氧化物气凝胶的制备、结构和性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要探讨利用溶胶-凝胶方法制备具有纳米结构的金属氧化物气凝胶,并对其微观结构和性质进行了研究。内容包括气凝胶的制备过程、微观结构的表征和制备条件的选择,检测了金属氧化物气凝胶的物理化学性质,如热性质、光学性质和气敏性质。探讨了金属氧化物气凝胶的形成机理,丰富和发展了的氧化物气凝胶制备的理论和方法。
     1.高比表面积ZrO_2气凝胶的制备
     通过电解结合溶胶-凝胶法制备了氧化锆基凝胶,进一步通过超临界CO_2干燥和冷冻干燥技术对凝胶进行干燥,成功合成了高比表面的ZrO_2气凝胶。本研究提供了一个简单的以无机盐为原料制备ZrO_2气凝胶的方法,并可能用于制备其它的金属氧化物气凝胶。首先,分别配制30 mL浓度为0.3 mol/L(C_(2Y+Zr)),Y_2O_3:ZrO_2的摩尔比为0:100,3:97,6:94,8:92的水溶液,分别在25℃下直流电解池中电解。当电解进行一段时间后,溶液转变成溶胶,停止电解,向溶胶中加入异丙醇,获得ZrO_2基湿凝胶。然后将湿凝胶分成两份:一份用无水乙醇交换湿凝胶网络中的水,然后用超临界CO_2干燥,即可得到ZrO_2气凝胶块体;另一份直接进行冷冻干燥,即可得到粉末状的ZrO_2气凝胶。通过超临界干燥技术制备的气凝胶是透明块体,不含Y~(3+)的ZrO_2气凝胶平均孔径为9.7nm,比表面积约为640 m~2/g;而通过冷冻干燥技术制备的气凝胶是白色粉末,平均孔径为0.59 nm,比表面积约为400 m~2/g。500℃煅烧后,超临界干燥的产物表现为四方相和单斜相ZrO_2的混和物相,而冷冻干燥产物煅烧后为单一的四方相ZrO_2。Y~(3+)的掺杂对气凝胶的粒子尺寸、微结构、孔尺寸以及煅烧后的物相结构没有明显影响,这主要是由于Y~(3+)在500℃煅烧后未能完全均匀地进入ZrO_2晶格中所致。
     2.高表面积结晶态TiO_2气凝胶的制备和光致发光性质研究
     以钛酸四丁酯为原料,丙酮为溶剂,乙酰丙酮为络合剂,通过钛酸四丁酯和水发生反应,使溶液胶凝得到TiO_2湿凝胶。然后把凝胶放入15 mL高压釜中,加入丙酮,填充度为80%,分别在120、140、160℃进行溶剂热2 h处理,使TiO_2结晶,得结晶态TiO_2湿凝胶(锐钛矿相)。再将结晶TiO_2湿凝胶分别进行CO_2超临界干燥、真空干燥、常压干燥制得气凝胶。本文将溶胶-凝胶法与溶剂热法相结合,形成了一个新的制备气凝胶的工艺,利用溶胶一凝胶法,结合溶剂热方法首次制备了高表面积的结晶的TiO_2气凝胶,并研究了气凝胶在不同干燥方式下的微结构和性质。120、140、160℃溶剂热处理的样品经过干燥后表面积为220-800 m~2/g,其中140℃处理的样品的比表面积最大,经超临界、真空、常压三种干燥方式形成的产物比表面积分别为794.2 m~2/g(超临界干燥)、662.7 m2/g(真空干燥)、528.9 m~2/g(常压干燥)。本实验中所获得的TiO_2气凝胶表面积在常压干燥条件下还可达到500 m~2/g以上,其较大的比表面积应归功于溶剂热处理过程中凝胶网络强度的增大。光学性能研究表明,所有的气凝胶都具有明显的光致发光性质,这与构成气凝胶的粒子小的尺寸和表面缺陷等有关。可以看出这是一个很好的制备结晶态气凝胶材料的方法,为研究制备高表面积的结晶气凝胶又提供了一个新的思路。
     3.SnO_2气凝胶薄膜的制备及气敏性质研究
     本文以环氧丙烷和SnCl_4·5H_2O为原料,乙醇为溶剂,通过环氧丙烷和SnCl_4·5H_2O反应,制备了SnO_2基醇溶胶,然后采用提拉法在载玻片上镀膜,待溶胶胶凝后,经CO_2超临界萃取,制得SnO_2气凝胶薄膜。以同样的方法将SnO_2气凝胶薄膜镀到气敏元件上,制备了SnO_2气凝胶气敏传感器,并用气敏元件测试系统测试了所制备的SnO_2薄膜在不同工作温度下对乙醇、丙酮、汽油蒸汽的气敏特性。SnO_2气凝胶薄膜是由直径4-5 nm的结晶态球形粒子相互连接而成的网状结构,厚度为0.25μm,膜与基质结合紧密,厚度均匀。N_2吸附-脱附实验表明,SnO_2气凝胶薄膜的比表面积为388 m~2/g,平均孔径8.2 nm。吸附等温线为Ⅳ型,有一个H1型滞后环,说明薄膜为介孔结构。直接超临界得到的SnO_2气凝胶显示了锡石结构四方相SnO_2的特征峰,当薄膜在250℃老化后,衍射峰强度增加,说明其结晶度增强,但薄膜未出现裂纹,且SnO_2粒子未出现明显长大,其平均粒径4.7 nm。气敏性能测试结果表明,SnO_2气凝胶薄膜构成的气敏元件经250℃老化后,在160-440℃之间对浓度为2-100 ppm的三种气体都有响应,元件对三种气体均有良好的灵敏性,而且对三种气体的响应/恢复速率都非常迅速。
The nanostructured metal oxide aerogels were synthesized by a sol-gel technique. The preparation process and the microstructures of aerogels were studied, and the effects of preparation parameters, as well as the thermal properties, the optical properties, and gas-sensing properties of the prepared aerogels were investigated. Based on the experiments, the formation mechanisms of the metal oxide aerogels were proposed. This study enriched the basic theory and applications of aerogels preparated on the basis of the sol-gel process.
     1. Preparation of zirconia aerogels with high surface area
     Zirconia aerogels with high surface areas were successfully prepared by a combined electrolysis/sol-gel method, followed by supercritical extraction or freeze-drying. This provides a facile route to production of ZrO_2 aerogels using inorganic salts as precursor and might be extended to the preparation of other metal oxide aerogels. First, 30.0 mL of 0.3 mol/L ZrOCl_2·8H_2O + YCl_3·6H_2O solution, in which the molar ratio of Y_2O_3 to ZrO_2 was adjusted to 0:100, 3:97, 6:94, and 8:92, was electrolyzed in an electrolytic cell under the same conditions at 25.0℃. After several days, the solution gradually transformed to a transparent sol. Stop the electrolysing and 30.0 mL of isopropyl alcohol was added into the sol under stirring and a wet gel formed. The wet gel obtained was divided into two parts and treated through two processes. One was immersed in absolute ethanol to exchange the solvent (mainly water) in the gel network. Then, the ethanol was extracted with liquid CO_2 in a supercritical extractor to remove solvent from the gel. When the autoclave was depressurized slowly, a lump of aerogel (S-aerogels) was obtained. The other part without exchanging with ethanol was directly put into a flask and quickly frozen with liquid N_2 and then freeze-dried to give the freeze-dried aerogel (F-aerogels). The pure ZrO_2 S-aerogel was a transparent monolith with mesoporous structure (average pore size, 9.7 nm) and surface area of ca. 640 m~2/g. However, the pure ZrO_2 F-aerogel had microporous structure with surface area and mean pore size of ca. 400 m~2/g and ca. 0.6 nm. After calcination at 500℃, the pure ZrO_2 S-aerogel exhibited as a mixture of m-ZrO_2 and t-ZrO_2, while the pure ZrO_2 F-aerogel showed a single t-ZrO_2 phase. Yittria-stabilized zirconia aerogels showed similar properties including particle size, microstructure, pore size, and surface area, as well as the phase structure of the calcined samples, as the pure zirconia aerogels. Detailed investigation indicated that the Y~(3+) did not enter the zirconia crystal lattice completely, so there had not been obvious effects of the Y_2O_3 contents on the crystalline structure of the calcined zirconia aerogels.
     2. Synthesis and photoluminescence properties of crystalline TiO_2 aerogels with high-surface- area
     TiO_2 wet gels were prepared in acetone by a sol-gel method using tetrabutyl titanate as a precursor and acetylacetone as a stabilizer. Then, the gel was poured into a 15 mL autoclave, and the acetone was added in up to the 80% volume of the autoclave. The autoclave was heated at a designed temperature (120, 140, 160℃) for 2 h to give the crystalline TiO_2 wet gel (anatase). The anatase wet-gels were respectively dried by CO_2 supercritical drying, vacuum drying and atmosphere drying to give the TiO_2 aerogels. A new route came into being for preparation of aerogels by a combined solvothermal/sol-gel method. The properties and microstructures of aerogels obtained under different drying conditions were studied. The surface areas of all aerogels obtained were between 220 and 800 m~2/g. The samples solvothermally treated at 140℃had maximum surface area in all the samples obtained with different drying methods. The surface areas were 794.2 m~2/g (supercritical drying)、662.7 m~2/g(vacuum drying)、528.9 m~2/g(atmosphere drying), respectively. The higher surface area of TiO_2 aerogels dried at atmosphere were over 500 m~2/g, which might due to the strengthed network of the gel during the solvothermal process. All TiO_2 aerogels showed obvious PL peaks in spectra, which is due to the small particles and surface vacancy. This was a efficient method for for preparing crystalline TiO_2 aerogels and may be extended to the preparation of othe ??rcrystalline aerogels.
     3. The preparation and gas-sensing properties of SnO_2 aerogel films
     SnO_2 sol was prepared by a reaction of SnCl_4·5H_2O and 1,2-epoxypropane in ethanol system. Then, the SiO_2 substrates were dipped into the solution and withdrawn from the bath at a constant rate to coat film. After sol geled, the coated substrates were dried by CO_2 supercritical drying to give the SnO_2 aerogel films. SnO_2 aerogel films also were coated on gas-sensing components by the above method to test its gas-sensing properties for ethanol, acetone and gasoline. SnO_2 aerogel film was composed of 4-5 nm crystalline particles. The thickness of film was 250 nm. The surface area was 388 m~2/g and average pore size was 8.2 nm(mesoporous structure). The XRD patterns showed its cassiterite structure of the prepared SnO_2 film. After aging at 250℃, the film was stale and no cracks on the film surface can be observed and the particles did not grew up, but the crystalline degree was increased. The gas-sensing components structured by SnO_2 aerogel films had responses for 2-100 ppm ethanol, acetoneand and gasoline in the temperature range of 160℃-440℃with a rapid response/recovery speed.
引文
1. Kistler, S. S. Coherent expanded aerogels and jellies Nature 1931,727, 741.
    
    2. Nicolaon, G. A.; Teichner, S. Preparation des aerogels de silice apartir dorthosilicate de methyle en milieu alcoolique et leurs proprietes J. Bull. Soc. Chim. 1968,5,1906-1911.
    
    3. Tewari, P. H.; Hunt, A. J.; Lofftus, K. D. Ambient-temperature supercritical drying of tansparent silica aerogels Mater. Lett. 1985, 3, 363-367.
    
    4. Pekala, R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde J. Mater. Sci. 1989, 24, 3221-3227.
    
    5. Mohanan, J. L.; Arachchige, I. U.; Brock, S. L. Porous Semiconductor Chalcogenide Aerogels Science 2005, 307, 397-340.
    
    6. Estella, J.; Echeverria, J. C; Laguna M.; Garrido J. J. Effects of aging and drying conditions on the structural and textural properties of silica gels Micropor. Mesopor. Mater. 2007,102, 274-282.
    
    7. Donatti, D. A.; Ruiz, A. I.; Vollet, D. R. From sol to aerogel: a study of the nanostructural characteristics of TEOS derived sonogels J. Non-Cryst. Solids 2001,292, 44-49.
    
    8. Alaoui, A. H.; Woignier, T.; Pernot, F.; Phalippou, J.; Hihi, A. Stress intensity factor in silica alcogels and aerogels J. Non-Cryst. Solids 2000, 265, 29-35.
    
    9. Husing, N.; Schubert, U. Aerogels-airy materials: chemistry, structure, and properties Angew. Chem. Int. Ed. 1998,37, 22-45.
    
    10. Fricke, J.; Tilltson, T. Aerogels: production, characterization, and applications Thin Solid Films 1997, 297, 212-223.
    
    11. Pierre, A. C; Pajonk, G. M. Chemistry of aerogels and their applications Chem. Rev. 2002,102, 4243-4265.
    
    12. Rogacki, G.; Wawrzyniak, P. Diffusion of ethanol-liquid CO_2 in silica aerogel J. Non-Cryst. Solids 1995,186, 73-77.
    
    13. Bray, C. L.; Tan, B.; Wood, C. D.; Cooper, A. I. High-throughput solubility measurements of polymer libraries in supercritical carbon dioxide J. Mater. Chem. 2005, 75, 456-459.
    
    14. Novak, Z.; Knez, Z. Diffusion of methanol-liquid CO_2 and methanol-supercritical CO_2 in silica aerogels J. Non-Cryst. Solids 1997, 221, 163-169.
    
    15. Finlay, K.; Gawryla, M. D.; Schiraldi, D. A. Biologically based Fiber-reinforced/ clay aerogel composites Ind. Eng. Chem. Res. 2008, 47, 615-619.
    
    16. Dagan, G.; Tomkiewicz, M. TiO_2 aerogels for photocatalytic decontamination of aquatic environments J. Phys. Chem. 1993, 97, 12651-12655.
    
    17. Meng, R; Schlup, J. R.; Fan, L. T. Fractal analysis of polymeric and particulate titania aerogels by adsorption Chem. Mater. 1997,9, 2459-2463.
    
    18. Frabetti, E.; Deluga, G. A.; Smyrl, W. H. X-ray absorption spectroscopy study of Cu_(0.25)V_2O_5 and Zn_(0.25)V_2O_5 aerogel-like cathodes for lithium batteries J. Phys. Chem. 5 2004,108, 3765-3771.
    
    19. Yu, K. M. K.; Yeung, C. M. Y.; Thompsett, D.; Tsang, S. C. Aerogel-coated metal nanoparticle colloids as novel entities for the synthesis of defined supported metal catalysts J. Phys. Chem. B 2003,107, 4515-4526.
    
    20. Prakash, S. S.; Brinker, C. J.; Hurd A. J. Silica aerogel films at ambient pressure J. Non-Cryst. Solids 1995,190, 264-275.
    
    21. Fidalgo, A.; Farinha, J. P. S.; Martinho, J. M. G.; Rosa, M. E.; Ilharco, L. M. Hybrid silica/polymer aerogels dried at ambient pressure Chem. Mater. 2007,19, 2603-2609.
    
    22. Li, W.-C; Lu, A.-H.; Schuth, F. Preparation of monolithic carbon aerogels and investigation of their pore interconnectivity by a nanocasting pathway Chem. Mater. 2005,17, 3620-3626.
    
    23. Carr, S. W.; Courtney, L.; Sullivan, A. C. Effects of molecular organic additives on formation and properties of organosilicate and silica xerogels correlated to structural properties of the additive Chem. Mater. 1997, 9, 1751-1756.
    24. Arachchige, I. U.; Brock, S. L. Sol-gel assembly of CdSe nanoparticles to form porous aerogel networks J. Am. Chem. Soc. 2006,128, 7964-7971.
    25. Eychmller, A. Aerogels from semiconductor nanomaterials Angew. Chem. Int. Ed. 2005,44,4839-4841.
    26. Bag, S.; Trikalitis, P. N.; Chupas, P. J.; Armatas, G. S.; Kanatzidis, M. G. Porous semiconducting gels and aerogels from chalcogenide clusters Science 2007, 317, 490-493.
    27. Daniel, C.; Alfano, D.; Venditto, V.; Cardea, S.; Reverchon, E.; Larobina, D.; Mensitieri, G.; Guerra, G. Aerogels with a microporous crystalline host phase Adv. Mater. 2005, 17,1515-1518.
    28. Bryning, M. B.; Milkie, D. E.; Islam, M. F.; Hough, L. A.; Kikkawa, J. M.; Yodh, A. G. Carbon nanotube aerogels Adv. Mater. 2007,19, 661-664.
    29. Casu, A.; Casula, M. F.; Corrias, A.; Falqui, A.; Loche, D.; Marras, S. Magnetic and structural investigation of highly porous CoFe_2O_4-SiO_2 nanocomposite aerogels J. Phys. Chem. C2007, 111, 916-922.
    30. Blacher, S.; Pirard, R.; Pirard, J. P.; Sahouli, B.; Brouers, F. On the texture characterization of mixed SiO_2-ZrO_2 aerogels using the nitrogen adsorption-desorption isotherms: classical and fractal methods Langmuir 1997, 13, 1145-1149.
    31. Liang, C.; Sha, G.; Guo, S. Resorcinol-formaldehyde aerogels prepared by supercritical acetone drying J. Non-Cryst. Solids 2000, 271, 167-170.
    32. Lenza, R. F. S.; Vasconcelos, W. L. Study of the influence of some DCCAs on the structure of sol-gel silica membranes J. Non-Cryst. Solids 2003, 330, 216-225.
    33. Rao, A. V.; Kulkarni, M. M. Effect of glycerol additive on physical properties of hydrophobic silica aerogels Mater. Chem. Phys. 2002, 77, 819-825.
    34. Einarsrud, M.-A. Light gels by conventional drying J. Non-Cryst. Solids 1998, 225, 1-7.
    35. Kim, G.-S.; Hyun, S.-H. Synthesis of window glazing coated with silica aerogel films via ambient drying J. Non-Cryst. Solids 2003, 320,125-132.
    
    
    36. Hwang, S.-W.; Jung, H.-H.; Hyun, S.-H.; Ahn, Y.-S. Effective preparation of crack-free silica aerogels via ambient drying J. Sol-Gel Sci. Techn. 2007, 47,139-146.
    
    37. Shi, F.; Wang, L.; Liu, J. Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process J. Mater. Lett. 2006, 60, 3718-3722.
    
    38. Petricevic, R.; Glora, M.; Fricke, J. Planar fibre reinforced carbon aerogels for application in PEM fuel cells Carbon 2001, 39, 857-867.
    
    39. Akimov, Yu. K. Fields of application of aerogels Instrum. Exper. Tech. 2003, 46, 287-299.
    
    40. Hrubesh, L. W. Aerogel applications J. Non-Cryst. Solids 1998, 225, 335-342.
    
    41. Schmidt, M.; Schwertfeger, F. Applications for silica aerogel products J. Non-Cryst. Solids 1998, 225, 364-368.
    
    42. Burnett, D. S. NASA returns rocks from a comet Science 2006, 314, 1709-1710.
    
    43. Cantin, M.; Casse, M.; Koch, L. Silica aerogels used as cherenkov radiators Nucl. Instrm. Methods 1974,118, 177-182.
    
    44. Yoldas, B. E.; Annen, M. J.; Bostaph, J. Chemical engineering of aerogel morphology formed under nonsupercritical conditions for thermal insulation Chem. Mater. 2000,12, 2475-2484.
    
    45. Cheetham, A. K.; Mellot, C. F. In situ studies of the sol-gel synthesis of materials Chem. Mater. 1997, 9, 2269-2279.
    
    46. Mann, S.; Burkett, S. L.; Davis, S. A.; Fowler, C. E.; Mendelson, N. H.; Sims, S. D.; Walsh, D.; Whilton, N. T. Sol-gel synthesis of organized matter Chem. Mater. 1997,9,2300-2310.
    
    47. Uhlmann, D. R.; Teowee, G.; Boulton, J. The future of sol-gel science and technology J. Sol-Gel Sci. Techn. 1997, 8, 1083-1091.
    
    48. Orcel, G.; Hench, L. L.; Artaki, I.; Jones, J.; Zerda, T. W. Effect of formamide additive of the chemistry of silica sol-gels II Gel. structure J. Non-Cryst. Solids 1988,705,223-231.
    
    49. Hench, L. L.; Orcel, G. Physical-chemical and biochemical factors in silica sol-gels J. Non-Cryst. Solids 1986, 82, 1-10.
    
    50. Aelion, A.; Loebel, A.; Eirich, F. Hydrolysis of ethyl silicate J. Am. Chem. Soc.1950,72,5705-5712.
    
    51. Schmidt, H.; Scholze, H.; Kaiser, A. Principles of hydrolysis and condensation reaction of alkoxysilanes J. Non-Cryst. Solids 1984, 63, 1-11.
    
    52. Yamane, M.; Inoue, S.; Yasumori, A. Sol-gel transition in the hydrolysis of silicon methoxide J. Non-Cryst. Solid 1984, 63, 13-21.
    
    53. Colby, M. W.; Osaka, A.; MacKenzie, J. D. Effects of temperature on formation of silica gel J. Non-Cryst.Solids, 1986,82, 37-41.
    
    54. Nogami, M.; Moriya, Y. Glass formation through hydrolysis of Si(OC_2H_5)_4 with NH_4OH and HC1 solution J. Non-Cryst. Solids 1980,37, 191-201.
    
    55. Brinker, C. J.; Scherer, G. W. Sol-gel science, Academic Press: New York, 1989.
    
    56. Dwivedi, R. K. Drying behaviour of alumina gels J. Mater. Sci. Lett. 1986, 5, 373-376.
    
    57. Scherer, G. W. Drying gels J. Non-Cryst. Solids 1986, 87,199-225.
    
    1. (a) Pierre, A. C; Pajonk, G. M. Chemistry of aerogels and their applications Chem. Rev. 2002, 102, 4243-4266.
    
    (b) Tong, L.; Lou, J.; Gattass, R. R.; He, S.; Chen, X.; Liu, L.; Mazur, E. Assembly of silica nanowires on silica aerogels for microphotonic devices Nano Lett. 2005, 5, 259-262.
    
    (c) Kabbour, H.; Baumann, T.F.; Satcher, J. H., Jr.; Saulnier, A.; Ahn, C. C. Toward new candidates for hydrogen storage: high-surface-area carbon aerogels Chem. Mater. 2006, 18, 6085-6087.
    
    (d) Wallace, J. M.; Rice, J. K.; Pietron, J. J.; Stroud, R. M.; Long, J.W.; Rolison, D. R. Silica nanoarchitectures incorporating self-organized protein superstructures with gas-phase bioactivity Nano Lett. 2003, 5, 1463-??1467.
    
    (e) Costela, A.; Garcia, Moreno, I.; Gomez, C; Garcia, O.; Sastre, R.; Roig, A.; Molins, E. Polymer-filled nanoporous silica aerogels as hosts for highly stable solid-state dye lasers J. Phys.Chem. B 2005, 109, 4475-4480.
    
    (f) Pecharroman, C; Bartolome, J. R; Requena,J.; Moya, J. S.; Deville, S.; Chevalier, J.; Fantozzi, G; Torrecillas, R. Percolative mechanism of aging in zirconia-containing ceramics for medical applications Adv. Mater. 2003, 15, 507-511.
    
    2. (a) Husing, N.; Schubert, U. Aerogels - airy materials: chemistry, structure, and properties Angew. Chem., Int. Ed. 1998, 37, 22-45.
    
    (b) Carlson, G; Lewis, D.; McKinley, K.; Richardson, J.; Tillotson, T. Aerogel commercialization: technology, markets and costs J. Non-Cryst. Solids 1995, 186, 372-379.
    
    (c) Fricke, J.; Tillotson, T. Aerogels: production, characterization, and applications Thin Solid Films 1997, 297,212-223.
    
    3. (a) Brodsky, C. J.; Ko, E. I. Effect of supercritical drying temperature on the properties of zirconia, niobia and titania-silica aerogels J. Non-Cryst. Solids 1995, 186, 88-95.
    
    (b) Zeng, Y. W.; Riello, P.; Benedetti, A.; Fagherazzi, G Fractal model of amorphous and semicrystalline nano-sized zirconia aerogels J. Non-Cryst. Solids 1995,185, 78-83.
    
    (c) Suh, D. J.; Park, T. Sol-gel strategies for pore size control of high-surface-area transition-metal oxide aerogels J. Chem. Mater. 1996, 8, 509-513.
    
    (d) Mohanan, J. L; Brock, S. L. Influence of synthetic and processing parameters on the surface area, speciation, and particle formation in copper oxide/silica aerogel composites Chem. Mater. 2003, 75, 2567-2576.
    
    (e) Stocker, C; Baiker, A. Zirconia aerogels: effect of acid-to-alkoxide ratio, alcoholic solvent and supercritical drying method on structural properties J. Non-Cryst. Solids 1998, 223, 165-178.
    
    (f) Suh, D. J.; Park,T.-J. Synthesis of high-surface-area zirconia aerogels with a well-developed mesoporous texture using CO_2 supercritical drying Chem. Mater. 2002,14, 1452-1454.
    
    (g) Ho wells, A. R.; Fox, M. A. Steady-state fluorescence of dye-sensitized TiO_ xerogels and aerogels as a probe for local chromophore aggregation J. Phys. Chem. A 2003, 107, 3300-3304.
    
    4. (a) Celerier, S.; Laberty-Robert, C; Long, J. W.; Pettigrew, K. A.;Stroud, R. M.; Rolison, D. R.; Ansart, R; Stevens, P. Synthesis of La_(9.33)Si_O_(26) pore-solid nanoarchitectures via epoxide-driven sol-gel chemistry Adv. Mater. 2006, 18, 615-618.
    
    (b) Gash, A. E.; Satcher, J. H., Jr.; Simpson, R. L. Strong akaganeite aerogel monoliths using epoxides: synthesis and characterization Chem. Mater. 2003, 15, 3268-3275.
    (c) Baumann, T. F.; Gash, A. E.; Chinn, S. C.; Sawvel, A.M.; Maxwell, R. S.; Satcher, J. H., Jr. Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors Chem. Mater. 2005,17, 395-401.
    (d) Gash, A. E.; Tillotson, T. M.; Satcher, J. H., Jr.; Poco, J. F.; Hrubesh, L.W.; Simpson, R. L. Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts Chem. Mater. 2001,13, 999-1007.
    5. (a) Gash, A. E.; Tillotson, T. M.; Satcher, J. H., Jr.; Hrubesh, L. W.; Simpson, R. L. New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors J. Non-Cryst. Solids 2001, 285, 22-28.
    (b) Chervin, C. N.; Clapsaddle, B. J.; Chiu, H. W.; Gash, A. E.; Satcher, J. H., Jr.; Kauzlarich, S. M. Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol-gel route Chem. Mater. 2005,17, 3345-3351.
    6. Sun, Q.; Zhang, Y.; Deng, J.; Chen, S.; Wu, D. A novel preparation process for thermally stable ultrafine tetragonal zirconia aerogel Appl. Catal., A 1997, 152, 165-171.
    7. (a) Wan, Y.; Ma, J.; Zhou, W.; Zhu, Y.; Song, X.; Li, H. Preparation of titania-zirconia composite aerogel materialby sol-gel combined with supercritical fluid drying Appl. Catal., A 2004, 277, 55-59.
    (b) Liu, J.; Shi, J.; He, D.; Zhang, Q.; Wu, X.; Liang, Y.; Zhu, Q. Surface active structure of ultra-fine Cu/ZrO_2 catalysts used for the CO2_ + H_2 to methanol reaction Appl. Catal. A 2001, 218, 113-119.
    (c) Quaschning, V.; Auroux, A.; Deutsch, J.; Lieske, H.; Kemnitz, E. Microcalorimetric and catalytic studies on sulfated zirconia catalysts of different preparations J. Catal. 2001, 203, 426-433.
    8. (a) Singgal, A.; Toth, L. M.; Lin, J. S.; Affholter, K. Zirconium(IV) tetramer/ octamer hydrolysis equilibrium in aqueous hydrochloric acid solution J. Am. Chem. Soc. 1996, 118, 11529-11534.
    (b) Aberg, M.; Glaser, J. ~(17)O and ~1H NMR study of the tetranulear hydroxo zirconium complex in aqueous solution Inorg. Chim. Acta 1993, 206, 53-61.
    9. He, T.; Jiao, X.; Chen, D.; Lu, M.; Yuan, D.; Xu, D. Synthesis of zirconium sols and fibers by electrolysis of zirconium oxychloride J. Non-Cryst. Solids 2001, 283, 56-62.
    10. (a) Diamant, Y.; Chappel, S.; Chen, S. G.; Melamed, O.; Zaban, A. Core-shell nanoporous electrode for dye sensitized solar cells: the effect of shell characteristics on the electronic properties of the electrode coord Chem. Rev. 2004, 248, 1271-1276.
    (b) Sun, Z.;Zhang, X.; Na, N.; Liu, Z.; Han, B.; An, G. Synthesis of ZrO_2-carbon nanotube composites and their application as chemiluminescent sensor material for ethanol J. Phys. Chem. B 2006, 110,13410-13414.
    (c) Mamak, M.; Coombs, N.; Ozin, G. A. Mesoporous nickelyttria-zirconia fuel cell materials Chem. Mater. 2001,13, 3564-3570.
    
    (d) Wang,C. M.; Fan, K. N.; Liu, Z. P. Origin of oxide sensitivity in gold-bBased catalysts: a first principle study of CO oxidation over Au supported on monoclinic and tetragonal ZrO_2 J. Am. Chem. Soc. 2007, 129, 2642-2647.
    (e) Samaranch, B.; Ramirez de la Piscina, P.; Clet, G.; Houalla, M.; Horns, N. Study of the structure, acidic, and catalytic properties of binary mixed-oxide MoO_3-ZrO_2 systems Chem. Mater. 2006,18, 1581-1586.
    11. (a) Shen, P.; Che, Y. Series of inorganic chemistry (in Chinese), Vol. 8; Science Press: Beijing, 1998; pp125-130.
    (b) Clearfield, A. The mechanism of hydrolytic polymerization of zirconyl solutions J Mater. Res. 1990, 5, 161-162.
    12. Wright, J. D.; Sommerdijk, N. A. J. M. Sol-gel materials; Gordonand Breach Science: Amsterdam, 2001; pp 53-60.
    13. Moon, Y. T.; Park, H. K.; Kim, D. K.; Kim, C. H. Preparation of monodisperse and spherical zirconia powders by heating of alcohol-aqueous salt solution J. Am. Ceram. Soc. 1995, 78, 2690-2694.
    14. (a) Hrubesh, L. W. Aerogel applications J. Non-Cryst. Solids 1998, 225, 335-342.
    (b) Bedilo, A. F.; Klabundey, K. J. Synthesis of catalytically active sulfated zirconia aerogels J. Catal. 1998, 776,448-458.
    (c) Smirnova, I.; Suttiruengwong, S.; Arlt, W. Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems J. Non-Cryst. Solids 2004, 350, 54-60.
    (d) Bedilo, A. F.; Klabunde, K. Synthesis of high surface area zirconia aerogels using high temperature supercritical drying J. Nanostruct. Mater. 1997, 8, 119-135.
    (e) Sui, R.; Rizkalla, A. S.; Charpentier, P. A. Direct synthesis of zirconia aerogel nanoarchitecture in supercritical CO_2 Langmuir 2006, 22, 4390-4396.
    (f)Luengo, M. A. M.; Sermon, P. A.; Sun, Y.; Vong, M. S. W.; Self, V. A. Comparison of the surface reactivity and bulk properties of ZnO and ZrO_2: supports for CO hydrogenation catalysts Solid State Ionics 1997,101-103, 1049-1052.
    (g) Wu, Z. G.; Zhao, Y. X.; Xu, L. P.; Liu, D. S. Preparation of zirconia aerogel by heating of alcohol-aqueous salt solution J. Non-Cryst. Solids 2003, 330, 274-277.
    15. (a) Ouyang, F.; Nakayama, A.; Tabada, K.; Suzuki, E. Infrared study of a novel acid-base site on ZrO_2 by adsorbed probe molecules. I. Pyridine, carbon dioxide, and formic acid adsorption J. Phys. Chem. B 2000, 104, 2012-2018.
    (b)Kantcheva, M; Ciftlikli, E. Z. FTIR spectroscopic characterization of NOx species adsorbed on ZrO_2 and ZrO_2-SO_4~(2-) J. Phys. Chem. B 2002, 106, 3941-3949.
    16. Mohammed, H. A.; Salman, Y. K. Combined convection heat transfer for thermally developing aiding flow in an inclined circular cylinder with constant heat flux Appl. Thermal Engineer. 2007, 27, 1236-1247.
    17. (a) Phanawadee, P.; Yablonsky, G. S.; Preechasanongkit, P.; Somapa, K. A new correlation for determination of the effective knudsen diffusivity of a gas in a TAP reactor Ind. Eng. Chem. Res. 1999, 38, 2877-2878.
    (b) Bielza, J. M.;Kamusewitz, H.; Keller, M.; Paul, D. Knudsen-poiseuille transition by means of pneumatic scanning force microscopy Langmuir 2002, 18, 8129-8133.
    (c)Passian, A.; Warmack, R. J.; Wig, A.; Farahi, R. H.; Meriaudeau, F.; Ferrell, T. L.; Thundat, T. Observation of knudsen effect with microcantilevers Ultramicroscopy 2003, 97, 401-406.
    
    
    1. Husing, N.; Schubert, U. Aerogels-airy materials: chemistry, structure, andproperties Angew. Chem. Int. Ed. 1998, 37, 22-45.
    
    2. Pierre, A. C; Pajonk, G. M. Chemistry of aerogels and their applications Chem. Rev. 2002,102, 4243-4265.
    
    3. (a) Mohanan, J. L.; Arachchige, I. U.; Brock, S. L. Porous semiconductor chalcogenide aerogels Science 2005, 307, 397-400.
    
    (b) Arachchige, I. U.; Brock, S. L. Sol-gel methods for the assembly of metal chalcogenide quantum dots Acc. Chem. Res. 2007, 40, 801-809.
    
    4.(a) Baumann, T. E.; Kucheyev, S. O.; Gash, A. E.; Satcher Jr., J. H. Facile dynthesis of a crystalline, high-surface-area SnO_2 aerogel Adv. Mater. 2005,17, 1546-1548.
    
    (b) Long, J. W.; Logan, M. S.; Modes, C. P.; Carpenter, E. E.; Stroud, R. M.; Rolison, D. R. Nanocrystalline iron oxide aerogels as mesoporous magnetic architectures J. Am. Chem. Soc. 2004, 126, 16879-16889.
    
    (c) Novak, Z.; Kotnik, P.; Knez, Z. Preparation of WO_3 aerogel catalysts using supercritical CO_2 drying J. Non-Cryst. Solids 2004, 350, 308-313.
    
    (d) Aguado-Serrano, J.; Rojas-Cervantes, M. L. Titania aerogels: influence of synthesis parameters on textural, crystalline, and surface acid properties Micro. Meso. Mater. 2006, 88, 205-213.
    
    (e) Gao, Y. P.; Sisk, C. N.; Hope-Weeks, L. J. A sol-gel route to synthesize monolithic zinc oxide aerogels Chem. Mater. 2007,19, 6007-601 l.
    
    (f) Moreno-Castilla, C; Maldonado-Hodar, F. J. Carbon aerogels for catalysis applications: a overview Carbon 2005, 43, 455-465.
    
    (g) Lee, J.; Kim, J.; Hyeon, T. Recent process in the synthesis of porous carbon materials Adv. Mater. 2006, 18, 2073-2094.
    
    5. (a) Koppel, R. A.; Stocker, C; Baiker, A. Copper- and silver-zirconia aerogels: preparation, structural properties and catalytic behavior in methanol synthesis from carbon dioxide J. Catal. 1998, 179, 515-527.
    
    (b) Suh, D. J.; Park, T. J.; Kim, J. H.; Kim, K. L. Nickel-alumina aerogel catalysts prepared by fast sol-gel??synthesis J. Non-Cryst. Solids 1998, 225, 168-172.
    
    (b) Zhao, Z.; Chen, D.; Jiao, X. Zirconia aerogels with high surface area derived from sols prepared by electrolyzing zirconium oxychloride solution: comparison of aerogels prepared by freeze-drying and supercritical CO_2 (1) extraction J. Phys. Chem. C 2007, 111, 18738-18743.
    
    6.(a) Chen, X.; Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications Chem. Rev. 2007,107, 2891-2959.
    
    (b) Schneider, M; Baiker, A. Titania-based aerogels Catal. Today 1997, 35, 339-365.
    
    7. (a) Campbell, L. K.; Na, B. K.; KO, E. I. Synthesis and characterization of titania aerogels Chem. Mater. 1992, 4, 1329-1333.
    
    (b) Dagan, G.; Tomkiewicz, M. TiO_2 aerogels for photocatalytic decontamination of aquatic environments J. Phys. Chem. 1993, 97, 12651-12655.
    
    (c) Zhu, Z.; Tsung, L. Y.; Tomkiewicz, M. Morphology of TiO_2 aerogels. 1. electron microscopy J. Phys. Chem. 1995, 99, 15945-15949.
    
    (d) Zhu, Z.; Lin, M.; Dagan, G.; Tomkiewicz, M. Morphology of TiO_2 aerogels. 2. small-angle neutron scattering J. Phys. Chem. 1995, 99, 15950-15954.
    
    8.(a) Meng, F.; Schlup, J. R.; Fan, L. T. Fractal analysis of polymeric and particulate titania aerogels by adsorption Chem. Mater. 1997, 9, 2459-2463.
    
    (b) Kelly, S.; Pollak, F. H.; Tomkiewicz, M. Raman spectroscopy as a morphological probe for TiO_2 aerogels J. Phys. Chem. B 1997,101, 2730-2734.
    
    (c) Howells, A. R.; Fox, M. A. Steady-state fluorescence of dye-sensitized TiO_2 xerogels and aerogels as a probe for local chromophore aggregation J. Phys. Chem. A 2003,107, 3300-3304.
    
    9. (a) Li, Y.-Q.; Fu, S.-Y.; Yang, G.; Li, M. Preparation and characterization of a novel solid titania precursor J. Non-Cryst. Solids 2006, 352, 3339-3342.
    
    (b) Duminica, F.-D.; Maury, F.; Abisset, S. Pyrosol deposition of anatase TiO_2 thin films starting from Ti(OiPr)4/acetylacetone solutions Thin Solid Films 2007, 515,7732-7739.
    
    10. (a) Chen, D.; Jiao, X. Solvothermal synthesis and characterization of barium titanate powders J. Am. Ceram. Soc. 2000, 83, 2637-2639.
    
    (b) Chen, D.; Xu, R. Solvothermal synthesis and characterization of PbTiO_3 powders J. Mater. Chem.??1998, 8,965-969.
    
    (c) de Moor, P.-P. E. A.; Beelen, T. P. M.; van Santen, R. A. In situ observation of nucleation and crystal growth in zeolite synthesis, a small-angle X-ray scattering investigation on Si-TPA-MFI J. Phys. Chem. B.1999, 103, 1639-1650.
    
    (d) Tosheva, L.; Valtchev, V. P. Nanozeolites: synthesis, crystallization mechanism, and applications Chem. Mater. 2005,17, 2494-2513.
    
    11.(a) Fidalgo, A.; Farinha, J. P. S.; Martinho, J. M. G; Rosa, M. E.; Ilharco, L. M. Hybrid silica/polymer aerogels dried at ambient pressure Chem. Mater. 2007,19, 2603-2609.
    
    (b) Mulik, S.; Sotiriou-Leventis, C; Leventis, N. Time-efficient acid-catalyzed synthesis of resorcinol-formaldehyde aerogels Chem. Mater. 2007, 79,6138-6144.
    
    12.(a) Fricke, J.; Tilltson, T. Aerogels: production, characterization, and applications Thin Solid Films 1997, 297, 212-223.
    
    13. Gesser, H. D.; Goswami, P. C. Aerogels and related porous materials Chem. Rev. 1989, 89, 765-788.
    
    14.(a) Sakai, N.; Wang, R.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Effect of ultrasonic treatment on highly hydrophilic TiO_2 surfaces Langmuir 1998, 14, 5918-5920.
    
    (b) Horikawa, T.; Katoh,M; Tomida, T. Preparation and characterization of nitrogen-doped mesoporous titania with high specific surface area Micropor. Mesopor. Mater. 2008,110, 397-404.
    
    (c) Wang, C.-T.; Ro, S.-H. Nanoparticle iron-titanium oxide aerogels Mater. Chem. Phys. 2007,101, 41-48.
    
    (d) Premkumar, J. Highly hydrophilic TiO_2 surface induced by anodic potentials Chem. Mater. 2005,17, 944-946.
    
    15.(a) Xin, H.; Ebina, Y.; Ma, R.; Takada, K.; Sasaki, T. Thermally stable luminescent composites fabricated by confining rare earth complexes in the two-dimensional gallery of titania nanosheets and their photophysical properties J. Phys. Chem. B. 2006, 110, 9863-9868.
    
    (b) Huang, X.; Zhang, W. Study on successively preparation of nano-TiO2 ethanol colloids by pulsed laser ablation and fluorescence property Appl. Surf. Sci. 2008, 254, 3403-3407.
    
    (c) Guo, C; Xiang, J.; Feng, J.; Tang, Y.; Chen, C; Xu, G. Effect of TiO_2 colloids on the fluorescence behavior of two cyanine dyes J. Colloid Interface Sci. 2002, 246, 401-409.
    (d) Wang, Y.; Cheng, H.; Zhang, L.; Hao, Y.; Ma, J.; Xu, B.; Li, W. The preparation, characterization, photoelectrochemical and photocatalytic properties of lanthanide metal-ion-doped TiO_2 nanoparticles J. Mol. Catal. A: Chem. 2000, 151,205-216.
    
    
    1. (a) Pang, G; Chen, S.; Koltypin, Y; Zaban, A.; Feng, S.; Gedanken, A. Controlling the particle size of calcined SnO_2 nanocrystals Nano Lett. 2001, 1, 723-726.
    
    (b) Kovalenko, V. V.; Zhukova, A. A.; Rumyantseva, M. N.; Gaskov, A. M.; Yushchenko, V. V.; Ivanova, I. I.; Pagnier, T. Surface chemistry of nanocrystalline SnO_2: effect of thermal treatment and additives Sens. Actuators B 2007, 126, 52-55.
    
    (c) Cheng, B.; Russell, J. M.; Shi, W. S.; Zhang, L.; Samulski, E. T. Large-scale, solution-phase growth of single-crystalline SnO_2 nanorods J. Am. Chem. Soc. 2004,126, 5972-5973.
    2. (a) Kuang, Q.; Lao, C.; Wang, Z. L.; Xie, Z.; Zheng, L. High-sensitivity humidity sensor based on a single SnO_2 nanowire J. Am. Chem. Soc. 2007, 129, 6070-6071.
    (b) Maiti, A.; Rodriguez, J. A.; Law, M.; Kung, P.; McKinney, J. R.; Yang, P. SnO_2 nanoribbons as NO_2 sensors: insights from first principles calculations Nano Lett. 2003, 3, 1025-1028.
    3. (a) Lantto, V.; Rantala, T. T.; Rantala, T. S. Atomistic understanding of semiconductor gas sensors J. Eur. Ceram. Soc. 2001, 21, 1961-1965.
    (b) Ponce,M.A.; Castro, M. S.; Aldao, C. M. Influence of oxygen adsorption and diffusion on the overlapping of intergranular potential barriers in SnO_2 thick films Mater. Sci. Eng. B 2004, 111, 14-19.
    (c) Ahn, J.-P.; Kim, J.-H.; Park, J.-K.; Huh, M.-Y. Microstructure and gas-sensing properties of thick film sensor using nanophase SnO_2 powder Sens. Actuators B 2004, 99, 18-24.
    (d) Caldararu, M.; Munteanu, C.; Chesler, P.; Carata, M.; Hornoiu, C.; Ionescu, N. I.; Postole, G.; Bratan, V. Supported oxides as combustion catalysts and as humidity sensors: tuning the surface behavior by inter-phase charge transfer Micropor. Mesopor. Mater. 2007, 99, 126-131.
    4. (a) Barsan, N.; Stetter, J. R.; Findlay, M., Jr.; Gopel, W. High-performance gas sensing of CO: comparative tests for semiconducting (SnO_2-based) and for amperometric gas sensors Anal. Chem. 1999, 71, 2512-2517.
    (b) McCue, J. T.;Ying, J. Y. SnO_2-In_2O_3 nanocomposites as semiconductor gas sensors for CO and NO_x detection Chem. Mater. 2007,19, 1009-1015.
    (c) Hidalgo, P.; Castro, R. H. R.; Coelho, A. C. V.; Gouvea, D. Surface segregation and consequent SO_2 sensor response in SnO_2-NiO Chem. Mater. 2005,17, 4149-4153.
    (d) Gupta, S.;Roy, R. K.; Chowdhury, M. P.; Pal, A. K. Synthesis of SnO_2/Pd composite films by PVD route for a liquid petroleum gas sensor Vacuum 2004, 75, 111-119.
    (e)Takada, T.; Maekawa, T.; Dougami, N. A. Temperature drop on exposure to reducing gases for various metal oxide thin film Sens. Actuators B 2001, 77, 307-311.
    (f) Kante, I.; Devers, T.; Harba, R.; Andreazza-Vignolle, C.; Andreazza, P. Electrical behaviour of fractal nanosized tin dioxide films prepared by electrodeposition for gas sensing applications Microelectron. J. 2005,36, 639-643.
    5. (a) Arbiol, J.; Gorostiza, P.; Cirera, A.; Cornet, A.; Morante, J. R. In situ analysis of the conductance of SnO_2 crystalline nanoparticles in the presence of oxidizing or reducing atmosphere by scanning tunneling microscopy Sens. Actuators B 2001, 78, 57-63.
    (b) Maffis, T. G. G.; Owen, G. T.; Penny, M. W.; Starke, T. K. H.; Clark, S. A.; Ferkel, H.; Wilks, S. P. Nano-crystalline SnO_2 gas sensor response to O_2 and CH_4 at elevated temperature investigated by XPS Surf. Sci. 2002, 520, 29-34.
    (c) Korotcenkov, G.; Nazarov, M.; Zamoryanskaya, M. V.; Ivanov, M.; Cirera, A.; Shimanoe, K. Cathodo-luminescence study of SnO_2 powders aimed for gas sensor applications Mater. Sci. Eng. B 2006, 130, 200-205.
    6. (a) Rumyantseva, M. N.; Gaskov, A. M; Rosman, N.; Pagnier, T.; Morante, J. R. Raman Surface Vibration Modes in Nanocrystalline SnO_2: Correlation with Gas Sensor Performances, Chem. Mater. 2005, 17, 893-901.
    (b) Koziej, D.; Barsan, N.; Hoffmann, V.; Szuber, J.; Weimar, U. Complementary phenomenological and spectroscopic studies of propane sensing with tin dioxide based sensors Sens. Actuators B 2005, 108, 75-83.
    (c) Lee, S.; Lee, G.-G.; Kim, J.; Kang, S.-J. A novel process for fabrication of SnO_2-based thick film gas sensors Sens. Actuators B 2007, 123, 331-335.
    (d) Kugishima, M.; Sakai, G.; Shimanoe, K.; Yamazoe, N. Development of SnO_2-based gas sensor sensitive to dilute ethylene oxide in air Sens. Actuators B 2005,108, 130-133.
    7. (a) Skuratovsky, I.; Glot, A.; Traversa, E. Modelling of the humidity effect on the barrier height in SnO_2 varistors Mater. Sci. Eng. B 2006, 128, 130-137.
    (b)Gulati, S.; Mehan, N.; Goyal, D. P.; Mansingh, A. Electrical equivalent model for SnO_2 bulk sensors Sens. Actuators B 2002, 87, 309-320.
    8. Setkus, A. Heterogeneous reaction rate based description of the response kinetics in metal oxide gas sensors Sens. Actuators B 2002, 87, 346-357.
    9. (a) Vaishnav, V. S.; Patel, P. D.; Patel, N. G. Preparation and characterization of indium tin oxide thin films for their application as gas sensors Thin Solid Films 2005, 487, 277-282.
    (b) Chen, Z. W.; Lai, J. K. L.; Shek, C. H. Mystery of porous SnO_2 thin film formation by pulsed delivery Chem. Phys. Lett. 2006, 422, 1-5.
    10. (a) Choe, Y.-S. New gas sensing mechanism for SnO_2 thin-film gas sensors fabricated by using dual ion beam sputtering Sens. Actuators B 2001, 77, 200-208.
    (b) Hyodo, T.; Sasahara, K.; Shimizu, Y.; Egashira, M. Preparation of macroporous SnO_2 films using PMMA microspheres and their sensing properties to NOx and H_2 Sens. Actuators B 2005, 106, 580-590.
    (c) Min, B. ;Choi, S. C_4H_(10) sensing characteristics of ion beam sputtered SnO_2 sensors Sens. Actuators B 2005,108, 125-129.
    11. (a) Korotcenkov, G. Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches Sens. Actuators B 2005, 107, 209-232.
    (b) Lopes, A.; Fortunato, E.; Nunes, P.; Vilarinho, P.; Martins, R. Correlation between the microscopic and macroscopic characteristics of SnO_2 thin film gas sensors Int. J. Inorg. Mater. 2001, 3, 1349-1351.
    (c) Lou, X.; Peng, C.; Wang, X.; Chu, W. Gas-sensing properties of nanostructured SnO_2- based sensor synthesized with different methods Vacuum 2007, 81, 883-889.
    12. (a) Epifani, M.; Francioso, L.; Siciliano, P.; Helwig, A.; Mueller, G.; Diaz, R.; Arbiol, J.; Morante, J. R. SnO_2 thin films from metalorganic precursors: synthesis, characterization, microelectronic processing and gas-sensing properties Sens. Actuators B 2007, 124, 217-226.
    (b) Kim, C. K.; Choi, S. M.; Noh, I. H.; Lee, J. H.; Hong, C.; Chae, H. B.; Jang, G. E.; Park, H. D. A study on thin film gas sensor based on SnO_2 prepared by pulsed laser deposition method Sens. Actuators B 2001, 77, 463-467.
    13. (a) Liu, Y; Koep, E.; Liu, M. A highly sensitive and fast-responding SnO_2 sensor fabricated by combustion chemical vapor deposition Chem. Mater. 2005, 17, 3997-4000.
    (b) Kwoka, M.; Ottaviano, L.; Szuber, J. AFM study of the surface morphology of L-CVD SnO_2 thin films Thin Solid Films 2007, 575, 8328-8331.
    (c) Jeong, J.; Choi, S. P.; Hong, K. J.; O, Y. T.; Song, H. J.; Koo, J. B.; Lee, I. H.; Park, J. S.; Shin, D. C. Atomic scale faceting and its effect on the grain size distribution of SnO_2 thin films during deposition Mater. Sci. Eng. B 2004, 110, 240-242.
    (d) Rosental, A.; Tarre, A.; Gerst, A.; Uustare, T.; Sammelselg, V. Atomic-layer chemical vapor deposition of SnO_2 for gas-sensing applications Sens. Actuators B 2001, 77,297-400.
    14. (a) Hetznecker, A.; Kohler, H.; Guth, U. Enhanced studies on the mechanism of gas selectivity and electronic interactions of SnO_2/Na~+-ionic conductors Sens. Actuators B 2007,120, 378-385.
    (b) Shukla, S.; Zhang, P.; Cho, H. J.; Seal, S.; Ludwig, L. Room temperature hydrogen response kinetics of nano-micro-integrated doped tin oxide sensor Sens. Actuators B 2007, 120, 573-583.
    (c)Shoyama, M.; Hashimoto, N. Effect of poly ethylene glycol addition on the microstructure and sensor characteristics of SnO_2 thin films prepared by sol-gel method Sens. Actuators B 2003, 93, 585-589.
    15. (a) Ju, D.; Chung, J.; You, D.; Kim, S. Preparation of Sb/SnO_2 particles and their films utilizing the dip-coating method Ind. Eng. Chem. Res. 1998, 37, 1827-1835.
    (b) Santos, M. A. D.; Antunes, A. C.; Ribeiro, C.; Borges, C. P. F.; Antunes, S. R. M.; Zara, A. J.; Pianaro, S. A. Electric and morphologic properties of SnO_2 films prepared by modified sol-gel process Mater. Lett. 2003, 57, 4378- 4381.
    (c) Wang, H.; Li, Y.; Yang, M. Fast response thin film SnO_2 gas sensors operating at room temperature Sens. Actuators B 2006,119, 380-383.
    16. (a) Fungo, F.; Otero, L.; Durantini, E. N.; Silber, J. J.; Sereno, L. E. Photosensitization of thin SnO_2 nanocrystalline semiconductor film electrodes with metallodiporphyrin J. Phys. Chem. B. 2000,104, 7644-7651.
    (b) Hyodo, T.;Abe, S.; Shimizu, Y.; Egashira, M. Gas-sensing properties of ordered mesoporous SnO_2 and effects of coatings thereof Sens. Actuators B 2003, 93, 590-600.
    17. (a) Pan, J. H.; Chai, S. Y.; Lee, C.; Park, S.-E.; Lee, W. I. Controlled formation of highly crystallized cubic and hexagonal mesoporous SnO_2 thin films J. Phys. Chem. C. 2007, 111, 5582-5587.
    (b) Velasquez, C; Rojas, F.; Esparza, J. M.; Ortiz, A.; Campero, A. Physicochemical aspects of novel surfactantless, self-
    ??templated mesoporous SnO_2 thin films J. Phys. Chem. B. 2006, 110, 11832-11837.
    
    (c) Fungo, R; Otero, L.; Borsarelli, C. D.; Durantini, E. N.; Silber, J. J.; Sereno, L. Photocurrent generation in thin SnO_2 nanocrystalline semiconductor film electrodes from photoinduced charge-separation state in porphyrin-C_(60) dyad J, Phys. Chem. B. 2002, 106, 4070-4078.
    
    (d) Yamazoe, N.; Shimanoe, K.; Sawada, C. Contribution of electron tunneling transport in semiconductor gas sensor Thin Solid Films 2007, 515, 8302- 8309.
    
    18.(a) Dolbec, R.; El Khakani, M. A.; A. Serventi, M.; Saint-Jacques, R. G. Influence of the nanostructural characteristics on the gas sensing properties of pulsed laser deposited tin oxide thin films Sens. Actuators B 2003, 93, 566-571.
    
    (b) Vuong, D. D.; Sakai, G.; Shimanoe, K.; Yamazoe, N. Preparation of grain size-controlled tin oxide sols by hydrothermal treatment for thin film sensor application, Sens. Actuators B 2004, 103, 386-391.
    
    (c) Vaezi, M. R.; Sadrnezhaad, S. K. Gas sensing behavior of nanostructured sensors based on tin oxide synthesized with different methods Mater. Sci. Eng. B 2007,140, 73-80.
    
    19. (a) Wang, Y.; Jiang, X.; Xia, Y. A solution-phase, precursor route to poly-crystalline SnO_2 nanowires that can be used for gas sensing under ambient conditions J. Am. Chem. Soc. 2003, 125, 16176-16177.
    
    (b) Shimizu, Y.; Hyodo, T.; Egashira, M. Meso- porous semiconducting oxides for gas sensor application, J. Eur. Ceram. Soc. 2004, 24, 1389-1398.
    
    (c) Wang, Y.; Wu, X.; Li, Y.; Zhou, Z. Meso-structured SnO_2 as sensing material for gas sensors Solid-State Electron. 2004, 48, 627-632.
    
    20.(a) Suh, D.; Park, T.; Han, H.; Lim, J. Synthesis of high-surface-area zirconia aerogels with a well-developed mesoporous texture using CO_2 supercritical drying Chem. Mater. 2002,14, 1452-1454.
    
    (b) I. L.; Wang, L.-Q.; Baumann, T.; Satcher, J. H., Jr.; Exarhos, G. J.; Ratcliffe, C. I.; Ripmeester, J. A. Probing the geometry and interconnectivity of pores in organic aerogels using hyperpolarized ~(129)Xe NMR spectroscopy moudrakovski J. Am. Chem. Soc. 2004, 126, 5052-5053.
    
    (c) Gao, Y. P.; Sisk, C. N.; Hope-Weeks, L. J. A sol-gel route to synthesize monolithic zinc oxide aerogels Chem. Mater. 2007,19, 6007-6011. (d) Gesser, H. D.; Goswami, P. C. Aerogels and related porous materials Chem. Rev. 1989,89, 765-788.
    21. (a) Husing, N.; Schubert, U. Aerogels-airy materials: chemistry, structure, and properties Angew. Chem. Int. Ed. 1998, 37, 22-45.
    (b) Kearby, K.; Swann, S. Jr. Aerogel catalysts dehydrations and decarboxylations Ind. Eng. Chem. 1940, 32, 1607-1614.
    (c) Pierre, A. C.; Pajonk, G. M. Chemistry of aerogels and their applications Chem. Rev. 2002,102, 4243-4265.
    22. (a) Moner-Girona, M.; Roig, A.; Benito, M; Molins, E. Aerogel thin film synthesis by a supercritical fluid-assisted sol-gel route in a single processing unit J. Mater. Chem. 2003, 13, 2066-2068.
    (b) Wang, K.; Yao, B.; Morris, M. A.; Holmes, J. D. Supercritical fluid processing of thermally stable mesoporous titania thin films with enhanced photocatalytic activity Chem. Mater. 2005, 17, 4825-4831.
    (c) Park, S.; Jung, S.; Yang, J.; Park, H.; Kim, H. Ambient pressure dried SiO_2 aerogel film on GaAs for application to interlayer dielectrics Thin Solid Films 2002, 420/421, 461-464.
    23. Baumann, T. F.; Kucheyev, S. O.; Gash, A. E.; Satcher, J. H. Jr. Facile synthesis of a crystalline, high-surface-area SnO_2 aerogel Adv. Mater. 2005, 17, 1546-1548.
    24. (a) Gash, A. E.; Satcher, J. H., Jr.; Simpson, R. L. Strong akaganeite aerogel monoliths using epoxides: synthesis and characterization Chem. Mater. 2003, 75, 3268-3275.
    (b) Baumann, T. F.; Gash, A. E.; Chinn, S. C.; Sawvel, A.M.; Maxwell, R. S.; Satcher, J. H., Jr. Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors Chem. Mater. 2005,17, 395-401.
    (c) Gash, A. E.; Tillotson, T. M.; Satcher, J. H., Jr.; Poco, J. F.; Hrubesh, L. W.; Simpson, R. L. Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts Chem. Mater. 2001,13, 999-1007.
    25. (a) Zhao, Z.; Chen, D.; Jiao, X. Zirconia aerogels with high surface area derived from sols prepared by electrolyzing zirconium oxychloride solution: comparison of aerogels prepared by freeze-drying and supercritical CO_2(1) extraction J. Phys. Chem. C. 2007, 111, 18738-18743.
    (b) Fidalgo, A.; Farinha, J. P. S.; Martinho, J. M. G.; Rosa, M. E.; Ilharco, L. M. Hybrid silica/polymer aerogels dried at ambient pressure Chem. Mater. 2007, 19, 2603-2609.
    (c) Mulik, S.; Sotiriou-Leventis, C.; Leventis, N. Time-efficient acid-catalyzed synthesis of resorcinol-formaldehyde aerogels Chem. Mater. 2007,19, 6138-6144.
    26. (a) Kamp, B.; Merkle, R.; Lauck, R.; Maier, J. Chemical diffusion of oxygen in tin dioxide: effects of dopants and oxygen partial pressure J. Solid State Chem. 2005, 178, 3027-3039.
    (b) Berry, L.; Brunet, J. Oxygen influence on the interaction mechanisms of ozone on SnO_2 sensors Sens. Actuators B 2008, 129, 450-458.
    (c) Jamnik, J.; Kamp, B.; Merkle, R.; Maier, J. Space charge influenced oxygen incorporation in oxides: in how far does it contribute to the drift of Taguchi sensors Solid State Ion. 2002,150, 157-166.
    27. Koziej, D.; Thomas, K.; Barsan, N.; Thibault-Starzyk, F.; Weimar, U. Influence of annealing temperature on the CO sensing mechanism for tin dioxide based sensors-Operando studies Cata. Today 2007,126, 211-218.
    28. (a) Batzill, M.; Diebold, U. The surface and materials science of tin oxide Prog. in Surf. Sci. 2005, 79, 47-154.
    (b) Huang, X.; Meng, F.; Pi, Z.; Xu, W.; Liu, J. Gas sensing behavior of a single tin dioxide sensor under dynamic temperature modulation Sens. Actuators B 2004, 99, 444-450.
    (c) Ge, J.-P.; Wang, J.; Zhang, H.-X.; Wang, X.; Peng, Q.; Li, Y.-D. High ethanol sensitive SnO_2 microspheres Sens. Actuators B 2006,113, 937-943.
    (d) Belmonte, J. C.; Manzano, J.; Arbiol, J.; Cirera, A.; Puigcorbe, J.; Vila, A.; Sabate, N.; Gratia, I.; Cane, C.; Morante, J. R. Micromachined twin gas sensor for CO and O_2 quantification based on catalytically modified nano-SnO_2 Sens. Actuators B 2006,114, 881-892.
    29. (a) Kissine, V. V.; Sysoev, V. V.; Voroshilov, S. A. Conductivity of SnO_2 thin films in the presence of surface adsorbed species Sens. Actuators B 2001, 79, 163-170.
    (b) Saukko, S.; Lassi, U.; Lantto, V.; Kroneld, M.; Novikov, S.; Kuivalainen, P.; Rantala, T. T.; Mizsei, J. Experimental studies of O_2-SnO_2 surface interaction using powder, thick films and monocrystalline thin films Thin Solid Films 2005, 490, 48-53.
    30. Dong, Q.; Su, H.; Xu, J.; Zhang, D. Influence of hierarchical nanostructures on the gas sensing properties of SnO_2 biomorphic films Sens. Actuators B 2007, 725,420-428.
    31. (a) Keshavaraja, A.; Jayashri, B. S.; Ramaswamy, A. V.; Vijayamohanan, K. Effect of surface modification due to superacid species in controlling the sensitivity and selectivity of SnO_2 gas sensors Sens. Actuators B 1995, 23, 75-81.
    (b) Huang, X.; Meng, F.; Pi, Z.; Xu, W.; Liu, J. Gas sensing behavior of a single tin dioxide sensor under dynamic temperature modulation Sens. Actuators B 2004, 99, 444-450.
    (c) Park, J. H.; Kim, K. H. Improvement of long-term stability in SnO_2-based gas sensor for monitoring offensive odor Sens. Actuators B 1999, 56, 50-58.
    (d) Candeloro, P.; Carpentiero, A.; Cabrini, S.; Fabrizio, E. D.; Comini, E.; Baratto, C.; Faglia, G.; Sberveglieri, G.; Gerardino, A. SnO_2 sub-micron wires for gas sensors Microelectron. Eng. 2005, 78/79, 178-184.
    (e)Kim, K.; Cho, P.; Kim, S.; Lee, J.; Kang, C.; Kim, J.; Yoon, S. The selective detection of C_2H_5OH using SnO_2-ZnO thin film gas sensors prepared by combinatorial solution deposition Sens. Actuators B 2007, 123, 318-324.
    (f)Rella, R.; Serra, A.; Siciliano, P.; Vasanelli, L.; De, G.; Licciulli, A.; Quirini, A. Tin oxide-based gas sensors prepared by the sol-gel process Sens. Actuators B 1997, 44, 462-467.
    (g) Hong, Q.; Fu G.; Chen H.; Luo, S. Study on properties of silver-doped SnO_2 alcohol-sensitive thin film Transducer and Microsystem Techn. 2007, 26, 11-17.
    (h) Zhang, L.; Fu, G.; Chen, H.; Ding, Z.-W. Research on solid synthetic nano SnO_2 and its gas-sensitive property at room temperature J. Transducer Techn. 2005, 24, 31-33.
    32. (a) Lee, G.; Kang, S. Formation of large pores and their effect on electrical properties of SnO_2 gas sensors Sens. Actuators B 2005, 707, 392-396.
    (b) Ponce, M. A.; Aldao, C. M.; Castro, M. S. Influence of particle size on the conductance of SnO_2 thick films J. Eur. Ceram. Soc. 2003,23, 2105-2111.
    
    
    1. (a) Pierre, A. C; Pajonk, G. M. Chem. Rev. 2002,102, 4243, and references therein,
    
    (b) Tong, L.; Lou, J.; Gattass, R. R.; He, S.; Chen, X.; Liu, L.; Mazur, E. Nano Lett. 2005, 5. 259.
    
    (c) Kabbour, H.; Baumann, T. F.; Satcher, J. H., Jr.; Saulnier, A.; Ahn, C. C. Chem. Mater. 2006, 18, 6085.
    
    (d) Wallace. J. M.; Rice, J. K.; Pietron, J. J.; Stroud, R. M.; Long, J. W.; Rolison, D. R. Nano Lett. 2003, 3. 1463.
    
    (e) Costela, A.; Garcia, Moreno, I.; Gomez. C; Garcia, O.; Sastre, R.; Roig, A.; Molins, E. J. Phys. Chem. B 2005, 109, 4475.
    
    (f) Pecharroman, C; Bartolome, J. F.; Requena, J.; Moya, J. S.; Deville, S.; Chevalier, J.; Fantozzi. G.; Torrecillas, R. Adv. Mater. 2003,15, 507.
    
    2.(a) Husing, N.; Schubert, U. Angew. Chem., Int. Ed. 1998, 37, 22.
    
    (b) Carlson, G.; Lewis, D.; McKinley, K.; Richardson, J.; Tillotson, T. J. Non-Cryst. Solids 1995,186, 372.
    
    (c) Fricke, J.; Tillotson, T. Thin Solid Films 1997, 297, 212.
    
    3.(a) Brodsky, C. J.; Ko, E. I. J. Non-Cryst. Solids 1995, 186, 88.
    
    (b) Zeng, Y. W.; Riello, P.; Benedetti, A.; Fagherazzi, G. J. Non-Cryst. Solids 1995, 185, 78.
    
    (c) Suh, D. J.; Park, T. J. Chem. Mater. 1996, 8, 509.
    
    (d) Mohanan, J. L.; Brock, S. L. Chem. Mater. 2003,15. 2567.
    
    (e) Stocker, C; Baiker, A. J. Non-Cryst. Solids 1998, 223, 165.
    
    (f) Suh, D. J.; Park, T.-J. Chem. Mater. 2002, 14, 1452.
    
    (g) Wana, Y.; Mab, J.; Zhoub, W.; Zhu, Y.; Song, X.; Li, H. Appl. Catal, A 2004, 277, 55.
    
    (h) Howells, A. R.; Fox, M. A. J. Phys. Chem. A 2003,107, 3300.
    
    4. (a) Celerier, S.; Laberty-Robert, C; Long, J. W.; Pettigrew, K. A.; Stroud, R. M; Rolison, D. R.; Ansart, F.; Stevens, P. Adv. Mater. 2006, 18, 615.
    
    (b) Gash, A. E.; Satcher, J. H., Jr.; Simpson, R. L. Chem. Mater. 2003, 75, 3268.
    
    (c) Baumann, T. F.; Gash, A. E.; Chinn, S. C; Sawvel, A. M.; Maxwell, R. S.; Satcher, J. H., Jr. Chem. Mater. 2005,17, 395.
    
    (d) Gash, A. E.; Tillotson, T. M.; Satcher, J. H., Jr.; Poco, J. F.; Hrubesh, L. W.; Simpson, R. L. Chem. Mater. 2001,13, 999.
    
    5. (a) Gash, A. E.; Tillotson. T. M.; Satcher, J. H., Jr.; Hrubesh, L. W.; Simpson, R. L. J. Non-Ciyst. Solids 2001. 285, 22.
    
    (b) Chervin, C. N.; Clapsaddle, B. J.; Chiu, H. W.; Gash, A. E.; Satcher, J. H., Jr.; Kauzlarich, S. M. Chem. Mater. 2005,17, 3345.
    
    6. Sun, Q.; Zhang, Y.; Deng, J.; Chen, S.; Wu, D.Appl. Catal., A 1997,152, 165.
    
    7.(a) Wan, Y.; Ma, J.; Zhou, W.; Zhu, Y.; Song, X.; Li, H. Appl. Catal, A 2004, 277. 55.
    
    (b) Liu, J.; Shi, J.; He, D.; Zhang, Q.; Wu, X.; Liang, Y.; Zhu, Q. Appl. Catal, A 2001, 218, 113.
    (c) Quaschning, V.; Auroux, A.; Deutsch, J.; Lieske, H.; Kemnitz, E. J. Catal. 2001, 203, 426.
    8. (a) Singgal, A.; Toth, L. M.; Lin, J. S.; Affholter, K. J. Am. Chem. Soc. 1996,118, 11529.
    (b)Aberg, M.; Glaser, J. Inorg. Chim. Acta 1993,206, 531.
    9. He, T.; Jiao, X.; Chen, D.; Lu, M.; Yuan, D.; Xu, D. J. Non-Cryst. Solids 2001, 283, 56.
    10.See the examples: (a) Diamant, Y.; Chappel, S.; Chen, S. G.; Melamed. O.; Zaban, A. Coord. Chem. Rev. 2004, 248, 1271.
    
    (b) Sun, Z.; Zhang, X.; Na, N.; Liu, Z.; Han, B.; An, G. J. Phys. Chem. B 2006,110, 13410.
    (c) Mamak, M.; Coombs, N.; Ozin, G. A. Chem. Mater. 2001,13, 3564.
    (d) Wang, C. M.; Fan, K. N.; Liu, Z. P. J. Am. Chem. Soc. 2007, 129, 2642.
    (e)Samaranch, B.; Ramirez de la Piscina, P.; Clet, G.; Houalla, M.; Horns, N. Chem. Mater. 2006, 18, 1581.
    11. (a) Shen, P.; Che, Y. Series of Inorganic Chemistry (in Chinese), Vol. 8; Science Press: Beijing, 1998; pp125-130.
    (b) Clearfield, A. J. Mater. Res. 1990, 5, 161.
    12. Wright, J. D.; Sommerdijk, N. A. J. M. Sol-Gel Materials; Gordon and Breach Science: Amsterdam, 2001; pp 53-60.
    13.Moon, Y. T.; Park, H. K.; Kim, D. K.; Kim, C. H. J. Am. Ceram. Soc. 1995, 78, 2690.
    14. (a) Hrubesh, L. W. J. Non-Cryst. Solids 1998,225, 335.
    (b) Bedilo, A. F.; Klabundey, K. J. J. Catal. 1998, 176, 448.
    (c) Smirnova, I.; Suttiruengwong, S.; Arlt, W. J. Non-Cryst. Solids 2004, 350, 54.
    (d) Bedilo, A. F.; Klabunde, K. J. Nanostruct. Mater. 1997, 8, 119.
    (e) Sui, R.; Rizkalla, A. S.; Charpentier, P. A. Langmuir 2006, 22, 4390.
    (f) Luengo, M. A. M.; Sermon. P.A.; Sun, Y.; Vong, M. S. W.; Self, V. A. Thin Solid Films 1997,101-103, 1049.
    
    (g) Wu, Z. G.;Zhao, Y. X.; Xu, L. P.; Liu, D. S. J. Non-Cryst. Solids 2003, 330, 274.
    15.(a) Ouyang, F.; Nakayama, A.; Tabada, K.; Suzuki, E. J. Phys. Chem. B 2000,104, 2012.
    
    (b)Kantcheva, M.; Ciftlikli, E. Z. J. Phys. Chem. B 2002,106, 3941.
    1. Husing, N.; Schubert, U. Angew. Chem. Int. Ed. 1998, 37, 22.
    2. Pierre, A. C.; Pajonk, G. M. Chem. Rev. 2002,102, 4243.
    3. (a) Mohanan, J. L.; Arachchige, I. U.; Brock, S. L. Science 2005, 307, 397.
    (b) Arachchige,I. U.; Brock, S. L. Acc. Chem. Res. 2007, 40, 801.
    4. (a) Baumann, T. E.; Kucheyev, S. O.; Gash, A. E.; Satcher Jr., J. H. Adv. Mater. 2005, 17, 1546.
    (b) Long, J. W.; Logan, M. S.; Rhodes, C. P.; Carpenter, E. E.; Stroud, R. M.; Rolison, D. R. J. Am. Chem. Soc. 2004,126, 16879.
    (c) Novak, Z.; Kotnik, P.; Knez, Z. J. Non-Cryst. Solids 2004, 350, 308.
    (d) Aguado-Serrano, J.; Rojas- Cervantes, M. L. Micro. Meso. Mater. 2006, 88, 205.
    (e) Gao, Y. P.; Sisk, C. N.; Hope-Weeks, L, J. Chem. Mater. 2007,19, 6007.
    (f) Moreno-Castilla, C.; Maldonado-Hodar, F. J. Carbon 2005, 43, 455.
    (g) Lee, J.; Kim, J.;Hyeon, T. Adv. Mater. 2006,18, 2073.
    5. (a) Koppel, R. A.; Stocker, C.; Baiker, A. J. Catal. 1998,179, 515.
    (b) Suh, D. J.; Park, T. J.;Kim, J. H.; Kim, K. L. J. Non-Cryst. Solids 1998, 225, 168.
    (c) Zhao, Z.; Chen, D.; Jiao, X.J. Phys. Chem. C2007, 111, 18738.
    6. (a) Chen, X.; Mao, S. S. Chem. Rev. 2007, 107, 2891.
    (b) Schneider, M.; Baiker, A. Catal.Today 1997, 35, 339.
    7. (a) Campbell, L. K.; Na, B. K.; Ko, E. I. Chem. Mater. 1992, 4, 1329.
    (b) Dagan, G.;Tomkiewicz, M. J. Phys. Chem. 1993, 97, 12651.
    (c) Zhu, Z.; Tsung, L. Y.; Tomkiewicz, M. J. Phys. Chem. 1995, 99, 15945.
    (d) Zhu, Z.; Lin, M.; Dagan, G.; Tomkiewicz, M. J. Phys. Chem. 1995,99, 15950.
    8. (a) Meng, F.; Schlup, J. R.; Fan, L. T. Chem. Mater. 1997, 9, 2459.
    (b) Kelly, S.; Pollak, F.
    ??H.; Tomkiewicz. M. J. Phys. Chem. B 1997,101, 2730. (c) Howells, A. R.; Fox, M. A. J. Phys. Chem. A 2003, 707, 3300.
    
    9. (a) Li. Y.-Q.; Fu, S.-Y.; Yang, G.; Li, M. J. Non-Cryst. Solids 2006, 352, 3339.
    
    (b)Duminica, F. D.; Maury, F.; Abisset, S. Thin Solid Films 2007, 515, 7732.
    
    10. (a) Chen, D.; Jiao, X. J. Am. Ceram. Soc. 2000, 55, 2637.
    
    (b) Chen, D.; Xu, R. J. Mater Chem. 1998, 8, 965.
    
    11.(a) Fidalgo, A.; Farinha, J. P. S.; Martinho, J. M. G.; Rosa, M. E.; Ilharco, L. M. Chem. Mater. 2007, 19, 2603.
    
    (b) Mulik, S.; Sotiriou-Leventis, C; Leventis, N. Chem. Mater. 2007,19, 6138.
    
    (c) de Moor, P. P. E. A.; Beelen, T. P. M.; van Santen, R. A. J. Phys. Chem. B. 1999,103, 1639.
    
    (d) Tosheva, L.; Valtchev, V. P. Chem. Mater. 2005,17, 2494.
    
    12.(a) Fricke, J.; Tilltson, T. Thin Solid Films 1997, 297, 212.
    
    13. Gesser, H. D.; Goswami, P. C. Chem. Rev. 1989, 89, 765.
    
    14.(a) Sakai, N.; Wang, R.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Langmuir 1998, 14, 5918.
    
    (b) Horikawa, T.; Katoh, M.; Tomida, T. Micropor. & Mesopor. Mater. 2008, 110, 397.
    
    (c) Wang, C. T.; Ro, S.-H. Mater. Chem. Phys. 2007,101, 41. (d) Premkumar, J. Chem. Mater. 2005, 77,944.
    
    15.(a) Xin, H.; Ebina, Y; Ma, R.; Takada, K.; Sasaki, T. J. Phys. Chem. B. 2006, 770, 9863. (b) Huang, X.; Zhang, W. Appl. Surf. Sci. 2008, 254, 3403.
    
    (c) Guo, C; Xiang, J.; Feng, J.; Tang, Y.; Chen, C; Xu, G. J. Colloid Interface Sci. 2002, 246, 401.
    
    (d) Wang, Y.; Cheng, H.; Zhang, L.; Hao, Y.; Ma, J.; Xu, B.; Li, W. J. Mol. Catal. A: Chem. 2000, 757, 205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700