高坝动水压力及气幕隔震机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坝库系统在地震时的相互作用是水工抗震设计的重要课题。研究大坝—库体—地基相互作用是当代高坝抗震分析的核心,难点在于大坝—库水相互作用或流固耦合问题,即动水压力问题。动水压力是危害坝体安全的一个不可忽视的重要因素,尤其是对高坝。弄清动水压力的分布规律,在工程抗震设计中,有针对性地采取符合科学原理的减震或隔震措施,对于提高大坝,尤其是强地震区高坝的抗震安全性具有重要的科学价值和实际意义。为此,本文密切结合国家自然科学基金项目(批准号:50379029),以动力试验为重点运用一系列数学、力学等理论在机理上对重力坝气幕隔震的“坝—库—地基—气幕系统”进行了深入研究,并进行了高拱坝气幕隔震的动力试验设计,提出了一些新思想、新方法。本文主要研究内容及其成果有:
    1、首次完成了重力坝坝体—气幕—库体振动台模型试验,验证了高坝气幕隔震的理论分析和数值模拟的计算成果,进一步用动力试验手段揭示了大坝气幕隔震的机理以及抗震设计要点,表明模型试验的动水压力因气幕隔震的削减效果与数值模拟计算结果基本相符,有力地验证了高坝气幕隔震的科学意义和减震性能及其工程应用前景。
    2、从方程分析法和量纲分析法的角度,分析了“重力坝坝体—库体—气幕系统”的相似关系。针对气幕的工作机理和特点,抓住系统的关键因素和主要的相似要求,并考虑试验的精度及制作模型的技术措施,确定了龙滩重力坝坝体—库体—气幕系统的相似关系。
    3、根据模型材料的相似特性要求、模型材料的配比和力学特性,研制了龙滩重力坝坝体—库体—气幕系统中满足相似关系大型振动台模型试验的坝体模
The interaction between dam and reservoir systems during earthquakes is an important disciplinary for the earthquake-resistance design of hydraulic structures. Recently, research focus has concentrated on the interaction of dam-reservoir-foundation system. Difficulties existing in this research are the interaction of dam-reservoir system and/or the couplings between the fluid and the solid, namely the hydrodynamic pressures. Hydrodynamic pressures can be an important cause of dam failure, especially, for high-dams. For antiseismic design, understanding the characteristics of hydrodynamic pressure distribution has a great importance so that safety measures to reduce the earthquake effects can be taken accordingly. In this study, therefore, combining with the project aided by the National Natural Science Fundation of China (No.50379029) and concentrating on the dynamic test, a series of mathematic and mechanical theories are used to investigate profoundly the mechanism of interactions among the dam-foundation-reservoir and air-cushion systems for the air-cushion isolation of gravity dam, and the dynamic test design on the air-cushion isolation of high arch-dam is preformed. Some new ideas and methodologies have been proposed. Detailed results of the research are as follows:
    1.Experimental test using the large-scale shaking table for the gravity dam-reservoir-air system has been performed for the first time. The therotical analysis and numerical simulation results on air-cushion isolation for high-dam earthquake-resistance have been tested. The mechanisms of air-cushion isolation for dam earthquake control and some key points of earthquake-resistance design have been disclosed by dynamic test. Results on hydrodynamic pressures from this experiment agree well with numerical simulations for the anti-seismic effect of
    air-cushion isolation. Furthermore, the scientific meaning and application prospect of the air-cushion isolations for high-dam earthquake control have been effectively tested. 2. Based on the theory of dynamic similarity on physical model test, similarity analysis has been done for gravity dam-reservoir-air system. Due to the working mechanism and characteristic of the air-cushion, some key factors of the system and main similarity requirement are considered, a normal-model of geometry similarity is applied for dam-reservoir -foundation system, while approximate similarity requirements of geometry for air cushion isolation system are exerted for the conveniences of test. In order to assure the accuracy of experiment test and the technical measures of the model production, several alternatives of model scales are selected. A comparatively preferable model scale has been screened out on the basis of technical feasibility and economical rationality for Longtan gravity dam-reservior-air system. 3. According to the similarity specialty, proportion and mechanics specialty of model material, similarity relations derived in this study are employed for the selection of emulation material ratios though repeatedly adjusting and testing on small samples of dam-reservoir-gas system. These emulation material ratios must meet the requirements of similarity relations of the large-scale oscillation experimental equipment. Finally, a satisfactory mixture ratio, the structure of air compartment, test scheme and technical measures meeting similarity relations of gravity dam is obtained. And then, the test results is obtained, the test record is rational and credible on the whole. 4. The applicability of the non-linear dynamic FEM numerical model and method has been checked by the results of dynamic model test on the large-scale shaking table, this provided some calculational method and analysis measures for the study and applications of the air-cushion isolation technique of dams. 5. Based on the experimental test on large-scale shaking table for the gravity dam-reservoir-air system, the numerical simulation of the arch dam-foundation-reservoir-air system has been done, and the similarity relation of the system has been
    confirmed. a satisfactory mixture ratio meeting similarity relations of arch-dam and its foundation is obtained. Based on these works, model design on the large-scale oscillation experimental equipment is carried out regarding the arch dam-foundation-reservoir-air system. Briefly, in order to evaluate the anti-seismic effects of air cushion isolation, dynamic model test on large-scale shaking table for the gravity dam-reservoir-air system has been performed for the first time.The test results and numerical simulations show that air isolations will reduce the hydrodynamic pressures significantly and restrain the vibrations of dams in earthquake. If the dam and reservoir is isolated by air cushions, the shortages of hydrodynamic pressures will be more than 65% for gravity dam. So the air-cushion has good isolation effects, and it has important scientific meaning and effective value. Therefore, this technique of air cushion isolations can be widely applied into hydraulic dams to ensure great safeties.
引文
1. 李德玉等. 重力坝坝体—库水相互作用的振动台试验研究[J]. 中国水利水电科学研究院学报, 2003.12.
    2. 宫必宁. 重力坝地震动水压力试验研究[J]. 河海大学学报, 1997.1.
    3. 李德玉,王海波,涂劲,张艳红. 拱坝坝体—地基动力相互作用的振动台动力模型试验研究[J]. 水利学报, 2003.7.
    4. 傅作新,王立新,章青,拱坝的动水压力和拱坝库水的相互作用分析,第三届全国地震工程会议论文集(Ⅲ)[C],1990,1271-1276.
    5. 章青,陈和群,施善云,等.挡水坝动水压力的建模理论、分析方法与试验研究,“九五”国家重点科技攻关项目子题报告[R].南京:河海大学,1999 年 11 月.
    6. R.W.Clough. Reservoir interaction effects on the dynamic response of arch dams. Proceedings of China-US Bilateral Workshop on Earthquake Engineering. 1982:58-84.
    7. 畑野正. 原重力ダムの振动实验にょゐ考察[A].日本土木学会论文集[C]. 1958,59:8-16.
    8. Ka-lun Fork & A.K.Chopra. Earthquake analysis of arch dams including dam-water interaction, reservoir boundary absorption and foundation flexibility. Earthquake Engineering and Structural Dynamics, 14,1986:155-184.
    9. A.K. Chopra. Earthquake response of gravity dams. Journal of Engineering Mechanics Division, ASCE,96(EM4),1970:443-454.
    10. T.Hanchen; A.K.Chopra. Dam-foundation rock interaction effects in earthquake response of arch dams. Journal of Structural Engineering,ASCE,122(5), 1996:528-538.
    11. A.K Chopra. Hydrodynamic effects in earthquake response of arch dams. Proceedings of China-US Workshop on Earthquake Behavior of Arch Dams. Beijing, China. 1987:110-129.
    12. P.Chakrabarti & A.K.Chopra. Earthquake Analysis of Gravity dams including hydrodynamic interaction. Earthquake Engineering and Structural Dynamics, v2,1973:143-160.
    13. Hall, John F.; Chopra, Anil K. Hydrodynamic effects in the dynamic response of concrete gravity dams. Earthquake Engineering and Structural Dynamics, 10,1982: 333-345.
    14. Ka-lun Fork & A.K.Chopra. Frequency response functions of arch dams: hydrodynamic and foundation flexibility effects. Earthquake Engineering and Structural Dynamics, 14,1986:769-795.
    15. Craig S.Porter & A.K. Chopra. Dynamic analysis of simple arch dams including hydrodynamic interaction. Earthquake Engineering and Structural Dynamics, 9, 1981:573-597.
    16. Porter, Craig S.; Chopra, Anil K. Hydrodynamic effects in dynamic response of simple arch dams. Earthquake Engineering and Structural Dynamics,10,1982: 417-431.
    17. Tan, Hanchen; Chopra, Anil K. Earthquake analysis of arch dams including dam-water-foundation rock interaction. Earthquake Engineering and Structural Dynamics, 24,1995:1453-1474.
    18. Tan, Hanchen; Chopra, Anil K. Dam-foundation rock interaction effects in frequency-response functions of arch dams. Earthquake Engineering and Structural Dynamics, 24,1995:1475-1489.
    19. Fork, Ka-lun; Chopra, Anil K. Water compressibility in earthquake response of arch dams. Journal of structural Engineering, ASCE, 112,1986:1810-1828.
    20. Hall, John F.; Chopra, Anil K. Dynamic analysis of arch dams including hydrodynamic effects. Journal of Engineering Mechenics, ASCE, 109,1983:149-167.
    21. B. Nath et al., Coupled dynamic behavior of realistic arch dams including hydrodynamic and foundation interaction, Proc. Instn of Civ. Engrs., Part 2, Vol.73,Sept.,1982.
    22. Gregory Fenves, Anil K. Chopra, Earthquake analysis of concrete gravity dams including reservoir bottom absorption and dam-water-foundation rock interaction. Earthquake Engineering and Structural Dynamic, Vol.72, 1984.
    23. Perumalswami, P.R.,Lakshmidhar kar, Earthquake behavior of arch dam-reservoir system. Proc. of 5th WCEE, Rome,1973.
    24. Wu Fenghe, Yu Xizhe, Xie Shengzong, Dynamic analysis of arch dam considering water compressibility and reservoir bottom absorption. Proc. of the Intern. Conf. on Vibration Problems in Engineering, PRC, 1986.
    25. 陈厚群,侯顺载,杨大伟,地震条件下拱坝库水相互作用的试验研究[J].水利学报,1989年 7 月第 7 期.
    26. Clough, R.W., Chang, K.T., Chen, H.Q., Ghanaat, Y. et al, Dynamic Response behavior of Xiang Hong Dian Dam. Report No. UBC/EERC-84/02,April,1984.
    27. Chopra A K,et al. Modeling of dam-foundations interaction in analysis of arch damA. Proc,10th,WCEEC. Madrid,1992,8.
    28. Zhang C H, Jin F, Wang G L. Seismic Interaction Between Arch Dam and Rock CanyonA. Pro. Of 11th WCEE C. Netherlands: Elsevier, 1996.
    29. 中国水利水电科学研究院. 高拱坝抗震分析和坝肩动力稳定性研究 R. “九五”国家重点科技攻关项目(96-221-03-02)专题研究报告,2000 年 6 月.
    30. 柴军瑞,刘浩吾.高拱坝研究进展. 水利水电科技进展[J]. 2001 (6):1~4.
    31. Chen Houqin, Li Deyu, Hu Xiao, Hou Shunzai. Model Test and Computation Analysis for Dynamic Behavior of arch Dam with Contraction JointsA. 11th WCEEC. Mexico,1996,4.
    32. 中国水利水电科学研究院.黄河龙羊峡水电站重力拱坝动力分析与模型试验研究[R].2000.
    33. Gregory Fenves, Anil K. Chopra, Earthquake analysis of concrete gravity dams including reservoir bottom absorption and dam-water-foundation rock interaction. Earthquake Engineering and Structural Dynamic, Vol.72, 1984.
    34. Perumalswami, P.R.,Lakshmidhar kar, Earthquake behavior of arch dam-reservoir system. Proc. of 5th WCEE, Rome,1973.
    35. 谢省宗,卓家寿.水弹性力学若干问题的研究和新近进展[J]. 现代力学与科技进步.北京,1997 年 8 月:161-168.
    36. O.C.Zienkiewicz, The finite element method,McGRAW-Hill,1977.
    37. O.C.Zienkiewicz,K.Bando, P.Bteeess, C.Emson, and T.C.Chiam, Mapped infinite elements for exterior wave problemsJ,International Journal for Numerical Methods in Engineering, Vol.21,1229-1251(1985).
    38. O.C.Zienkiewicz, C.Emson, and P.Bteeess, A novel boundary infinite element J, International Journal for Numerical Methods in Engineering, Vol.19,393-404(1983).
    39. S.S.Saini, P.Bettess, O.C.Zienkiewicz, Coupled hydrodynamic response of concrete gravity dams using finite and infinite elementsJ,Earthquake eng. Struct.dyn. 1978,6(4).
    40. Y.G.Hanna,J.L.Humar,Boundary element analysis of fluid-domainJ, J.eng,mech.div.ASCE 108,EM2,1982.
    41. H.Antes,O.V.Estorff, Analysis of absorption effects on the dynamic response of dam reservoir systems by BEMJ, Earthquake eng.struct.dyn.,1987,15(8).
    42. 朱云翔,郭日修,气液两相流理论与气幕降噪[J],力学与进展,1994; 16(6):1-7.
    43. Lee Li,A seismic isolation measure for dams. Proceeding of Earthquake engineering Tenth world conference, M,Balkema,Rotterdam, 1992; 2247-2250.
    44. 亚尔斯基 B M.等,契尔克依和米阿特林电站拱坝气幕的设计[J],(俄刊)水工建设,1992; (10):6-9.
    45. 科尼克 B B.等,米阿特林水电站拱坝试验性气幕的施工安装[J],(俄刊)水工建设,1992; (10):9-10.
    46. 包亚尔斯基 B M.等,克里沃波罗什电站大坝试验性气幕的构造[J],(俄刊)水工建设,1992; (10):11-13.
    47. 萨维诺夫等,带空气帷幕的水工建筑物抗震性数学模拟和理论研究[J],(俄刊)水工建设, 1992; (10):16-18.
    48. 阿西科夫 B N.等,带气幕的水工建筑物与水介质相互作用现象的物理模拟试验[J],(俄刊)水工建设, 1992; (10):18-24.
    49. 格勒利斯 B K.等, 克里沃波罗水电站大坝的试验性气幕的原型试验[J],(俄刊)水工建设,1992; (10):25-28.
    50. S.J.Mraz Ed. It’s all in the springs. Machine Design, 7,1998:80-86.
    51. 朱伯芳. 有限单元法原理与应用[M]. 中国水利电力出版社,北京,1998 年,第二版.
    52. Lee Li, A seismic isolation measure for dams. Proceeding of Earthquake engineering Tenth world conference, Balkema, Rotterdam, 1992:2247~2250.
    53. 何发祥.拱坝动水压力及气幕隔震技术研究[D]. 成都: 四川大学,2000.5.
    54. 王忠.坝库相互作用及抗震技术研究[D]. 成都: 四川大学,2001.4.
    55. 张晓丽.砼坝减震气幕与土石坝溢流柔性护面的模型试验[D]. 成都: 四川大学, 2002.4.
    56. 朱伯龙.结构抗震试验[M].北京:地震出版社,1989.
    57. 姚振钢.建筑结构试验[M].武汉:武汉大学出版社,2001.
    58. 林皋,研究拱坝震动的模型相似律[J],水利学报,1958(1),79-104.
    59. Javier Aviles, Xiangyue Li, Analytical-numerical solution for hydrodynamic pressures on dams with sloping face considering compressibility and viscosity of water, Computer & Structure, v56(4),1998:481-488.
    60. 傅作新,陆瑞明. 水库的库底条件和挡水结构的动水压力[J]. 水利学报,5,87:28-35.
    61. Chang-Yu Ling & John L. Tassoulas. Three-Dimensional Dynamic Analysis of Dam-Water-Sediment Systems. Journal of Engineering Mechanics, 113(12) 1987:1945-1958.
    62. Nathan, M. Newmark, Emilio Rosenblueth, Fundamentals of Earthquake Engineering, Prentice Hall, Inc. 1971.
    63. 刑景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,v27,1,1997: 19-38.
    64. Westergaard H M, Water pressures on dams during earthquakesJ. Trans, ASCE, 1931,57(9): 418-433.
    65. Chopra A K. Hydrodynamic pressures on dams during earthquakes J.ASCE,1967,93(EM6): 205-223.
    66. Fenves G, Chopra A K. Effects of reservoir bottom absorption and dam water foundation rock interaction on frequency response functions for concrete gravity dams J. Earthquak Engng. Struct. Dyn., 1985,13(1):13-31.
    67. 左东启. 相似理论 20 世纪的演进和 21 世纪的展望[J]. 水利水电科技进展,第 17 卷 第2 期 1997,10-15.
    68. 傅作新等,水坝库水与地基的动力相互作用分析[J],华东水利学院学报,1985(1).
    69. Birkhoff G. Hydrodynamics, A study in logic, fact and similitude. New Jersey: Princeton University Press, 1960.
    70. 林皋 水坝和地基的动力相互作用,结构与介质相互作用分析论文集[C],上海力学学会与江苏力学学会,1991:83-88.
    71. 左东启等 模型试验的理论与方法[M]. 北京:水利电力出版社,1984.
    72. Brathel V. Funke E R. Hybrid modeling in gas applied to hydrodynamic research and testing. In: Recent advance in Hydraulic Physical Modeling by Rui Martines, Kluwer Academic Publishers, 1989.
    73. 左东启,俞国青. 工程水力学中的合交模型[J]. 河海科技进展 1992,12(4):1~23.
    74. Otto Haszpra. Modeling hydroelastic vibrations, London, Boston, Melbourn:Pitman Publishing, 1979.
    75. Walter Ameling. Simulation using parallelism in computer architecture. In: Javor A. Ed. Simulation in Research & Development, 1984.
    76. Zou Dong qi, Yu Guo qin. Hybrid approach and computer controlled model of sea outfall in tidal current field with 3 open boundaries. In: Lee & Cheuangeds Environmental Hydraulic, Rotterdam, 1991.
    77. 张敏政. 地震模拟试验中相似律应用的若干问题[J].地震工程与工程震动,1997,(6),52~58.
    78. 徐挺. 相似理论与模型试验[M]. 中国农业机械出自版社.1982.12.
    79. 王丰. 相似理论及其在传热学中的应用[M]. 高等教育出版社.1990.6.
    80. 徐挺. 相似方法及其应用[M]. 机械工业出版社.1995.9.
    81. 李之光. 相似与模化:理论及应用[M]. 国防工业出版社. 1982.12.
    82. 周美立. 相似系统论[M]. 科学技术文献出版社. 1994.
    83. 周美立. 相似工程学[M]. 机械工业出版社. 1998.
    84. 左东启等 模型试验的理论与方法[M]. 北京:水利电力出版社,1984.
    85. Brathel V. Funke E R. Hybrid modeling in gas applied to hydrodynamic research and testing. In: Recent advance in Hydraulic Physical Modeling by Rui Martines, Kluwer Academic Publishers, 1989.
    86. 左东启,俞国青.工程水力学中的合交模型[J]. 河海科技进展 1992,12(4):1~23.
    87. Otto Haszpra. Modeling hydroelastic vibrations, London, Boston, Melbourn:Pitman Publishing, 1979.
    88. Walter Ameling. Simulation using parallelism in computer architecture. In: Javor A. Ed. Simulation in Research & Development, 1984.
    89. Lin G., Zhou J., Fan C. Y., Dynamic Model Rupture Test and Safety Evaluation of Concrete Gravity Dams, Dam Engineering, 1993, IV:173-186.
    90. Harris, H.G., Dynamic Modeling of Concrete Structures[R]. Publication SP-73, ACI, Detroit, USA, 1982.
    91. Sabins, G.M. and Harris, H.G., Structural Modeling and Experimental Techniques[M]. Prentice Hall, Englewood Cliffs,NJ, 1983.
    92. 吕西林.结构抗震模型试验的相似条件[A]. 结构抗震试验(朱伯龙主编)[C].北京:地震出版社,1989,2:8-13.
    93. 孙占国,吕西林.钢筋混凝土模型柱振动台试验研究[J].上海城市建设学院学报,1990,(2):1-11.
    94. 廖光明,吕西林.钢筋混凝土结构动力相似理论研究[J]. 四川建筑科学研究,1989,(3):35-43.
    95. 陈厚群,高拱坝抗震设计研究进展,《高拱坝设计与计算分析》高级研讨班论文集(二),2000.9,北京.
    96. 林皋,混凝土大坝的抗震安全评价与地震作用的控制技术,《高拱坝设计与计算分析》高级研讨班论文集(二),2000.9,北京.
    97. Alexander M.Uzdin, Angelique A. Dolgaya. Base isolated structures resistant control theory and application of base isolation in Russia. Proceedings of the 1998 ASME/JSME Joint Pressure Vessels and Piping Conference, PVP-Vol. 379, Seismic, Shock and Vibration Isolation, ASME, 1998:71-78.
    98. Alexander M.Uzdin, Andrey A.Nikitin, Inna O.Kuznetsova. Application of seismic isolation for transport and hydrotechnical structures in Russia. Proceedings of the 1998 ASME/JSME Joint Pressure Vessels and Piping Conference, PVP-Vol. 379, Seismic, Shock and Vibration Isolation, ASME, 1998:193-196.
    99. 张雪亮.隔振技术及其在工程中的应用.第三届全国地震工程会议论文集[C].579-584.
    100. 傅作新,章青.考虑水体压缩性时挡水结构的自由振动.第三届全国加权残值法会议论文集[C],1989.
    101. Du Xiuli, Chen Houqun & Hou Shunzai, Dynamic Response Analysis of High Arch Dam-Water-Foundation System, Proceedings of the 11th conference held in Ft. Lauderdale, Florida, 1996:987-988.
    102. R.W. Clough & Liu Hou-wu, Study of seismic input mechanism for arch dam analysis. Developments in Mechanics Proceedings of the 19th Midwestern Mechanics Conference, Columbus, USA., 13, 1985:460-465.
    103. R.W. Clough, 张光斗,陈厚群等,响洪甸拱坝动力响应特性(根据中美地震合作协议提出的报告)[R],中国水利水电科学研究院,北京,1984 年.
    104. R.W.Clough, J. Penzien, 结构动力学,王光远等译,科学出版社,1981 年.
    105. Bayo & E.L.Wilsoon, Numerical techniques for the evaluation effects of soil-structure interaction effects in the domain, Report No.UCB/EERC-83/04, Earthquake Engineering Research Renter, University of California, Berkeley, CA, 1993.
    106. 陈厚群等. 地震条件下拱坝库水相互作用的试验研究[J].水利学报,1989,11.
    107. 李德玉,王海波,涂劲等,金沙江溪洛渡水电站可行性研究报告——动力模型试验研究[R],2001.10.
    108. K.P. Lee, A Simplistic Model of Cyclic Heat Transfer Phenomena in Close Spaces, Proceedings of the 25th IECEC, Paper No. 910171, 1991.
    109. A.A. Kornhauser. Dynamic modeling of gas springs. Proceedings of 26th IECEC, 5,1991: 180-185.
    110. 易作刚.宽频多维减振器的设计[J]. 激光与红外, 23(4),1994:44-46,43.
    111. 张文华,强杰. 空气弹簧在钻井液振动筛上的使用性能浅析[J]. 石油机械,23,1995:39-42.
    112. 张士义,张先彤,张庆春,董申. 超精密加工中的隔振技术研究[J]. 仪器仪表学报,16(1),1995:379-384.
    113. 蒋华良,张之润,李德葆. 空气弹簧在大型洗衣机隔震设计中的应用[J]. 力学与实践,14(1),1992:30-34.
    114. KatsuBoS. External Forces on arch dams During Earthquakes[J]. Memoirs Faculty of Engineering, Kyushu university, Fukuoka, Japan,1961,20(4):327-360.
    115. Chopra A.K., Chakrabartip. Earthquake analysis of concrete gravity dams including dam water foundation interaction [J]. Earthquake Engng. Strcut. Dyn., 1981,9(4):363-383.
    116. Tankc, Chopra AK. Earthquake analysis of arch dams including dam water foundation rock interaction [J]. Earthquake Engng.Struct.Dyn.,1995,24(11):1453-1474.
    117. Tanhc, Chopra A.K. Dam foundation rock interaction Effects in Frequency response Function of arch dams[J].Earthquake Engng.Struct.Dyn.,1995,24(11):1475-1489.
    118. 畑野正,水の弹性にょゐ地震时动水压の共振に关すゐ吟味.日本土木学会论文集[C]. 1969, 129: 1-5.
    119. Selby, Severn. An experiment assessment of add-mass of some plates Vibration in water [J]. Earthquake Eng. Struct.Dyn.,1972,1(2):189-200.
    120. Cervera M, Oliver J, Faria R. Seismic Evaluation of concreted gravity Via continuum damage models[J].Earthquake Engng.Struct.Dyn.,1995,24(9):1225-1245.
    121. Chavez J.W., Fenves H.L. Earthquake analysis of concrete gravity dams including base sliding [J]. Earthquake Engng.Struct.Dyn.,1995,24(5):673-686.
    122. Cha Wang at. nonlinear Hydro Dynamic pressure on an acceleration plate[J].The Physics of FluiDs,1983,26,(2):383-387.
    123. Hall JF. Efficient non-Linear seismic analysis of arch dams [J]. Earthquake Engng. Struct. Dyn., 1998,27(12):1425-1444.
    124. Wang M.H, Hung T.K., Three Dimension analysis of pressures on dams [J]. J.Enh. Mech., ASCE,1990, 116(6):1290-1304.
    125. 鞠扬,苏宏,李锡静,李红. 微粒混凝土受拉性能研究. 工业建筑. 1994 第 12 期,28-35.
    125. 朱彤、周晶、马恒春. 有构造缝的高拱坝强震破坏模型试验研究. 第 5 届全国地震工程会议论文集. 1998, 964-969.
    126. 陈兴华等编. 脆性材料结构模型试验[M].水利电力出版社.1984 年第一版。
    127. 隆文非,刘浩吾. 大坝气幕隔震效果的数值模拟分析[J]. 四川大学学报(工程科学版),2005,37(2):38-42.
    128. 隆文非,刘浩吾,舒仲英. 气幕隔震技术在水利水电工程中的运用初探[J]. 水利水电科技进展,2004,24(增):10-12.
    129. 李德玉,侯顺载,张艳红,涂劲.龙羊峡重力拱坝动力特性和抗震安全评价[J]. 土木工程学报,2003,23(10):41-45,59。
    130. 尹显俊,王光纶,张楚汉,廖邦政. 溪洛渡拱坝动力分析[J].水力发电学报,2004,23(1):27-30。
    131. 李德玉,陈厚群.高拱坝抗震动力分析和安全评价[J].水利水电技术.2004,35(1):45-48。
    132. 张晓丽,刘浩吾.大坝减震气幕实验研究[J]. 中国安全科学学报. 2004,14(11):104-108。
    133. 冯树荣,肖峰,欧红光.龙滩碾压混凝土重力坝挡水坝段抗震特性研究[J].水力发电.2004,30(6):6-8。
    134. 常晓林,位敏,高作平.高地震烈度下金安桥碾压混凝土重力坝动力分析[J].水利水电技术,2005.07
    135. 冯旭,李雪源,周黎.结构动力计算地震波的反演分析[J].西北农林科技大学学报(自然科学版),2005,33(3):121-124。
    136. Wu Fan, Dong Wencai, Guo Rixiu. Journal of Ship Mechanics, 2002, 6(3),76-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700