电子束辐射法制备纳米半导体材料及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体纳米材料呈现出许多新奇的特性,在光学、电学、磁学、催化、医药等方面具有极为广阔的应用前景。半导体纳米材料的制备是纳米材料研究领域的热点之一。现有的半导体纳米材料制备方法存在着工艺复杂、条件苛刻、产率低等问题,我们采用电子束辐射法制备半导体纳米材料。该法具有鲜明的特点:制备工艺简单,可在常温下操作,不加入任何催化剂和有毒试剂,制备周期短,产物的物相、形貌可控,可用于工业规模生产。在本论文工作中,首次采用电子束辐射法合成了水溶性具有发光量子产率高的蓝色荧光CdSe量子点,这在生物标记研究中具有重要的意义;首次采用电子束辐射法合成了一系列硫族化合物和金属氧化物半导体纳米材料,制备的纳米晶颗粒细小、分散性良好,反应时间短,具有工业化大规模生产的前景;探索了电子束辐射法在传感器件改性方面的应用,电子束辐照对表面电导型传感器的气敏性能有明显的改善。本研究拓展了辐射化学应用的领域,同时也为其它材料的合成提供了新的方法和思路。本论文主要内容归纳如下:
     以Cd(Ac)_2·3H·2O和Na_2SeO_3为反应源,首次采用电子束辐射法制备了CdSe纳米晶。通过选择不同的络合剂,制备出晶型和光学性能不同的CdSe纳米晶。当以氨水作为络合剂,在电子束辐照下制备了具有良好的单分散性,粒径约10 nm的六方纤维锌矿型CdSe纳米晶。随着电子束辐照剂量的增加,晶型由六方型逐渐向立方型转变。紫外可见光谱和荧光光谱表明,与相应的体材料相比其吸收峰发生了明显蓝移。
     纳米发光量子点用于生物标记研究中,对多色生物标记研究和疾病诊断学的发展具有重要意义。但是目前半导体纳米发光量子点的合成工作大多数是在非水体系中进行的,从而合成的这类发光量子点不能直接用于水溶性的生物体系研究中。因此合成水溶性具有发光量子产率高的半导体纳米量子点就成为新的研究热点之一。我们对前面的实验进行了改进,选择EDTA为络合剂和表面修饰剂,在电子束辐照下室温水相中制备了闪锌矿型的蓝色荧光CdSe量子点。量子点具有良好的单分散性,粒径约2~3 nm,荧光量子效率达21.63%。有较好的水溶性,量子点表面包覆的EDTA外端的羧基能直接与生物分子的氨基相结合,可以作为荧光探针应用于生物体系。
     首次采用电子束辐射法分别制备了硫化铅、硒化铅和硒化锡纳米半导体材料。选择硫代乙酰胺为合适的硫源,醋酸铅为铅源,采用电子束辐射法一步合成了硫化铅纳米晶。以硒粉和醋酸铅为原料,制备了粒径约为20nm球形的立方PbSe纳米晶。以Se粉和SnCl_2·2H·2O为原料,溶剂乙二胺为溶剂,合成了粒径约为10nm正斜方晶系的SnSe纳米晶。采用X射线粉末衍射、透射电镜、原子力显微镜、紫外光谱和荧光光谱对所制备的产品进行了结构、形貌和光学性能的表征,同时研究了不同的硫(硒)源、反应物浓度比、表面活性剂和辐照剂量对制备纳米PbS、PbSe和SnSe的结构和形貌的影响,同时提出了纳米晶形成的机理。
     将电子束辐射法应用于金属氧化物纳米材料的制备。我们成功地制备了α-Fe_2O_3纳米颗粒和SnO_2纳米棒,并对合成的材料进行了表征。采用DSC/TGA测试了α-Fe_2O_3纳米颗粒热稳定性,计算了γ-Fe_2O_3向α-Fe_2O_3相转化的焓变。制备的二氧化锡纳米棒直径范围40-60 nm,长度200nm。将制备的材料制作成气敏元件,测量二氧化锡纳米棒的气敏性能。结果表明,二氧化锡纳米棒传感器对甲醛和甲醇气体有较高的灵敏度,响应时间短,而且回复时间快,表现出良好气敏性能。这方面的工作未见文献报道。
     最后探索了电子束辐射法在传感器件改性方面的应用。研究了电子束辐照法对SnO_2传感器和ZnGa_2O_4传感器气敏性能的影响。结果表明,在电子束辐照下,随着辐照剂量的增加,SnO_2传感器和ZnGa_2O_4传感器的灵敏度显著提高。电子束辐照能显著提高传感器的气体选择性、响应—恢复特性、降低传感器的工作温度,且辐照后的传感器有较好的稳定性。讨论了电子束辐照改性传感器机理。研究表明电子束辐照对表面电导型传感器的性能的改善具有重要意义。
Semiconductor nanomaterials have a wide application'in the fields of optics,electrics, magnetism,catalysis and medicine due to their attractive and unique characteristics.The preparation of semiconductor nanomaterials is one of the most important fields among nanomaterial researches.Among preparation methods of nanostructural materials,electron beam irradiation method is one kind of approach that has unique characteristic.Electron beam irradiation method has a number of highly advantageous properties:(I) This one-step method is simple,rapid and convenient;(2) It is carded out at room temperature without any kind of toxic reagents and catalyzers;(3) The structure and morphology of products can be controlled by this method;(4) This method is useful for the mass-production of nano materials.In this dissertation, for the first time we have prepared water-soluble blue.emitting CdSe QDs with high fluorescent quantum yield by electron beam irradiation,which is important to the research of biology labeling.A serial of chalcogenide and metal oxides semiconductor namomaterials have prepa ed by electron beam irradiation.The products have small size and well-dispersed.This method is useful for the mass-production of nano materials.Electron beam irradiation has been used to improve the sensitivity of SnO_2 gas sensors and ZnGa_2O_4 gas sensors.This research is a profitable probe and attempt on the application of radiation chemistry.It is hoped to provide a new reference and guide for the related preparation of other materials in the future.
     Selecting different complexing agents,for the first time we have prepared two kinds of CdSe semiconductor nanomaterials with different structure and optical properties by electron beam irradiation.Cd(Ac)_2·3H_2O and Na_2SeO_3 were used as the reactants.When ammonia was employed as complexing agents,CdSe nanocrystals with the wurtzite structure had been prepared by electron beam irradiation.CdSe nanoparticles were well dispersed with an average grain size of 10nm.With the increase of irradiation dose,the hexagonal crystal lattice was transformed into cubic lattice.UV-vis-NIR spectrum and photoluminescence spectnan showec the blue shitting compare to the bulk material.
     Luminescent semiconductor quantum dots(QDs) have applied in biology labeling,which is important to the development of multi-colours biology labeling and clinical diagnostics.Howeves, presently Luminescent semiconductor QDs have prepared in non-aqueous system.Therefore it is very important to systhese water-soluble semiconductor QDs with high fluorescent quantum yield. We improved the previous experiments.Selecting EDTA as a complexing agent as well as a surface modifier,blue-emitting CdSe quantum dots with zinc blende structure have been prepared Quantum dots were monodisperse particles with grain sizes of 2-3 nm.Fluorescent quantum yield was up to 21.63%.The carboxyl of EDTA covered around CdSe quantum dots could combine directly with the amidogen of biology molecule,which made CdSe quantum dots to be used as fluorescent probes in life science research.
     For the first time PbS,PbSe and SnSe nanocrystallites have been prepared in the present of PVA by electron beam irradiation.Lead acetate and thioacetamide were employed as the reactants,and polyvinyl alcohol as surfactant.PbS particles were prepared rapidly in one-step by electron beam irradiation.Using Se powder and lead acetate as reactants,PbSe nanocrystallite was prepared by electron beam irradiation.The as-prepared PbSe nanocrystalline was cube with an average grain size of 30 nm.Nanocrystalline SnSe with about the grain size of 10 nm was prepared through a reaction between a selenium ethylenediamine solution and Se powder by electron beam irradiation method.The structure,morphology and optical properties of as-prepared materials were characterized by X-ray diffraction(XRD),transmission electron micrograph(TEM),atomic force microscope(AFM),UV-vis absorption spectrum and photoluminescence(PL) spectrum.The effects of the ratio of the concentration of lead acetate to thioacetamide,surfactants and irradiation doses on the preparation of PbS,PbSe and SnSe nanocrystallite were also been discussed.
     Electron beam irradiation method has been used to prepare metal oxides nano materials.α-Fe_2O_3 nanoparticles and SnO_2 rods have been successful obtained by this method.The thermal stability ofα- Fe_2O_3 nanoparticles was analyzed by DSC-TGA,and the phase transition enthalpy energy difference betweenγ-Fe_2O_3 andα-Fe_2O_3 was calculated.The SnO_2 nanorods sensor was utilized to detect CH_3OH and HCHO concentration.The SnO_2 nanorods gas sensor with good performance had high sensitivity,fast response and recovery,and linear dependence of the sensitivity on the concentration of CH_3OH and HCHO gas.
     Finally we attempted to study the application of electron beam irradiation in gas sensors.The sensitivity of SnO_2 gas sensors and ZnGa_2O_4 gas sensors was improved by electron beam irradiation method.Results showed that the sensitivity of SnO_2 sensors and ZnGa_2O_4 gas sensors to reductive gases were enhanced with the increase of electron beam radiation dose,while the response-recovery time and working temperature decreased.Mechanism of the improvement of the sensitivity of sensors by electron beam irradiation method was discussed with the adsorption theory on surface.
引文
[1].Wang Y,Herron N.Nanometer-sized semiconductor clusters:materials synthesis size effects,and photophysical properties[J],J.Phys.Chem.,1991,95(2):525-532.
    [2].甘学温,黄如,刘晓彦.纳米CMOS器件[M].北京:科学出版社,2004.
    [3].吴德馨,钱鹤,叶甜春等.现代微电子技术[M].北京:化学工业出版社,2002.
    [4].Campbell S N.微电子制造科学原理与技术[M].曾莹,严利人,王纪民等译.北京:电子工业出版社,2003.
    [5].Chan W C,Nie S.Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J],Science 1998,281:2016-2018.
    [6].Evans D F,Mitchell D J,Ninham B W.Oil,water and surfactant:properties conjectured structure of simple microemulsions[J],J.Phys.Chem.1986,90:2817-2825.
    [7].Kong X Y,Ding Y,Yang R,Wang Z L.Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts[J],Science,2004.,303:1348-1351.
    [8].Wang X,Summers C J.,Wang Z L.Mesoporous single-crystal ZnO nanowires epitaxially sheathed with Zn_2SiO_4[J],Adv.Mater.2004,16:1215-1218.
    [9].Gao P X.,Wang Z L.Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process[J],J.Phys.Chem.B 2004,108:7534-7537
    [10].Wu Y.,Xiang J.Yang C,W.Lu et al.Single-crystal metallic nanowires and metal/semiconductomanowire heterostructures[J],Nature,2004,430:61-65.
    [11].Milliron D J,Hughes S M,Cui Y,et al.Colloidal nanocrystal heterostructures with linear and branched topology[J],Nature,2004,430:190-195.
    [12].Kazes M.,Lewis D Y,Ebenstein Y,et al.Lasing from semiconductor quantum rods in a cylindrical microcavity[J],Adv.Mater.2002,14:317-321.
    [13].Bruchez M,Moronne M,Gin P,et al.Semiconductor nanocrystals as fluorescent biological labels[J],Science,1998,281:2013-2016.
    [14].Gudiksen MS,Lauhon L J,Wang J.Growth of nanowire super lattice structures for nanoscale photonics and electronics[J],Nature,2002,415:617-620.
    [15].Lu Y,Yin Y,Mayers B T,et al.Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach[J],Nano.Lett.2002,2:183-186.
    [16].Katz D,Size-dependent tunneling and optical spectroscopy of CdSe quantum rods[J],Phys.Rev.Lett.2002,89:086801.
    [17].Li L S,Hu J T,Yang W D,et al.Band gap variation of size- and shape-controlled colloidal CdSe quantum rods[J],Nano.Lett.2001,1:349-351.
    [18].Zhong Z,Wang D,Cui Y,et al.Nanowire crossbar arrays as address decorders for integrated nanosystems[J],Science,2003,302:1377-1379.
    [19].Guzelian A A,Banin U,Kadavanich A V,et al.Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots[J],Appl.Phys.Lett.1996,69:1432-1434.
    [20].吴晓春,汤国庆,张桂兰等.表面包覆的SnO2纳米微粒的红外振动特征[J].光学学报,1995,15(10):1355-1358.
    [21].Xu S M,Xue K H,Kong J L,et al.Template synthesis and UV-Vis absorption spectra of the nanowire arrays of cadmium chalcogenides[J],Electrochemistry,2000,6(2):151-156.
    [22].刘成林,李远光,顾建华等.ZnO/ZnS复合超微粒子有序组装的研究[J],半导体杂志,1997,22(4):12-16.
    [23].Ball P,Garwin L.Science at the Atomic Scale[J].Nature,1992,355:761-763.
    [24].Vossmeyer T,Katsikas L,Giersig M,et al.CdS nanoclusters:synthesis, characterization,size dependent oscillator strength,temperature shift of the excitonic transition energe,and reversible absorbance shift[J].J.Phys.Chem,1994,98:7665
    [25].Rrus L E.Quantum crystallites and nonlinear optics[J].Appl.Phys.A,1991,53:465-474.
    [26].朴顺玉,程雪琴.超微粒应用技术的现状和展望,中国科学院化冶所内部资料,1991
    [27].《日本的科学与技术》 编辑部.日本的科学与技术[M].北京:北京大学出版社,1985.
    [28].Fox M A.Photocatalysis on Modified Semiconductor Surfaces and on Bipolar Photoelectrodes[J].New.J Chem,1987,11:129-131.
    [29].宋玉哲,杨合情,尹文艳等.半导体/SiO2纳米复合材料的溶胶-凝胶制备.压电与声光,2006,28(5):583-585.
    [30].Wei Y,Ye M,Jin D L,et al.Composites of electronical conductive polyaniline with polyacrylate-silica hybrid sol-gel materials[J].Chem.Mater,1995,7(5):969.
    [31].刘德峥.微乳液技术制备纳米微粒的研究进展[J].化工进展.2002,21(7):46.
    [32].Xu C Q,Ni Y H,Zhang Z C,et al.Synthesis and characterization of spherical MS(M =CA,Zn) nanocrystalline in a quaternary W/O microemulsion by y-ray irradiation[J].Mater Lett,2003,57:3070.
    [33].Sapp S A,Lakshmi B B,Martin C R.Template synthesis of bismuth telluride nanowires[J].Adv.Mater.1999,11:402-404.
    [34].Xu D S,Shi X S,Guo G L,et al.Electrochemical preparation of CdSe nanowire arrays[J].J.Phys.Chem.B 2000,104:5061-5063.
    [35].Facci P,Erokhin V,Nicolini C.Formation and characterization of an ultrathin semiconductor polycrystal layer for transducer applications[J].Biosensors and Bioelectronics,1997,12(7):607-611.
    [36].Yang X M,Wang G M,Lu Z H.Characterization of CdS nanoparticles formed and aggregated in stearic acid Langmuir-Blodgett films by atomic force microscopy[J]. Supramocular Science,1998,5:549-552.
    [37].Pan Z Y,Peng X G,Li T J,et al.Controlled growth of the size2quantized CdS at the interface of the stearic acid Langmuir-Blodgett films[J].Appl.Surface Science,1997,108:439-447.
    [38].Moriguchi I,Nii H,Hanai K,et al.Synthesis of size-confined metal sulfides in Langmuir-Blodgett films[J].Colloids and Surfaces A,1995,103:173-181.
    [39].平贵臣,杜滨阳,王丽颖等.CdS纳米微粒有序组装体系的制备与结构研究[J].光散射学报,2000,12(2):66-70.
    [40].倪永红,葛学武,刘华蓉等.硫化银纳米晶的γ射线制备[J].高等化学学报,2002,23(2):176-178.
    [41].李文戈,戴洁,卞国庆等.合成CdS纳米材料的新方法[J].化学世界,2002,(1):13-15
    [42].Juang C B,Cai H,Becker M F,et al.Synthesis of nanometer glass particles by pulsed-laser ablation of micropheres[J].Appl.Phys.Lett.1994,65(1):40-42.
    [43].Cai H,Chaudhary N,Lee J.et al.Generation Of metal nanoparticies by laser ablation of mierospheres[J].J Aerosol Sci,1998,29(5-6):627-636.
    [44].Lee J,Becker M F,Brook J R,et al.Pemalloy nanoparticles generated by laser ablation[J].IEEE Trans on Magnetics,1996,32(5):4484-4486.
    [45].王占国.纳米半导体材料的制备技术[J],微纳电子技术,2002,39(1):9-14.
    [46].Bayaz A A,Giani A,Foucaran A,et al.Elaboration and characterization of Bi_2Se_3 thin films using ditertiarybutylselenide as a precursor by MOCVD system[J].J.Cryst.Growth 2002,243:444-449.
    [47].Verna A K,Rauchfuss T B,Wilson S R.Donor Solvent Mediated Reactions of Elemental Zinc and Sulfur sans Explosion[J].Inorg.Chem.,1995,34,3072.
    [48].张久兴,张艳峰.液相共沉淀法制备纳米ITO粉体[J].稀有金属材料与工程,2006,35(3):451-454.
    [49].陈凡,励亮,孙晓宇,乐英红,胡建华.均相沉淀法制备纳米硫化亚铁[J].复旦学报(自然科学版),2003,42(3):315-318.
    [50].Mazdiyaski K S.Powder synthesis from metal-organic precursors[J].Ceramic International,1982,8(2):42.
    [51].徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社,2001.128-165.
    [52].Li Y D,Duan X F,Qian Y T,et al.Solvothermal co-reduction route to the nanocrystalline Ⅲ-Ⅴ semiconductor InAs[J].J.Am.Chem.Soc.1997,119:7869-7870.
    [53].Li Y D,Liao H W,Qian Y T,et al.Nonaqueous synthesis of CdS nanorod semiconductor[J].Chem.Mater.1998,10:2301-2303.
    [54].Xin L H,Zhou R M,Gracien E B,et al.Synthesis of silver nano-particles by EB irradiation[J].J.Radiat.Res.Radiat.Process.2004,22(2):69-72.
    [55].Zhang X P,Zhou R M,He L F,et al.Influence of PVA and PEG on Fe_3O_4nano-particles prepared by EB irradiation[J].J.Radiat.Res.Radiat.Process.2005,23(6):325-328.
    [56].陈永康,周瑞敏,张雪平等.电子束辐照制备的纳米硫化镉研究[J].辐射研究与辐射工艺学报,2006,24(3):151-154.
    [1].Lee S M,Jun Y W,Cho S N,Cheon J.Single-Crystalline Star-Shaped Nanocrystals and Their Evolution:Programming the Geometry of Nano-Building Blocks[J].J.Am.Chem.Soc.,2002,124(38):11244-11245.
    [2].Zhao Y B,Zou J H,Shi W F.In situ synthesis and characterization of lead sulfide nanocrystallites in the modified hyperbranched polyester by gamma- ray irradiation[J].J.Mater.Sci.and Eng.B,2005,121(1-2):20-24.
    [3].Mirkovic T,Hines M A,Nair P S,Scholes G D.Single-Source Precursor Route for the Synthesis of EuS Nanocrystals[J].J.Chem.Mater.,2005,17:3451-3456.
    [4].Murphy J E,Beard M C,Norman A G.,Ahrenkiel S P,Johnson J C,Yu P,Micic O I,Ellingson R J,Nozik A J.PbTe Colloidal Nanocrystals:Synthesis,Characterization,and Multiple Exciton Generation[J].J.Am.Chem.Soc.,2006,128(10):3241-3247.
    [5].Rempel A A,Kozhevnikova N S,Leenaers A J G.,S van den Berghe.Towards particle size regulation of chemically deposited lead sulfide(PbS)[J].J.Cryst.Growth,2005,280:300-308.
    [6].Hirata H,Higashiyama K.Analytical study of the lead ion-selective ceramic membrane electrode[J].Bull.Chem.Soc.Jpn.1971,44:2420.
    [7].Mitchell G P,Mirkin C A,Letsinger R L.Programmed Assembly of DNA Functionalized Quantum Dots[J].J.Am.Chem.Soc.,1999,121:8122-8123.
    [8].Amish A Patel,Fanxin Wu,Jin Z.Zhang,Claudia L Torres-Martinez,Rajesh K Mehra,Yi Yang,Subhash H Risbud.Synthesis,Optical Spectroscopy and Ultrafast Electron Dynamics of PbS Nanoparticles with Different Surface Capping[J].J.Phys.Chem.B,2000,104(49):11598-11605.
    [9].李守田,邹炳锁,张岩,肖良质,李铁津,赵家龙,黄世华,虞家琪.不同化学微环境PbS超微粒的制备与光谱研究[J].高等学校化学学报,1992,13(12):1597-1600.
    [10].Frank W Wise.Lead Salt Quantum Dots:the Limit of Strong Quantum Confinement [J].Acc.Chem.Res.,2000,33(11):773-780.
    [11].Hines M A,Scholes G D.Colloidal PbS nanocrystals with size-tunable near-infrared emission:Observation of post-synthesis self-narrowing of the particle size distribution [J].Adv Mater,2003,15(21):1844-1849.
    [12].Mo M S,Shao M W,Hu H M,Yang L,Yu W C,Qian Y T.Growth of single-crystal PbS nanorods via a biphasic solvothermal interface reaction route[J].J.Cryst.Growth,2002,244(3-4):364-368.
    [13].Lu S W,Sohling U,Mennig M,Sctunidt H.Nonlinear optical properties of lead sulfide nanocrystals in polymeric coatings[J].Nanotechnology,2002,13(5):669-673.
    [14].Zhao Y,Liao X H,Hong J M,Zhu J J.Synthesis of lead sulfide nanocrystals via microwave and sonochcmical methods[J].Mater.Chem.Phys.,2004,87:149-153.
    [15].Ni Y H,Liu H J,Wang F,Liang Y,Hong J,Ma X.PbS crystals with clover- like structure:Preparation,characterization,optical properties and influencing factors[J].Cryst.Res.Teclmol.,2004,39(3):198-204.
    [16].Zhang Bo,Li G H,Zhang J,Zhang Y,Zhang L D.Synthesis and characterization of PbS nanocrystals in watcr/C12Eg/cyclohexane microcmulsions[J].Nanotcchnology,2003,14:443-446.
    [17].Xu C Q,Zhang Z C,Wang H L,Ye Q,A novel way to synthesize lead sulfide QDs via γ-ray irradiation[J].Mater.Sci.Eng.B,2003,104(1):5-8.
    [18].Henshaw G,Parkin I P,Shaw G A.Convenient,low energy synthesis of metal sulfides and selenides:PbE,Ag2E,ZnE,CdE(E=S,Se)[J].J.Chem.Commun.,1996,(76):1095-1098.
    [19].张勇,乔正平,陈小明.微波辐照元素反应合成硫化铅纳米粒子[J].中山大学学报(自然科学版),2003,42(.2):50-51.
    [20].方小龙,杨传芳,陈家镛.湿化学工艺条件对ZrO_2(Y_2O_3)超细颗粒团聚的影响[J].硅酸盐学报,1998,26(6):67-71.
    [21].L.Brus.Electronic wave functions in semiconductor clusters:experiment and theory [J].J.Phys.Chem.,1986,90(12):2555-2560.
    [22].Yu S H,Yoshimura M.Shape and Phase Control of ZnS Nanocrystals:Template Fabrication of Wurtzite ZnS Single-crystal Nanosheets and ZnO Flake-like Dendrites from a Lamellar Molecular Precursor ZnS·(NH_2CH_2CH_2NH_2)_(0.5) [J]. Adv. Mater., 2002, 14:296-300.
    [23] . Yang J, Zeng J Z, Yu S H, Yang L, Zhou G E, Qian Y T. Formation Process of CdS Nanorods via Solvothermal Route [J]. Chem. Mater., 2000,12(11):3259-3263.
    [24] . Krouse S. Macromolecular solutions as an integeral part of beginning physical chemistry [J]. J.C.E., 1978,174(55):88-95.
    [1].Colvin V L,Schlamp M C,Alivisatos A P.Light emitting diodes cadmium selenide nanocrystals and a semiconduting polymer[J].Nature,1994,370(6488):354-357.
    [2].Heske C,Winkler U,Neureiter H,et al.Preparation and termination of well-defined CdTe(100) and Cd(Zn)Te(100) surfaces[J].Appl.Phys.Lett.,1997,70:1022-1024.
    [3].苏宜,谢毅 钱逸泰等,纳米ZnS、CdS水热合成及其表征[J].应用化学,1996,13,56-57.
    [4].C.B.Murray,D.J.Norris,M.G.Bawendi,Synthesis and characterization of nearly monodisperse CdE(E=sulfur,selenium,tellurium) semiconductor nanocrystallites[J].J.Am.Chem.Soc.,1993,Vol(115):8706-8715
    [5].姚凤仪,郭德威,桂明德.无机化学丛书,第五卷:氧硫硒分族.北京:科学出版社,1990.333
    [6].P.Parkin.Solid State Metathesis Reaction for Metal Borides,Silicides,Pnictides and Chalcogenides:Ionic or Elemental Pathways[J].J.Chem.Soc.Rev.,1996,25,199-207.
    [7].T.Trindade,P.O'Brien,X.Zhang,Synthesis of PbS nanocrystals using a novel single molecule precursor approach:X-ray single crystal structure of Pb(S_2CNEtPri)_2[J].Chem.Mater.,1997,9,523-530.
    [8].徐如人,庞文琴.无机合成与制备化学.北京:高等教育出版社,2001.128-165.
    [9].Murray C B,Norris D J,Bawendi M G Synthesis and characterization of nearly monodisperse CdE(E= sulfur,selenium,tellurium) semiconductor nanocrystallites[J].Am.Chem.Soc.,1993,115:8706-8715
    [10].Peng Z A,Peng X G.Mechanisms of the Shape Evolution of CdSe Nanocrystals[J].J.Am.Chem.Soc.,2001,123:1389-1395
    [11].Rogach A L,Kornowski A,Gao M Y,et al.Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals[J].J.Phys.Chem.B.,1999,103:3065-3069
    [12].谢颖,徐静娟,于俊生等.水溶性的CdSe/ZnS纳米微粒的合成及表征[J].无机 化学学报,2004,20(3):663-667
    [13].徐万帮,汪国先,梁胜等.水相中荧光CdSe纳米晶的优化合成与表征[J].无机化学学报,2007,23(7):1220-1226
    [14].Raevskaya A E,Stroyuk A L,Kuchmiy SY,et al.Growth and spectroscopic characterization of CdSe nanoparticles synthesized from CdCl_2 and Na_2SeSO_3 in aqueous gelatine solutions[J].J.colloid,interface.Sci.,2006,290:304-309
    [15].Baumle M,Stamou D,Segura J M,et al.Highly Fluorescent Streptavidin=Coated CdSe Nanoparticles:Preparation in Water,Characterization,and Micropatterning[J].Langmuir.,2004.20:3828-3831
    [16].Kagan C R,Murray C B,Bawendi M G,et al.Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids[J].Phys.Rev B.,1996,54:8633=8643
    [17].Klimov V I,Mikhailovsky A A,Xu S,et al.Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots.[J].Science.,2000,290:314-317
    [18].Koberling F,Mews A,Basche T,et al.Oxygen-Induced Blinking of Single CdSe Nanocrystals[J].Adv.Mater.,2001,13:672-676
    [19].Lee J,Sundar V C,Heine J R et al.Full Color Emission from Ⅱ±Ⅵ Semiconductor Quantum Dot Polymer Composites[J].Adv.Mater.,2000,12:1102-1104
    [20].Schlamp M C,Peng X G.,Alivisatos A P,et al.Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer[J].J.Appl.Ph.,1997,82:5837-5842
    [21].Artemyev M V,Woggon U,Jaschinski H,et al.Spectroscopic Study of Electronic States in an Ensemble of Close-Packed CdSe Nanocrystals[J].J.Phys.Chem B.,2000,104:11617-11621
    [22].Greenham N C,Peng X G,Alivisatos A P.Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal compositesstudied by photoluminescence quenching and photoconductivity[J].Phys.Rev.B.,1996,54:17628-17637
    [23].Bruchez M,Moronne M,Gin P,et al.Semiconductor Nanocrystals asFluorescent Biological Labels[J].Science.1998,281:2013-2016
    [24].Chan W C W,Nie S M.Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection[J].Science,1998,281:2016-2018
    [25].Chakraborty S K,Fitzpatrick J A J,Phillippi J A,et al.Cholera Toxin B Conjugated Quantum Dots for Live Cell Labeling[J].Nano.Lett.,2007,7:2618-12616
    [26].Zheng Y G,Yang Z C,Ying J Y.Aqueous Synthesis of Glutathione-Capped ZnSe and Zn1-xCdxSe Alloyed Quantum Dots[J].Adv.Mater.,2007,19:1475-1479
    [27].Qu L H,Peng Z A,Peng X G.Alternative Routes toward High Quality CdSe Nanocrystals[J].Nano Lett.,2001,1:333-337
    [28].Peng Q,Dong Y J,Deng Z X,et al.Selective Synthesis and Characterization of CdSe Nanorods and Fractal Nanocrystals[J].Inorg.Chem.,2002,41:5249-5254
    [29].Pesika N S,Stebe K J,Searson P C,et al.Determination of the Particle Size Distribution of Quantum Nanocrystals from Absorbance Spectra[J].Adv.Mater.,2003,15:1289-1294
    [30].Yang Q,Tang K B,Wang F,et al.Determination of the particle size distribution of quantum nanocrystals from absorbance spectra.[J].Mater Lett.,2003 57:3508-3512
    [31].Weast R.C.Handbook of Chemistry and Physics,D=151,69th Edition,(1988-1989).
    [1].Zhao W B,Zhun J J,Chen H Y.Photochemical preparation of rectangular PbSe and CdSe nanoparticles[J].J.Crystal.Growth.,2003,252:587-592.
    [2].Zhu J J,Liao X H,Wang J,et al.Photochemical synthesis and characterization of PbSe nanoparticles[J].Mater.Res.Bull.2001,36(7-8):1169-1176.
    [3].Alivisatos A P.Perspectives on the Physical Chemistry of Semiconductor Nanocrystals[J].J.Phys.Chem.,1996,100(31):13226-13239.
    [4].Fendler J H,Meldrum F C.The Colloid Chemical Approach to Nanostructured Materials[J],Advanced Mater.2004,7(7):607-632.
    [5].Lewis L N.Chemical catalysis by colloids and clusters[J],Chem.Rev.,1993,93(8):2693-2730.
    [6].Springholz G,Schwarzl T,Heiss W,et al.Midinfrared surface-emitting PbSdPbEuTe quantum-dot lasers[J],Appl.Plzys.Leu.2001,(79):1225-1235.
    [7].MO S P,Topuria T,Browning N D,et al.Internal self-ordering in In(Sb,As),(In,Ga)Sb,and(Cd,Zn,Mn)Se nane-agglomemtedquanntum dots[J],Appl.Phys.Lett 2001,(79):946-953.
    [8].Ujjal K Gautam,Ram Seshadri.Preparation of PbS and PbSe nanocrystals by a new solvothermal route[J].Mater.Res.Bull.,2004,39:669-676.
    [9].Griffith J G,Gngg D A.Dimensional metrology with scanning probe microscopes[J],J.Appl.Phys.1993,(74):R83.
    [10].Xie Y,Su H L,Li B,Qian Y T.A direct solvothermal route to nanocrystalline selenides at low temperature[J].Mater.Res.Bull.,2000,35:459-464.
    [11].Wang C,Zhang G,Fan S,Li Y.Hydrothermal synthesis of PbSe,PbTe semiconductor nanocrystals[J].J.Phys.Chem.Sol.,2001,62:1957-1960.
    [12].姜立萍,张剑荣,王骏,朱俊杰.超声电化学制备PbSe纳米枝晶[J].无机化学学报,2002,18(11):1161-1164.
    [13].Zhu J J,Liao X H,Wang J,Chen H Y,Photochemical synthesis and characterization of PbSe nanocrystals[J].Mater.Res.Bull.,2001,36:1169-1176.
    [14].J.J.Zhu,O.Palchik,S.G Chen,Microwave assisted preparation of CdSe,PbSe and Cu2-xSe nanoparticles[J].J Phys Chem,B 2000,104:7344-7347.
    [15].刘孝恒,梁春香,李丹,杨绪杰,陆路德,汪信.水玻璃相中制备纳米CdS及结构表征[J].北京大学学报,2001,37(2):231-234.
    [1].Wang W Z,GengY,Qian Y T,Wang C,Liu X M.A convenient low temperature route to nanocrystalline SnSe[J].Mater.Res.Bull.,1999,34(3):403-406.
    [2].Shen J,Blachnik R.Mechanochemical synthesis of antimony selenide tinselenides and tin antimony selenides[J].Thermochim.Ac.,2003,399:245-246.
    [3].Subramanian B,Sanjeeviraja C,Jay achandran M.Brush plating of tin(Ⅱ) sekebide thin films[J].J.Crystal.Growth,2002,234:421-426.R.Waser,Nanoelectronics and Information Technology:Materials,Processes,Devices[M],Wiley,New York,2002.
    [4].Agarwal A,Chaki S H,Lakshminarayana D.Growth and thermal studies of SnSe single crystals[J],Materials Letters,2007,61(30):5188-5190.
    [5].Giri D,Das K K.Theoretical studies of the electronic spectrum of SnSe[J],Chemical Physics Letters,2005,411(1-3):144-149.
    [6].Han Z H,Li Y P,Yu S H,et al.An organic solution method for crystal growth of tin chalcogenides with special morphologies[J],Journal of Crystal Growth,2001,223(1-2):1-5.
    [7].Yu J G,Yue A S,Stafsudd O M.Growth and electronic properties of the SnSe semiconductor,Journal of Crystal Growth,1981,54(2):248-252.
    [8].Zhang W X,Yang Z H,Liu J W,et al.Room temperature growth of nanocrystalline tin (Ⅱ) selenide from aqueous solution[J],Journal of Crystal Growth,,2000,217(1-2):157-160.
    [9].Agarwal A.Synthesis of laminar SnSe crystals by a chemical vapour transport technique[J],Journal of Crystal Growth,1998,183(3):347-351.
    [10].Chu D W,Walser R M,Bene R W,Courtney T H.Polarity-dependent memory switching in devices with SnSe and SnSe2 crystals[J].Appl.Phys.Lett.,1974,24(10):479-481.
    [11].Valiukonis G,Guseinova D A,Krivaite G,Sileika A.The Long-Wavelength Magnon Relaxation in Ferromagnetic Metals[J].Phys.Status Solidi B,1986,139(1):299-305.
    [12].Zhang W X,Yang Z,Liu J W.Room temperature growth of nanocrystalline tin selenide from aqueous solution[J].J.Crystal.Growth,2000,217:157-160.
    [13].Shen G Z,Chen D,Jiang X,Tang K B,Liu Y K,Qian Y T.Rapid synthesis of SnSe nanowires via an ethylenediamine-assisted polyol route[J].J Chem.Lett.,2003,32:426-427.
    [1].李竟先,吴基球,鄢程.纳米颗粒的水热法制备[J].中国陶瓷,2002,38(5):36-39.
    [2].贺会兰,郑学忠,魏雨.A study of preparation of spindle α-Fe_2O_3 by forced hydrolysis [J].河北大学学报(自然科学版),1997,21(3):301-304.
    [3].Xu X L,Guo J D,Wang Y Z.A novel technique by the citrate pyrolysis for preparation of ironoxide nanoparticles[J].Materials Science and Engineering,2000,B77:207-209.
    [4].Kulkarni S S,Lokhande C D.Structural,optical,electrical and dielectrical properties ofelectrosynthesized nanocrystalline iron oxide thin films[J].Materials Chemistry and Physics,2003,82:151-156.
    [5].汤勇铮,张文敏.微波水解法制备均分散α-Fe_2O_3纳米粒子的初步研究[J].化学研究与应用,1998,10(4):419-422.
    [6].姚超,马江权,林西平等.纳米氧化镧的制备[J].高校化学工程学报,2003,17(6):685-688.
    [7].Tamai H,Ikeya T,Nishiyama F.NO decomposition by ultrafine noble metals dispersed on the rare earth phosphate hollow particles[J].Journal of Materials Science,2000,35:4945-4953.
    [8].祁秀秀,路建美,张正彪等.聚砜酰胺酸和聚砜酰亚胺的微波辐射合成[J].高校化学工程学报,2003,17(2):151-156.
    [9].Divan R,Mancini D C.Moldovan N,et al.Patterned deposition of metallic nanoclusters from solution using synchrotron radiation[J].Microprocesses and Nanotechnology Conference,2001,176-177.
    [10].Skorvanek I,Gerling R.Neutron irradiation effects on the structural,magnetic and mechanical properties of amorphous and nanocrystalline Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9[J].IEEE Transactions on Magnetics,1994,30(2):548-551.
    [14].Majzlan J,Navrotsky A,Schwertmann U.Thermodynamics of iron oxides:Part Ⅲ.Enthalpies of formation and stability of ferrihydrite(-Fe(OH)_3),schwertmannite (-FeO(OH)_(3/4)(SO_4)_(1/8)),and e-Fe_2O_3[J].Geochimica et Cosmochimica Acta.2004,68:1049.
    [1].Williams G,Coles G V.Gas sensing properties of nanocrystalline metal oxide powders produced by a laser evaporation technique[J],Journal of Materials Chemistry,1998,8(7):1657-1664.
    [2].Lee S W,Chen H,Tsai P.Comparison study of SnO_2:thin & thick film gas sensors[J].Sensors and Actuators,2000,67(1-2):122-127.
    [3].Sergio N,Leonello D.Tin oxide Thin-Film sensors for Automatic Hydrocarbons detection:Effect of Aging Time on Film Microstructure[J].Journal of the American Ceramic Society.1999,82(5):1201-1206.
    [4].Chaturvedi A,Dwivedi R,Sricastaca S K,et al.Selectivity & sensitivity studies on plasma treated thick film tin oxide gas sensors[J].Microelectronic Journal.2000,31(4):283-290.
    [5].Dieguez A.,Romamo R A.Analysis of the thermal Oxidation of Tin Droplets & Its Implications on Gas Sensor Stability[J].Journal of the Electrochemical Society.1999,146(9):3527-3535.
    [6].Chen Y J,Nie L,Xue X Y,et al.Linear ethanol sensing of SnO_2 nanorods with extremely high sensitivity[J].Applied Physics Letters,2006,88(8):083105-083107.
    [7].Pan Z W,Dai Z R,Wang Z L.Nanobelts of semiconducting oxides[J].Science,2001,291(10):1947-1949.
    [8].Hu J Q,Bando Y,Liu Q L,et al.Laser-ablation growth and optical properties of wide and long single-crystal SnO_2 ribbons[J].Advanced Functional Materials,2003,13(6),493-496.
    [9].Zhang D F,Sun L D,Yin J L,et al.Low-temperature fabrication of highly crystalline SnO_2nanorods[J].Advanced Materials,2003,15(12),1022-1025.
    [10].Cheng B,Russell J M,Shi W S,et al.Large-scale,solution-phase growth of single-crystalline SnO_2 nanorods[J].Journal of the American Chemical Society,2004,126(19),5972-5973.
    [11].Li Z,Jiao Z,Wu M H,et al.Synthesis and characterization of Tin(Ⅱ) selenide nanocrystalline by electron beam irradiation method[J],Colloid and Surface A.2008, (40-42):313-314.
    [12].Li Z,Jiao Z,Wu M H,et al.Preparation and Characterization of Nanocrystalline ZnFe_2O_4 by Radiation Method[J].Journal Solid State Phenomena.2007,(121-123):327-330.
    [13].Zhao Q R,Xie Y,Dong T,et al.Oxidation-crystallization process of colloids:An effective approach for the morphology controllable synthesis of SnO_2 hollow spheres and rod bundles[J].Journal of Physical Chemistry C,2007,111(31),11598-11603.
    [14].Xu J Q,Chen Y P,Shen J N.Solvothermal preparation and gas sensing properties of ZnO whiskers[J].Journal of Nanoscience and Nanotechnology,2006,6(1),248-253.
    [1].Williams G,Coles G V.Gas sensing properties of nanocrystalline metal oxide powders produced by a laser evaporation technique[J],Journal of Materials Chemistry,1998,8(7):1657-1664.
    [2].Lee S W,Chen H,Tsai P.Comparison study of SnO_2:thin & thick film gas sensors[J].Sensors and Actuators,2000,67(1-2):122-127.
    [3].Sergio N,Leonello D.Tin oxide Thin-Film sensors for Automatic Hydrocarbons detection:Effect of Aging Time on Film Microstructure[J].Journal of the American Ceramic Society.1999,82(5):1201-1206.
    [4].Chaturvedi A,Dwivedi R,Sricastaca S K,et al.Selectivity & sensitivity studies on plasma treated thick film tin oxide gas sensors[J].Microelectronic Journal.2000,31(4):283-290.
    [5].Dieguez A.,Romamo R A.Analysis of the thermal Oxidation of Tin Droplets & Its Implications on Gas Sensor Stability[J].Journal of the Electrochemical Society.1999,146(9):3527-3535.
    [6] . Li Z, Jiao Z, Wu M H, et al. Synthesis and characterization of Tin (II) selenide nanocrystalline by electron beam irradiation method [J], Colloid and Surface A. 2008, (40-42):313-314.
    [7] . Li Z, Jiao Z, Wu M H, et al. Preparation and Characterization of Nanocrystalline ZnFe_2O_4 by Radiation Method [J]. Journal Solid State Phenomena. 2007, (121-123): 327-330.
    [8] . Mishra S, Ghanshyam C, Ram N. Detection mechanism of metal oxide gas sensor under UV radiation [J]. Sensors & Actuators B: Chemical. 2004,97(2/3): 387-390.
    [9] . Goya G F, Richenberg H R, Chen M, et al. Magnetic irreversibility in ultrafine ZnFe_2O_4 particles[J], J Apply Phys, 2000, 87:8005-8010.
    [10] . Clerk M T, Evans B J. Automatic design of insulation structure based on sensitivity analysis [J], IEEE Trans Magn, 1997,33:3745-3751.
    [11]. Gusmano G, Montesperelli G, Nunziante P, et al. Microstructure and electrical properties of MgAI_2O_4 and. MgFe_2O_4 spinel porous compacts for use in humidity sensors [J], Br Ceram Trans, 1993,92: 104-108.
    [12] . Nikolic N. The influence of mechanical activation onzinc stannate Spinel formation [J], J. Eur. Ceram. Soc. Japan 2001,21:2071-2076.
    [13] . Satyanarayana L, Gopal Reddy C V, Manorama S V, et al. Liquid-petroleum-gas sensor based on a spinel semiconductor: ZnGa_2O_4[J], Sensors and Actuators B, 1998,46:1-7.
    [14] . Stambolova I J. Spray pyrolysis preparation andhumidity sensing characteristics of spinel zinc stannate thin films [J], Solid State Chem, 1997, 128:305-309.
    [15] . Gnanasekar K I. Electrical and sensor properties of FeNbO_4: a new sensor material [J], Sensors and Actuators B, 1999, 55: 170-174.
    [16] . Omata T, Ueda N K, Ueda K. New ultraviolet-transport electroconductive oxide ZnGa_2O_4 spinel [J], Appl Phys Letts, 1994, 64: 1077-1081.
    [17] . Zheng Y, Takei H, Kawazoe H. Electrical Conductivity in Transparent ZnGa_2O_4: Reduction and Surface-Layer Structure Transformation [J]. J Am Ceram Soc, 1998, 81(1): 180-186.
    [18]. Comini E, Cnstalli A, Faglia G, et al. Light enhanced gas sensing properties of indium oxide and tin dioxide sensors[J], Sensors and Actuators B, 2000,65:260-267.
    [19] . Comini E, Faglia G, Sberveglieri G UV light activation of tin oxide thin fihns for NO_2 sensing at low temperatures [J], Sensors and actuators B, 2001,78:73.
    [20] . Camagni P, Faglia G, Galinetto P, et al. Photosensitivity activation of SnC>2 Thin Film Gas Sensors at Room Temperature[J]. Sensors and actuators B.1996,31: 99.
    [21] . Jiao Z, Ye G, Chen F, et al. The preparation of ZnGa_2O_4 nano crystals by spray coprecipitation and its gas sensitive characteristics[J], Sensors, 2002,2:71-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700