [J]. Coastal Engineering, 1978,2172-2190.
    [53]Iwagaki, Y., M. Yasui. A study on pneumatic breakwaters (1st report) [R].-Fundamental properties of pneumatic breakwaters-, Proc.,22th Conf. on Coastal Engineering. In Japan,1975,563-569.
    [54]Iwagaki, Y., H. Ishida., T. Honda and Y. Sudo. A study on pneumatic breakwaters (2nd report) [R].-Combination with submerged breakwater-, Proc.,23th Conf. on Coastal Engineering. In Japan,1976,158-163.
    [55]Iwagaki, Y., T. Asano and H. Mase. A study on pneumatic breakwaters (3rd report) [R].-Combination with floating breakwater-, Proc.,24th Conf. on Coastal Engineering. In Japan,1977,290-294.
    [56]俞幸修.随机波浪及其工程应用[M].大连:大连理工大学出版社,2000.
    [57]董志,詹杰民.基于VOF方法的数值波浪水槽以及造波、消波方法研究[J].水动力学研究与进展,A辑,2009,24(1):15-21.
    [58]Grilli S. T., Svendsen I. A., Subramanya R. Breaking criterion and characteristics for solitary waves on slopes [J]. Journal of Waterway, Port, Coastal and Ocean Engineering,1997,123(3):102-112.
    [59]沈永明,唐军,郑永红.基于抛物型缓坡方程模拟近岸波流[J].水利学报,2006,37(3):301-307.
    [60]Bejis S., Nadaoka K. A formal derivation and numerical modeling of the improved Boussinesq equations for varying depth [J]. Ocean Engineering,1996,23(8):691-704.
    [61]Lin P., Liu P. L. F. A numerical study of breaking waves in the surf zone [J]. Journal of Fluid Mechanics,1998,359:239-264.
    [62]Dong C M, Huang C J. Generation and propagation of water waves in a two-dimensional numerical viscous wave flume [J]. Journal of Waterway, Port, Coastal and Ocean Engineering.2004,130(3):143-153.
    [63]窦国仁.紊流力学[M].北京:人民教育出版社,1982.
    [64]陶文栓.数值传热学M].西安:西安交通大学出版社,2006.
    [65]Anderson D. A., Tannehill J. C., Pletcher R. H., Computational fluid mechanics and heat transfer [M]. USA:Taylor & Francis, Edition:2, illustrated,1997.
    [66]Chen C. J., Jaw S. Y., Fundamentals of turbulence modeling [M]. USA:Taylor & Francis,1998.
    [67]Markatos N, C. The Mathematical modeling of turbulence flows [J]. Applied Mathematical Modelling,1986,10(3):190-220.
    [68]姜昭阳.人工鱼礁水动力学与数值模拟研究[D]:(博士学位论文).青岛:中国海洋大学,2009.
    [69]王瑞金,张凯,王刚.FLUENT技术基础与应用实例[M].北京:清华大学出版社,2007.
    [70]李雪临.波浪冲击过程的流场变化特性研究[D]:(博士学位论文).大连:大连理工大学,2009.
    [71]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [72]马喜福.三维带自由表面强紊动水流的数值模拟[D]:(博士学位论文).南京:河海大学,1992.
    [73]张长高.脉动速度的分解和脉动应力探讨[J].河海大学学报,1989,17(5):1-8.
    [74]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [75]李胜忠.基于Fluent的二维数值波浪水槽研究[D]:(硕士学位论文).哈尔滨:哈尔滨工业大学,2006.
    [76]李凌.黏性流中水波与浮式结构物相互作用的数值模拟研究[D]:(硕士学位论文).上海:上海交通大学,2007.
    [77]王永学.无反射造波数值波浪水槽[J].水动力学研究与进展,A辑,1994,9(2):205-214.
    [78]李凌,林兆伟,尤云祥等.基于动量源方法的黏性流数值波浪水槽[J].水动力学研究与进展,A辑,2007,22(1):76-82.
    [79]Fluent Inc.,2003. Fluent 6.2 User Guide. USA:Fluent Inc.
    [80]Fluent Inc.,2003. Fluent Gambit Modeling Guide. USA:Fluent Inc.
    [81]蒋炎坤.水下排气气泡运动特性及其数值模拟研究[J].华中科技大学学报(自然科学版)2004,32(10):49-50.
    [82]隆文非,刘浩吾.大坝气幕隔震效果的数值模拟分析[J].四川大学学报(工程科学版),2005,37(2):38-42.
    [83]王家楣,郑晓伟,姜曼松.船舶吃水对微气泡减阻影响的水池试验研究[J].船舶工程,2004,26(6):9-12.
    [84]车得福,林宗虎,陈学俊.气泡在液体中形成的试验研究[J].钢铁研究学报,1994,6(1):9-14.
    [85]车得福,林宗虎,陈学俊.气泡在垂直向上流动液体中的形成[J].西安交通大学学报,1994,28(2):97-102.
    [86]程文,周孝德,郭瑾珑,李华.水中气泡上升速度的实验研究[J].西安理工大学学报,2000,16(1):57-60.
    [87]李小明,王冶,毕勤成,冯全科.气泡在不同液体中上升速度的实验研究[J].西安交通大学学报,2003,7(9):971-974.
    [88]李彦鹏,白博峰.气泡从浸没孔中生成与上升的数值模拟[J].水动力学研究与进展,A辑,2006,21(5):660-666.
    [89]张建生,孙传东,卢笛.水中气泡的特性研究[J].西安工业学院学报,2000,20(1):1-8.
    [90]张建生,孙传东,冀邦杰,卢笛.水中气泡的运动规律和光学散射特性[J].鱼雷技术,2000,8(1):22-25.
    [91]朱翔云,郭日修.气液两相流理论与气幕降噪[J].力学实践,1994,16(6):1-5.
    [92]陈学俊,陈立勋,周芳德.气液两相流与传热基础[M].北京:科学出版社,1995.
    [93]翟建华.计算流体力学(CFD)的通用软件[J].河北科技大学学报,2005,26(2):160-165.
    [94]辛晓华,张武,周华.基于Fluent的绕流问题的数值模拟与并行计算[J].计算机工程与设计,20005,26(8):2153-2154.
    [95]徐元利,徐元春,梁兴,张进国.FLUENT软件在圆柱绕流模拟中的应用[J].水利电力机械,2005,27(1):39-41.
    [96]许雅娟,罗挺.FLUENT用于大气污染扩散的数值模拟[J].后勤工程学院学报,2005,(2):23-26.
    [97]叶茂,伍超,陈云良,张挺,周勤.FLUENT软件在水利工程中的应用[J].水利水电科技发展,2006,26(3):78-81.
    [98]于蕾,李敏,林豹,宋锦,张伟.FLUENT软件在射流模拟汇总的应用[J].科技情报开发与经济,2005,15(13):154-155.
    [99]刘波,李浙昆,樊瑜瑾.基于FLUENT的气泡发生器的涉及改进[J].机械工程与自动化,2006,139(6):15-17.
    [100]刘诚,蒋昌波,刘晓平.潜堤附近波浪场精细模拟的PLIC-VOF模型[J].水科学进展,2006,17(5):671-675.
    [101]袁丽蓉,沈永明,郑永红.用VOF方法模拟静止浅水环境中的垂向紊动射流[J].水科学进展,2004,15(5):566-570.
    [102]邹志利,邱大洪,王永学.VOF方法模拟波浪槽中二维非线性波[J].水动力学研究与进展,A辑,1996,11(1):93-103.
    [103]刘海青,赵子丹.数值波浪水槽的建立与验证[J].水动力学研究与进展,A辑,1999,14(1):8-15.
    [104]刘加海,杨永全,张洪雨,李刚.二维数值水槽波浪生成过程及波浪形态分析[J].四川大学学报(工程科学版)2004,36(6):28-31.
    [105]刘加海.二维水槽数值造波分析研究[J].黑龙江水利科技,2006,34(2):39-41.
    [106]石瑞祥,周宗仁,尹彰.二维数值造波水槽不规则波之数值研究[J].燕山大学学报,2004,28(2):172-178.
    [107]韩朋,任冰,李雪临,王永学.基于VOF方法的不规则波数值波浪水槽的阻尼消波研究[J].水道港口,2009,30(1):9-13.
    [108]韩朋.基于VOF方法的不规则波阻尼消波研究[D]:(硕士学位论文).大连:大连理工大学,2008.
    [109]孙大鹏,李玉成.数值水槽内的阻尼消波和波浪变形计算[J].海洋工程,2000,18(8):46-50.
    [110]高学平,曾广冬,张亚.不规则波浪数值水槽的造波和阻尼消波[J].海洋学报,2002,24(2):127-132.
    [111]刘慧枝,贾欣乐.工程流体力学[M].大连:大连海事大学出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700