混凝土坝地震动应力影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着西部开发和西电东送战略的实施,一批高度大于200m的超高坝正在我国西部规划设计建设中,可以说从二十世纪末开始全世界高坝的修建大多在我国,而我国的高坝建设在西部。但是,西南和西北地区又是我国高烈度地震频发的地区,所以在这些地区修建高坝大库,抗震设防水平要求较高,抗震安全问题己成为坝库设计中的重要因素。然而至今为止,国内外大坝遭受震害的实例并不多,对于现有设计可参考的经验较少,因此,对大坝抗震设计而言,寻求合理的动应力分析方法和抗震安全评价准则,确保大坝及枢纽工程的抗震安全是亟待解决的关键问题。
     本文在前人工作的基础上,通过建立混凝土坝体模型,在考虑坝体-库水相互作用、坝体-地基相互作用的前提下,模拟研究了在地震波动激励作用下混凝土坝动力反应的影响因素。主要工作如下:
     1.研究了坝体和库水流固耦合动力相互作用的数值分析方法。建立坝体-库水相互作用系统模型,研究库水的压缩性,坝体的刚性、高度,基底吸收,库区范围等各种因素对于坝体-库水相互作用系统的影响,并通过模态分析及谐响应分析研究了各种因素的影响大小。分析结果表明,上游库水长度对于坝体固有频率的影响程度是相似的,在库水长度等于坝高时,影响波动较大;在库水长度增加至3倍以上坝高时,影响基本限定在前十阶频率范围内,均匀减少75%。库水的压缩性对于坝体-库水系统的的固有频率影响较大,但随着库水的压缩性减小,其对系统固有频率的影响也随之减小;当激励频率大于库水第一自振频率时,库水可压缩性对顺河向和垂向地面运动引起的坝体反应具有减小作用,对于横河向地面运动引起的坝体反应则表现出不确定性,既可增大,也可减小,决定于其激励频率;库底淤砂层对库水反应的影响,既有惯性放大作用,又有阻尼吸收效应。
     2.介绍了地震动的特性,时间-历程分析的基本理论,以及进行场地地震时间-历程分析时场地地震波的选取原则,并根据规范中的设计反应谱,拟合得到人工地震波,最后通过对常用的地基模拟理论比较分析,利用APDL编制了地基模拟程序,在ANSYS计算软件中得以实现;通过时间-历程分析法进行数值模拟,比较各种理论在相同条件下对地震动向无限域逸散的模拟精度,并对各种理论模拟结果与坝高的敏感性进行了分析。结果表明,在对坝体—地基系统进行综合考虑时,无质量地基模型一般适用于坝高及坝址处基岩加速度较小的坝体;对于坝高较高,坝址处基岩加速度较大的坝体来说,应使用更加准确的人工边界来考虑坝体-地基系统的相互作用。
     3.分析了实际工程中坝体分缝对坝体抗震性能的影响,比较了不同初始应力情况下坝体的抗震性能,通过设置隔震支座渡槽抗震分析,对隔震支座的抗震性能进行了研究。分析结果表明,坝体分缝使坝体的拉应力降低,刚度减小;初始应力对坝体前三阶频率和振型影响不大,但它对三阶以后的低阶频率影响较大;对于坝体隔振来说,隔振支座可以减小坝体的内力响应峰值,减小坝体的响应频率,消耗地震能量,提高坝体的抗震能力,但是,在使用隔振支座时应该注意选取合适的阻尼和弹簧系数,并且应首先做好坝体位移响应的分析计算工作。
With the strategy of western development and the implementation of west-east power transmission project, a large number of ultrahigh dams reaching to 200m high are being on designed or constructed in the west, it can be said that many of these ultrahigh dams stared from 20th century end were built in our country, and these ultrahigh dams were built in the west of China, But, high earthquake intensity frequently occurred in the southwest and northwest in our county, so the ultrahigh dams built in these regions earthquake resistance protection require high , seismic design become a control factory in the dam safety design , Engineering seismic performance has become the key problem that ensure the reliability of engineering. However, so far, we have no so many examples of dams that destroyed by earthquake, and there was less experience that could be referred to our design, so for seismic design it is a key problem to be solved that to seek a reasonable analysis of the dynamic stress and seismic safety evaluation criteria in order to ensure that the dam and the seismic safety project, and the key problem needs to be further exported and researched.
     In this paper, based on the previous work done by predecessors, by means of building a accurate, efficient model of dam and taking interaction of dam–reservoir and dam– foundation into account ,it simulated the ground motion in incentives dynamic response of concrete dam under the impact of factors.The work done in the paper as follows:
     1. Researching on the numerical analysis method of dynamic interaction between dam and reservoir water-solid coupling. Building the system model of dam - reservoir interaction, factors that influent the dam - reservoir interaction system, such as reservoir compression, rigid、height and provisional surface type of dam ,basal absorption ,the scope of the reservoir area and style and ect were studied in this paper, at the same time, the impact of these factories were analyzed through harmonic response. The analytical results show out that the length of the upper reservoir dam to the impact of natural frequency is similar, at1 times in the height, the impact of volatile is obvious.When the length of reservoir reach to the 3times in the height of dam, the impact to the natural frequency of the dam can be considered basicly reducing to the 75 percent uniform in the former band frequency range of 10 ;the impact of dam compression to the natural frequency of dam– reservoir is great,with the increasing of sound speed in the reservoir, the compression of reservoir reduce the impact of the system natural frequencies. When the excitation frequency is greater than the first natural frequency of reservoir, the compression of reservoir reduces the parallel river and vertical ground motion to the body caused by reaction, the impact of sand silt at the end of reservoir to reservoir , there are both of the effects of Enlarge the role of inertia and absorption damping .
     2. Introduced the dynamic characteristics of earthquake, analysis basic theory of Time-course, selection criteria seismic waves to analyze the site seismic time-course, and artificial seismic waves has been fitted according to the design response spectrum in the norms. at last, based on the simulation analysis theory of common ground, the realization of the procedure programmed by APDL was applied in ANSYS, doing numerical simulation by the method of time-course, comparing various theories in the same analysis under the conditions of accuracy and efficiency, and doing sensitivity analyzing between theoretical simulation results and dam height. The analytical results show out that Sensitivity caused by the quality of ground simulation without viscoelastic theory and artificial boundary to different height of dam is analzied, and the analytical results show out that model without considering the quality of the foundation dam - foundation system can be applied to the dam that the dam is not very high and the bedrock acceleration of dam is lower. And the artificial boundary to consider dam-foundation interaction system can be applied more accurately to the dam that the dam is high and the bedrock acceleration of dam higher.
     3. Analyzing the impact of seismic performance of joints dams in the actual project, doing comparison with seismic performance under the different initial stress conditions. At last, though analyzing the Seismic performance of aqueduct with isolated support, analyzing the seismic performance of isolated support, and these analysis results can provide with reference for dam isolation. The analytical results show out that the isolation bearing for the dam can decrease the internal peak force in the dam , reduce the response to the frequency of dam, consumpt seismic energy,and improve the seismic capacity of dam, but, It should pay attention to selecting the right damping and spring coefficient and doing a good job firstly in response to the analysis of dam displacement calculation
引文
[1]祁庆和.水工建筑物(第三版)[M],北京:中国水利水电出版社,1997
    [2]潘家铮,何璟.中国大坝50年[M],北京:中国水利水电出版社,2000
    [3]潘家铮,陈式慧.关于高拱坝建设中若千问题的探讨[J],科技导报,1997,2
    [4]倪汉根,金崇磐.大坝抗震特性与抗震计算[M],大连:大连理工大学出版社,1994
    [5]胡聿贤.地震工程学[M].北京:地震出版社,1988
    [6] Westergaard.H.M .Water pressures on dams during earthquakes[J],Trans.ASCE,1933,98:418-433
    [7] Chopra A K. Earthquake Response of Concrete Gravity Dams[J],AD 709640,California University,Berkeley (1970)
    [8] R,W.CIough.Reservoir interaction effects on the dynamic response of arch dams[J],Proceeding of China-US Bilateral workshop on earthquake engineering,1982:58-84
    [9]赵兰浩,考虑坝体-库水-地基相互作用的有横缝拱坝地震响应分析[D],河海大学博士学位论文,2006
    [10]王进廷.高混凝土坝-可压缩库水-淤砂-地基系统地震反应分析研究[D],中国水利水电科学研究院博士学位论文,2001
    [11] A .K. Chopra, Modeling of dam-foundation in analysis of arch dams,Proc.10th,WCEE,Madrid,1992
    [12] J .Dominguez,0. Maeso,Model for the seismic analysis of arch dams including interaction effects, Proc.10th, WCEE, Madrid,1992
    [13]李健波.结构一地基动力相互作用的时域数值分析方法研究[D],大连理工大学博士学位论文.2005.
    [14]张楚汉等,小湾高拱坝地震波动响应与抗旋分析研究,清华大学”八五”攻关报告,1995
    [15]徐艳杰,张楚汉,金峰,非线性拱坝一地基动力相互作用的FE-BE-IBE模型[J],清华大学学报,1998,38(11):99-103
    [16]杜修力,陈厚群,侯顺载.拱坝一地基系统的三维非线性地震反应分析[J],水利学报, 1997,8,7-14
    [17] H.Kuo,Fluid-structure interaction:added mass computations forincompressible fluid,UCB/EERC-82/09,University of Califomia,Berkeley,l982
    [18]水利部国际合作与科技司,当代水利科技前沿[M],北京:中国水利水电出版社,2006
    [19]朱伯芳.有限单元法原理与应用(第二版)[M],北京:中国水利电力出版社,1998.
    [20]刑景棠,周盛,崔尔杰.流固耦合力学概述[J],力学进展,v27,1,1997:19-38
    [21] O C.Zienkiewicz.Coupled problems and their numerical solution in: Lew is RW,Bettess P, Hinton Eeds. Numerical Methods in Coupled Systems. JohnWiley and Sons Ltd, New York(1984)
    [22] O C.Zienkiewicz, C T.Chang, P Bettess. Drained, undrained, consolidating and dynamic behaviour assumptions in soils[J],Limits of validity. Geotechnique,30 (1980) : 385-395
    [23]居荣初,曾心传编著,弹性结构与液体的耦联振动理论[M],北京:地震出版社, 1983
    [24]傅作新,吴斌元,王芳,钱向东.水坝库水与地基动力相互作用分析[J],华东水利学院学报.1985:1-10
    [25]章青,傅作新.考虑库底吸收性作用时挡水坝的抗震分析[J],河海大学学报,1988,(9)
    [26]傅作新,王立新,章青,拱坝的动水压力和拱坝库水的相互作用分析[J],第三届全国地震工程会议论文集(III),1990,1271-127
    [27]范家参.水平地震时斜面坝受到的非线性动水压力的全过程的解析解[J],应用力学学报.11(3)1994
    [28]施景勋,林建华.重力坝与水、地基动力耦合系统地震反应的时域分析[J],工程力学.11(3),1994:99-107
    [29] K.L.Fork., A.K.Chopra, Water compresslbility in earthquake response of arch dams[J],Journal of StructuraI Engineering,ASCE,1987,113(5):958一975
    [30] Javier Aviles,Xiangyue Li,Analytical-numerical solution for hydrodynamic pressures on dams with sloping face considering compressibility and viscosity of water[J],Computer& Structure,v56(4),1998:481-48
    [31]晏启祥,有横缝高拱坝的非线性地震响应分析[D],四川大学博士学位论文,2002
    [32]何发祥,拱坝动水压力及气幕隔震技术研究[D],四川大学博士学位论文,2000
    [33]博弈创作室,编著,ANSYS9.0经典产品高级分析技术与实例详解[M].北京:中国水利水电出版社,2005
    [34]阚前华,谭长建,张娟等.ANSYS高级工程应用实例分析与二次开发[M].北京:电子工业出版社,2006
    [35]郝文化.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005
    [36]陈晓霞.ANSYS7.0高级分析[M].北京:机械工业出版社,2004.
    [37]博弈创作室,APDL参数化有限元分析技术及其应用实例[M].北京:中国水利水电出版社,2004.
    [38]王良琛.混凝土坝地震动力分析[M].北京:地震出版社,1981
    [39]水工建筑物抗震设计规范,DL 5073-2000
    [40] 0.C.Zienkiewicz & R.E.Newton,Coupledv ibrations of a structure submerged in a compressible[J],fluid,Proc,Symp.Finite Element Techniques,Institute fur Statik und Dynamic der Luft-und Baum-fahrtkonstruktionen,University of Stuttgart,Germany,1969.
    [41] G S.Porter, A K.Chopra.Hydrodynamic analysis in dynamic response of simple arch dams[J].Earthquake Engineering and Structural Dynamics,1982,10(3):417-431
    [42]杜修力,王进廷,Hung.T.K.淤砂对库水地震动水压力作用分析[J].科学通报,2000,45(18):2012-2016
    [43]崔江余,高拱坝地震动输入机制研究[D],中国水利水电科学研究院博士学位论文.1999
    [44]廖振鹏.工程波动理论导论(第二版)[M],北京:科学出版社,2001
    [45]胡聿贤,张继栋,邹夕林,齐心.基岩地震动参数与震级和距离的关系[J].地震学报,1982,2,97-105
    [46]王亚勇,李虹.考虑场地特征的强震地面运动参数的统计分析[J],地震工程与工程振动,1986,3,69-79
    [47]陶能付,章在墉.以概率为基础的地震动持续时间小区划[J],同济大学学报(自然科学版),1994,2,230-235
    [48]建筑抗震设计规范,GB 50011-2001
    [49]刘鹏程,林皋,金春山.考虑地震环境的人造地震动合成方法[J],地震工程与工程振动,1992,12,9-15.
    [50] R.W.Clough,K.T.Chang,H.Q.Chen,and Y.Ghanaat.Dynamic Interaction Effects in Arch Dams[J],Report No.EERC-85/11.Earthquake Engineering Research Center,University of California,Berkeley. 1985.
    [51]沈聚敏,周锡元,高小旺等.抗震工程学[M],北京:中国建筑工业出版社.2000
    [52] J.Lysmer and R. L. Kuhlemeyer, Finite dynamic model for infinite media[J].Eng. Mech. Div. ASCE,1969,95(4): 859–877.
    [53] W. White, S. Valliappan and I. K. Lee, Unified boundary for finite dynamic models. J. Eng. Mech. Div.ASCE 1977,103(5): 949–964
    [54] T. Akiyoshi,X.Sun, K.Fuchida.General absorbing boundary conditions for dynamic analysis of fluid-saturated porous media[J].Soil Dynamics and Earthquake Engineering, 1998,17(6):397-406
    [55]刘晶波,谷音,杜义欣.一致粘弹性人工边界及粘弹性边界单元[J],岩土工程学报,2006,28(9),1070-1075
    [56]刘晶波,李彬.三维黏弹性静一动力统一人工边界[J].中国科学(E辑),2005,35(9):966—980
    [57]廖振鹏.无限弹性介质中暂态标量波的有限模型闭[J],地震工程与工程振动,1982,2(3):38-54.
    [58]李赞,陈飞,郑建波等.特高拱坝枢纽分析与重点问题研究[M].北京:中国水利水电出版社,2004.
    [59]朱伯芳.大体积混凝土温度应力与温度控制[M ].北京:中国电力出版社,1991
    [60] R W.Clough,J Penzien,结构动力学,王光远等译[M],北京:科学出版社,1981
    [61]张俊发,刘云贺,王克成.铅芯橡胶减震技术在渡槽中的应用研究[J].水利学报,1999,10:65-69
    [62]张艳红.大型渡槽抗震概述[M].北京:地震出版社,2004.12
    [63]徐建国,陈淮,王博.渡槽结构非线性隔震研究[J].长江科学院院报,2008.04:61-68
    [64]徐建国,陈淮,王博.渡槽结构动力性能的有限元分析[J].郑州工业大学学报,1999,02:67-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700