碾压混凝土重力坝地震坝前动水压力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界,原油价格持续高涨,作为可再生能源之一的水利发电,为解决我国可持续发展的能源瓶颈问题,正发挥越来越大的作用。在西部大开发国策的支持下,我国将在水利资源非常丰富,同时地震烈度较高的西南和西北强震区规翅和修建一批水利水电工程,为东南和华南沿海地区提供电力,同时起到防洪、灌溉、引水、养殖等综合效益。大坝的工程浩大,投资巨大,大坝的抗震安全性能关系到下游广大地区工农业生产和人民生命财产的安全,因此,工程的安全级别很高,确定大坝在地震作用下的安全性具有特别重要的意义。
     在水工抗震设计中,地震作用引起的坝前动水压力被当作一种重要的动力荷载来考虑。因此,研究坝前动水压力对大坝抗震安全性的影响具有重要的意义。本文以新疆喀拉苏克碾压混凝土重力坝的三维整体动力模型试验为基础,系统地对地震作用下碾压混凝土重力坝坝前动水压力的若干重要问题进行了试验研究及有限元数值分析。具体地,主要研究了以下几方面内容:
     1 介绍了库水-大坝系统在地震下的相互作用的理论基础以及动水压的一些目前的研究成果,方法和主要影响因素的分析。
     2 介绍了整体模型动力模型试验基础,包括相似理论,试验条件,模型材料,以及所作的试验工况,最后试验结果的整理与分析,包括动力特性以及动力反应特性的分析。
     3 对坝前动水压力进行了基于ADINA8.2的数值模拟分析。通过对二维和三维流固耦合模型的数值计算,分析了坝高、地震动输入等级、地震动波形及河谷坡度对坝前动水压力的影响。
     4 通过对试验结果及有限元数值计算的对比分析,研究了坝前动水压力的基本特性,包括动水压力的沿坝高的分布形式,以及动水压力随地震动输入等级的变化趋势。
     本文以具体工程为研究背景,详细地探讨了坝前动水压力对大坝抗震安全性的重要影响,得到的结论为碾压混凝土坝的抗震设计提供了有意义的参考因素。应该看到,地震作用下坝体动水压力的分析还是个复杂的问题,其中涉及的一些问题还需进一步进行不断地深入研究。
These years witness a continuous rise of crude-oil prices in the world. As a renewable resource, hydroelectric power plays more and more important role in energy supply, relaxing the bottleneck of resources that China encounters in the process of development. Since northwestern and southwestern part of China within the range of meizoseismal area is rich in hydraulic water resource. China is constructing and planning many hydropower projects, fostering the development of the western region. Meanwhile, these projects could provide electric power and other profits for coastal area of southeast. The aseismic capabilities of hydropower projects have close relationship with lives and properties of people and productions of industry and agriculture, so it is important to consider the effect of earthquake loads in the design of these projects.
    In the aseismic design of hydraulic structures, the hydrodynamic pressure on dams under earthquake loads is considered as an important load. As a result, study of hydrodynamic pressures on dams will play an important part in aseismic safety of dams. In this paper, the experimental and numerical analysis is systematically developed for the main problems on hydrodynamic pressure on dams, based on three-dimension integrated model tests for the Kalasuke dam in Xinjiang province.Specifically, the study is divided into four parts as follows:
    1. Theory of interaction between water and sturucture and research findings for hydrodynamic pressure are introduced.
    2. The prepared work of the integrated model tests is illuminated, including the material formulation, the adopted seismic waves, sensor distribution of the model tests, and analysis of the test results, such as the dynamic characteristics and dynamic response characteristics of the model dam.
    3. Based on ADINA8.2 software, the numerical analysis of hydrodynamic pressures is performed. By the numerical analysis of two-dimension and three-dimension model, the impact of the dam height, the input grade of earthquake waves, earthquake waveform and the scope of river vally for hydrodynamic pressures are generally analyzed.
    4. By the contrast of model test results and numerical analysis, basic properties of hydrodynamic pressure are given, including distribution of hydrodynamic pressure along the model dam, and the trend of hydrodynamic pressure change with the input grade of the earthquake load.
引文
[1] 潘家铮,何憬.中国大坝50年.北京:中国水利水电出版社,2000
    [2] 阁本舜一,抗震工程学.北京:中国建筑工业出版社,1978
    [3] 林堃,洪鹏飞,曾宪康.整体式碾压混凝土坝的有限元应力分析.中国农村水利水电(农田水利与小水电),1996(1):38-40.
    [4] Yeh C H. Tensile Stresses in Arch Dams[A],Proceeding of China US Workshop on Earthquake Behavior of Arch Dams[C].Beijing, China, 1987,279-289.
    [5] 何蕴龙.混凝土重力坝随机地震响应及其动力可靠性研究.武汉水利电力大学博士学位论文,1996.
    [6] 刘君,陈健百,孔宪京等.基于DDA和FEM耦合方法的碾压混凝土坝抗震安全性分析.大连理工大学学报,2003,43(6):793-798.
    [7] 张茂祥.重力坝的空间振动计算.水利学报,1988(5):60-65.
    [8] 章青,陈和群,施善云等.挡水坝动水压力的建模理论、分析方法与试验研究“九五”国家重点科技攻关项目子题报告[R].南京:河海大学,1999.
    [9] 张仲卿.碾压混凝土重力坝破坏机理研究.水力发电,1998(11):31-33.
    [10] 林皋,陈健云.混凝土大坝的抗震安全评价.水利学报,2001(2):8-14.
    [11] 楼梦麟.背管式重力坝的地震反应.水利水电技术,1994(9):8-11.
    [12] Japan Society of Civil Engineers. Earthquake Resistant Design for Civil Engineering Structures in Japan[R].1996,16-18.
    [13] SHYU K. Nodal based discontinuous deformation analysis[D].California: Department of Civil Engineering, University of California at Berkeley, 1993.
    [14] Wu Shouyong, Yu Yanan. An Experimental-Analytical study of the Response of a Gravity Dam, 9Oth International Concrete Conference, Iran.
    [15] 新根夕厶.构造模型试验.发电水力,1976(142):31-35
    [16] 陈厚群,侯顺载,梁爱虎.水电工程抗震设防概率水准和地震作用的概率模型.自然灾害学报 1993(2):12-15.
    [17] 胡晓.混凝土重力坝橡胶模型几种动力试验及模态识别(学位论文).北京:水利水电科学研究院,1988.
    [18] 李克升.临江水电站碾压混凝上坝结构设计与试验.1991年北京国际RCCD学术讨论会论文集
    [19] 中国水利水电科学研究院.高拱坝抗震分析和坝肩动力稳定性研究[R].“九五”国家重点科技攻关项目专题报告.北京:中国水利水电科学研究院 2000.
    [20] 祁建华,胡晓.溢流式厂房厂坝连接型式的抗震特性.水力发电,1992(4):5-8.
    [21] 李德玉,张伯艳,王海波等。重力坝坝体—库水相互作用的振动台试验研究.中国水利水电科学研究院学报,2003,1(3):216-220.
    [22][30] 俞亚南,吴寿荣.漫湾整体重力坝的空间动力特性.浙江大学学报(自然科学版),1994,28(6):716-723.
    [23] 祁建华,胡晓.漫湾重力坝抗震试验研究.水电站设计,1994,10(3):32-38.
    [24] 张杰,陈进,赖跃强.清江隔河岩重力拱坝三维静力模型试验研究.湖北水力发电,1995(3):21-25.
    [25] 林皋.水坝和地基的动力相万作用[A].上海力学学会与江苏力学学会.结构与介质相万作用分析论文集[C].南京:河海人学出版社 1991:83-88.
    [26] 大连工学院抗震研究室.研究弹性体系振动的一种模型试验方法—自接摄影法[J].地震工程与工程振动,1982(2):40-52.
    [27] 周瑞忠,林维安,郑祟良等.碾压混凝土坝整体结构模型试验.福州大学学报(自然科学版),1994,22(6):81-86.
    [28] 周瑞忠,池元,林维安等.整体式碾压混凝土坝结构模型试验与电算分析.水力发电,1994(12):37-40.
    [29] 陈波,吕西林,李培振,陈跃庆.用ANSYS模拟结构-地基动力相互作用振动台试验的建模方法.地震工程与工程振动,2002,22(1):126-131.
    [30] 王海波,涂劲,李德玉.室内动力模型试验中辐射阻尼效应的模拟.水利学报,2004(2):39-44.
    [31] 徐艳杰,张楚汉,金峰.非线性拱坝-地基动力相互作用的FE-BE-IBE模型[J],清华大学学报,1998,38(11:99-103.
    [32] 侯顺载,郭志杰.百色水利枢纽大坝抗震安全评价.红水河,1997,16(2):7-10.
    [33] Westergaard H M. Water pressures on dams during earthquakes[J]. Trans. ASCE, 1933, 98:418-433
    [34] Chora A K. Hydrodynamic pressures on dams during earthquake [J]. J. Eng. Mech. Div., ASCE, 1967, 93(EM6): 205-223.
    [35] 杜修力,王进廷.动水压力及其对坝体地震反应影响的研究进展[J].水利学报,2001,7:13-21
    [36] 刑景棠,周盛,崔尔杰.流固耦合力学概述.力学进展,v27,1,1997:19-38
    [37] 傅作新.水-坝相互作用的若干有效解法.华水科技情报,2(1985):1-10
    [38] Javier Aviles, Xiangyue Li, Analytical-numerical solution for hydrodynamic pressures on dams with sloping face considering compressibility and viscosity of water, Computer &Structure, v56(4), 1998:481-488
    [39] 傅作新,吴斌元,王芳,钱向东.水库库水与地基动力相互作用分析.华东水利学院学报,1,85:1-10
    [40] 章青,傅作新,考虑库底吸收性作用时挡水坝的抗震分析,河海大学学报,1988,(9)
    [41] 傅作新,王立新,章青,拱坝的动水压力和拱坝库水的相互作用分析,第三届全国地震工程会议论文集(Ⅲ),1990,1271-1276
    [42] Zienkiewicz O, C., The finite element method, McGRAW-HILL, 1977.
    [43] 杜庆华,吴有生,冯振兴.流固耦合振动问题的某些工程处理方法.固体力学学报,9,1(1988):49-61
    [44] K.J. Bathe & W.F. Hahn. On transient analysis of fluid-structure systems. Computers & Structures. 10,1979:383-391
    [45] N. Akkas, H.U. Akay & C. Yilmaz. Applicability of general purpose finite element program in solid-fluid interaction problems. Computers & Structures. 10, 1979:773-783
    [46] E.L. Wilson& M. Khalvati. Finite elements for dynamic analysis of fluid-solid system. International Journal For Numerical Methods In Engineering. 19,1983:1657-1668
    [47] W.K. Liu & H.G. Chang. A method for computation for fluid structure interaction. Computers & Structures. 20,1985:311-320
    [48] Harn C. Chen & Robert L. Taylor. Vibration analysis of fluid-solid systems using finite element displacement formulation. International Journal For Numerical Methods In Engineering. 29, 1990:683-698
    [49] M.R. Maheri & M.R. Khodaei-Nassaj. Dynamic solution of 3-D structure-fluid system using a new Lagrangian-based curvilinear fluid element. Dam Engineering. 8,1997:83-122
    [50] N. C. Pal, S. K. Bhattacharyya & P. K. Sinha. Coupled Slosh Dynamics of Liquid-filled, Composite Cylindrical Tanks. Journal of Engineering Mechanics, 125(4),1999:491-495
    [51] O. C. Zienkiewicz & P. Bettess. Fluid-structure dynamic interaction and wave forces. An introduction to numerical treatment. International Journal For numerical Methods In Engineering, 13,1978:1-16
    [52] L. Olson & K. Bathe. Analysis of fluid-structure interaction. A direct symmetric coupled formulation based on the fluid velocity potential. Computers & Structures, 21,1985:21-32
    [53] 吴一红,谢省宗.水工结构流固耦合动力特性分析.水利学报,1995(1):27-34
    [54] 吴一红,李世琴,谢省宗.拱坝-库水-地基耦合系统坝身泄洪动力分析.水利学报,1996(11):6-12
    [55] 戴大农,王勖成,杜庆华.流固耦合系统动力响应得模态分析理论.固体力学学报,11,4(1990):306-312
    [56] W. J. T. Daniel. Modal method in finite element fluid-structure eigenvalue problems. International Journal For Numerical Methods In Engineering, 15(8),1980:1161-1176
    [57] 牟建耀.流固耦合分析的模态综合法.常州工业技术学院学报(自然科学版).9,1996:82-90
    [58] 邢景堂,郑照昌.基于弹性动力学变分原理的模态综合法研究.固体力学学报,2,1983:248-257
    [59] Irons B M. Role of part-inversion in fluid-structure problems with mixed variables. AIAA JL. 8(1970):568
    [60] 邢景堂.考虑自由面现行波的流固耦合动力分析的两个变分公式.航空学报,9,11,A551
    [61] 邢景堂.线形流固耦合动力分析程序FSIAP92简介.航空学报,13,9,1992:A548-A551
    [62] Saini S. S., Bettess P., Zienkiweicz O. C., Coupled hydrodynamic response of concrete gravity dams using finite and infinite elements, Earthquake Engineering and Structural dynamics, v6,1978:363-374
    [63] O. C. Zienkiewicz, K. K. Paul & E. Hinton. Cavitation in fluid-struture responses(with pqrticular reference to dams under earthquake loading).Earthquake Engineering and Structural Dynamics, 11,1983:463-481
    [64] R. K. Singh, Y. Kant & A. Kakodkar. Coupled shell-fluid interaction problems with degenerate shell and three-dimensional fluid element. Computers & Structures. 38(5/6),1991:515-528
    [65] J. P. F. O'Connor & J. C. Boot. Solution procedure for the earthquake analysis of arch dam-reservoir systems with compressible water. Earthquake Engineering and Structural Dynamics, 16,1988:757-773
    [66] 何发祥,拱坝动水压力及气幕隔震技术研究,2000,5,博士学位论文
    [67] Chong-Shien Tsal, GeorgeC. Lee and Robert L. Ketter, A semi-analytical method for time-domain analysis of dam-reservoir interaction, Inter. Jou. Numer. Meth, Engng, 1990, Vol:913-933
    [68] R. W. Clough. Reservoir interaction effects on the dynamic response of arch dams. Proceedings of China-US Bilateral Workshop on Earthquake Engineering. 1982:58-84
    [69] Ka-Lun Fork & A. K. Chopra. Earthquake analysis of arch dams including dam-water interaction, reservoir boundary absorption and foundation flexibility. Earthquake Engineering and Structural Dynamics, 14,1986:155-184
    [70] A. K. Chopra. Earthquake response of gravity dams. Journal of Engineering Mechanics Division, ASCE, 96(E314), 1970:443-454
    [71] 卓家寿.裂隙岩体渗流场与位移场的耦合作用分析.四国岩石力学和工程第四次学术大学论文集,中国科学技术出版社,1996:197-203
    [72] T. Hanchen, A. K. Chopra. Dam-foundation rock interaction effects in earthquake response of arch dams. Journal of Structural Engineering, ASCE, 122(5),1996:528-538
    [73] Hall, John F., Chopra, Anil K. Hydrodynamic effects in the dynamic response of concrete gravity dams. Earthquake Engineering and Structural Dynamics, 10, 1982:333-345
    [74] Porter, Craig S., Chopra, hnil K. Hydrodynamic effects in dynamic response of simple arch dams. Earthquake Engineering and Structural Dynamics, 10, 1982:417-431
    [75] 傅作新,陆瑞明.水库的库底条件和当水结构的动水压力.水利学报,5,87:28-35
    [76] Chang-Yu Ling & John L. Tassoulas. Three-Dimensional Dynamic Analysis of Dam-Water-Sediment System. Journal of Engineering Mechanics,113(12),1987:1945-1958
    [77] 谢省宗,卓家寿.水弹性力学若干问题的研究和新近进展.现代力学与科技进步.北京,1997:161-168
    [78] Zhang C H, Jin F, Pekau O A. Time domain procedure of FE-BE-IBE COLPLING FOR SEIDMIC INTERACTION OF ARCH DAMS AND CANYONS. Earthquake Engineering & Structural Dynamics. 1995,24(1):651-666
    [79] Javier Aviles, Xiangyue Li, Analytical-numerical solution for hydrodynamic pressures on dams with sloping face considering compressibility and viscosity of water, Computer & Structure, v56(4), 1998:481-488
    [80] Nathan, M. Newmark, Emilio Rosenblueth, Fundamentals of Earthquake Engineering, Prentice Hall, Inc. 1971
    [81] 王亚勇.我国2000年抗震设计模式规范展望[J].建筑结构.1999(6):20-25.
    [82] DONLON W P, HALL J P. Shaking table study of concrete gravity dam monoliths[J]. Earthquake Eng Struct Dyn, 1991(20): 769-786.
    [83] 水利电力部.水工建筑物抗震设计规范(SDJ10-78).北京:水利电力出版社,1979.
    [84] 水利电力部.水工建筑物抗震设计规范(DL5073-2000).北京:水利电力出版社,2000.
    [85] John P Wolf. Soil-structure interaction analysis in time domain [M].Prentice Hall College Div, 1988.
    [86 R W Clough, K T Chang, H Q Chen. Dynamic Response of Quan Shui Dam, University of California. Earthquake Engineering Research CenterReport. No. UCB/EERC-84/20. Nov, 1984.
    [87] Hall W S. Boundary element methods for soil-structure interaction [M].Kluwer Academic Publishers, 2003.
    [88] Chopra A K. Hydrodynamic pressures on dams during earthquakes [J].ASCE,1967,93(EM6):205-223.
    [89] 夏颂佑,张楚芳,张鸣岐.动态结构模型相似条件若干问题的探讨[J].华东水利学院学报,1980(1):59 72.
    [90] 杨俊杰.相似理论和结构模型试验.武汉理工大学出版社,2005.
    [91] 林皋,朱彤,林蓓.结构动力模型试验的相似技巧.大连理工大学学报,2000,40(1):1-8.
    [92] 林皋,研究拱坝振动的模型相似率[J].水利学报,1958(1):80-104.
    [93] 左东启.模型试验的理论和方法.北京:水利电力出版社,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700