多孔纳米固体的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本文中,我们利用溶剂热压方法,以TiO_2纳米粉作为原料,采用两种不同方法制备了PMMA/TiO_2复合多孔纳米固体,通过热处理成功地获得了孔径大小均一且在空间均匀分布的TiO_2多孔纳米固体;以不同的聚合物凝胶作为模板,用溶剂热压法成功地制备了具有不同比表面积和孔容的TiO_2多孔纳米固体。为了改善样品中孔径分布的均匀性,我们又以PVP-K30水溶液作为造孔剂,以TiO_2和ZnO纳米颗粒作为原料,制备了TiO_2和ZnO多孔纳米固体。对多孔纳米固体材料的性能进行了表征,并初步解释了复合材料性质的变化规律。
     首先,以甲基丙烯酸甲酯(MMA)作单体,以过硫酸铵为引发剂,通过溶液聚合制备了PMMA/TiO_2复合多孔纳米固体。实验结果表明:在改变单体的用量时,得到的PMMA/TiO_2复合多孔纳米固体的主孔径基本上都分布在5-25 nm范围内,但是孔径均匀性、比表面积以及孔容均存在明显的差异。当MMA/TiO_2纳米粉的重量比为1:19时,PMMA/TiO_2复合多孔纳米固体的孔径分布均匀,比表面积和孔容分别为127.20 m~2/g和0.27 cm~3/。
     另外,我们直接以聚甲基丙烯酸甲酯超细粉作原料,以去离子水为造孔剂,制备了PMMA/TiO_2复合多孔纳米固体,并对其性质进行了测试分析。实验结果表明:在固体组分总量固定且造孔剂用量相同的情况下,通过改变PMMA的用量,可以在一定范围内调变多孔纳米固体的孔径分布、比表面积和孔容。其中,PMMA/TiO_2纳米粉的重量比为1:9时,制备的复合多孔纳米固体平均孔径明显减小,为8.77 nm;当PMMA/TiO_2纳米粉的重量比为2:3时,得到的PMMA/TiO_2复合纳米固体是实心块体,样品内没有孔道;其他重量比条件下制备的复合多孔纳米固体的平均孔径均有不同程度的增大,而比表面积和孔容则随着PMMA/TiO_2纳米粉的重量比的增大而明显降低。PMMA/TiO_2复合多孔纳米固体均具有较大的抗压强度,而且当PMMA/TiO_2纳米粉的重量比改变时,复合多孔纳米固体的介电常数也有明显差异,随着PMMA/TiO_2纳米粉重量比的增大,复合多孔纳米固体的介电常数先升高后降低,PMMA/TiO_2纳米粉的重量比为1:19时介电常数最大,为11.44。
     为了制备孔径分布均匀的TiO_2多孔纳米固体,我们将上面制备的PMMA/TiO_2复合多孔纳米固体进行热处理。实验结果表明,热处理后TiO_2纳米颗粒的物相稳定,粒度没有明显的变化,TiO_2多孔纳米固体孔道中没有PMMA残留,而且TiO_2多孔纳米固体具有很高的热稳定性。在原料固体组分总量固定且造孔剂用量相同的情况下,尽管制备时PMMA的用量不同,TiO_2多孔纳米固体的平均孔径、比表面积和孔容变化较小,当PMMA/TiO_2纳米粉的重量比为1:9时平均孔径最大,为10.44nm:与不加PMMA的样品相比,其他重量比条件下制备的多孔纳米固体的孔容均有不同程度的减小。随着PMMA/TiO_2纳米粉比值的增大,多孔纳米固体的抗压强度先升高后降低,当PMMA/TiO_2纳米粉的重量比为1:9时,TiO_2多孔纳米固体的抗压强度最大,为242.8 MPa。另外,PMMA/TiO_2纳米粉的重量比不同,复合多孔纳米固体的介电常数也有明显差异,随着PMMA/TiO_2纳米粉重量比的增大,多孔纳米固体的介电常数先升高后降低,PMMA/TiO_2纳米粉的重量比为1:4时介电常数最大,为14.08。因此我们在实际应用中,通过改变PMMA的用量,可以在一定范围内调变多孔纳米固体的抗压强度及介电常数,制备既具有较大的抗压强度,又具有一定平均孔径、比表面积、孔容和介电常数的TiO_2多孔纳米固体。
     我们又以聚合物作为模板,尝试控制TiO_2多孔纳米固体的孔道分布。分别以丙烯酸丁酯(BA)和苯乙烯作单体,过硫酸铵作为引发剂,通过自由基聚合分别得到了二者的聚合物凝胶。以其聚合物凝胶作模板,TiO_2纳米粉为原料,利用液态溶剂热压方法和煅烧去除模板方法相结合,制备了TiO_2多孔纳米固体。结果表明,在改变单体的用量时,得到的TiO_2多孔纳米固体样品的主孔径基本上都分布在5-35 nm范围内。当BA/TiO_2纳米粉的重量比为1:9时,TiO_2多孔纳米固体的孔径分布均匀,孔容为0.32 cm~3/g,此时比表面积最大,达到了87.94m~2/g;而当苯乙烯/TiO_2纳米粉的重量比为1:9时,TiO_2多孔纳米固体的比表面积达到174.17 m~2/g,孔容达到0.34 cm~3/g。
     为了进一步改善样品中孔径分布的均匀性,我们以非离子型表面活性剂PVP-K30的水溶液作为造孔剂、以TiO_2和ZnO纳米颗粒作为原料,分别制备了TiO_2和ZnO多孔纳米固体。从实验中我们发现:加入少量PVP-K30后TiO_2和ZnO多孔纳米固体的平均孔径增大,增加PVP-K30的量,则平均孔径和孔容又随之减小。溶剂热压过程中多孔纳米固体孔道内有少量PVP-K30残留。将多孔纳米固体进行热处理之后,比表面积变化不大,而平均孔径和孔容明显增大:当PVP-K30/TiO_2纳米粉的重量比为1:9时,平均孔径和孔容分别是14.20 nm和0.23cm~3/g。
Using TiO_2 nanoparticles as the starting material, PMMA/TiO_2 composite porous nanosolids have been prepared by a novel solvothermal hot-press (STHP) method for the first time. TiO_2 bulk porous nanosolids were prepared from the above composite materials, from which PMMA is removed by calcination. In addition, polymer gel was introduced template as to improve the pore diameter uniformity of the TiO_2 bulk porous nanosolid. TiO_2 and ZnO bulk porous nanosolids were prepared by STHP method using TiO_2 or ZnO nanoparticles with polyvinyl pyrrolidone (PVP-K30) water solution as pore-forming agents. Besides, the properties of these composite materials have been characterized.
     Firstly, PMMA/TiO_2 composite porous nanosolids have been prepared by polymerization of methyl methacrylate with deionized water as pore-forming agents, and the properties of these composite materials are investigated. The results indicate that, with the increasing amount of MMA, the main pore diameter of the composite materials distributes in the reigon of 5-25 nm, but their pore uniformity, specific surface area and pore volume changed obviously. While the weight ratio of MMA to TiO_2 nanoparticles is 1:19, the specific surface area and pore volume of the PMMA/TiO_2 composite materials are 127.20 m~2/g and 0.27 cm~3/g, respectively.
     PMMA/TiO_2 composite porous nanosolids have also been prepared using polymethyl methacrylate as raw material, and the properties of these composite materials are characterized. The results indicate that, the average pore diameter, specific surface area and pore volume of these composite materials can be adjusted by changing the amount of PMMA. The average pore diameter of PMMA/TiO_2 composite porous nanosolids is 8.77 nm and obviously decreases when the weight ratio of PMMA to TiO_2 nanoparticles is 1:9. The average pore diameter, specific surface area and pore volume of PMMA/TiO_2 composite are all zero when the weight ratio of PMMA to TiO_2 nanoparticles is 2:3. The specific surface area and pore volume of these composite materials decrease gradually with the increasing weight ratio of PMMA to TiO_2 nanoparticles. All these PMMA/TiO_2 composite porous nanosolids have high compressive strength, and the dielectric constant of PMMA/TiO_2 composite porous nanosolids also changes obviously with different weight ratio of PMMA to TiO_2 nanoparticles. When the weight ratio of PMMA to TiO_2 nanoparticles is 1:19, the dielectric constant of PMMA/TiO_2 composite porous nanosolids reaches the maximum value, i.e. 11.44 and then decreases gradually with the increasing weight ratio of PMMA to TiO_2 nanoparticles.
     In order to improve the uniforminty of pore diameter, TiO_2 bulk porous nanosolids were prepared from the above composite materials by removing PMMA through a calcination process. The results indicate that, TiO_2 nanoparticles have not undergone any phase transformation or changing in particle size during the process of calcinations and PMMA has been removed completely from the pore or channels. At the same time, TiO_2 bulk porous nanosolids have high thermal stability both in N_2 and air. The average pore diameter, specific surface area and pore volume of TiO_2 bulk porous nanosolids varies slightly with the increasing weight ratio of PMMA to TiO_2 nanoparticles. When the weight ratio of PMMA to TiO_2 nanoparticles is 1:9, TiO_2 bulk porous nanosolids have the widest pore diameter and the lowest specific surface area, namely, 10.44 nm and 51.1720 m~2/g, respectively. Compared with TiO_2 bulk porous nanosolids prepared without PMMA, the pore volume of TiO_2 bulky porous nanosolids decreases in various grades. With the increasing weight ratio of PMMA to TiO_2 nanoparticles, the compressive strength of TiO_2 porous nanosolids increases at the beginning and reaches the maximum value, 242.8 MPa, which is much higher than that of TiO_2/PMMA composite porous nanosolids while the weight ratio of PMMA to TiO_2 nanoparticles is 1:9, then decreases gradually. With the increasing weight ratio of PMMA to TiO_2 nanoparticles, dielectric constant of TiO_2 porous nanosolids increases at the beginning and reaches the maximum value, 14.08 when the weight ratio of PMMA to TiO_2 nanoparticles is 1:4, then decreases gradually. Therefore, the average pore diameter, specific surface area, pore volume, compressive strength and dielectric constant of TiO_2 porous nanosolids could be adjusted by changing the weight ratio of PMMA to TiO_2 nanoparticles.
     In order to further improve the uniformity of the pores, polymer is used as the template to prepare TiO_2 bulk porous nanosolid. Butyl acrylate (BA) and styrene reacts to form polymer using ammonium persulfate as initiator. TiO_2 bulk porous nanosolid has been prepared using the polymer as template by the STHP method. The main pore size of these nanosolids is 5-35 nm although the weight ratio of monomer to TiO_2 nanoparticles is different, but their pore uniformity, surface area and pore volume changes in various grades. The results indicate that when the weight ratio of BA monomer to TiO_2 nanoparticles is 1:9, the TiO_2 porous nanosolid is obtained with good pore diameter uniformity, its pore volume is 0.32 cm~3/g, and surface area reaches the maximum value, 87.94 m~2/g. When the weight ratio of styrene monomer to TiO_2 nanoparticles is 1:9, the TiO_2 porous nanosolid is prepared with the highest surface area, namely, 174.17 m~2/g, and its pore volume is 0.34 cm~3/g.
     Non-ionic surfactant PVP-K30 solution was used as pore-forming agent to prepare TiO_2 and ZnO bulky porous nanosolids. The pore structure of the TiO_2 and ZnO bulk porous nanosolid is different while the PVP-K30 solution concentration varies. The results indicate that, compared with deionized water, the average pore diameter is obviously enlarged when PVP-K30 solution is used as pore-forming agent. TiO_2 and ZnO bulk porous nanosolids with good pore diameter uniformity, high surface area and pore volume have been successfully prepared by controlling the PVP-K30 solution concentration. With the increase of the amount of PVP-K30, the average pore diameter and pore volume decrease correspondingly. Part of PVP-K30 residue in the channels of TiO_2 porous nanosolids, and they can be removed by heat-treatment. The average pore diameter and pore volume increase obviously and the specific surface area changes very little when the materials have been treated at high temperature. When the weight ratio of PVP-K30 to TiO_2 nanoparticles is 1:9, the average pore diameter and pore volume of TiO_2 porous nanosolids is 14.20 nm, 0.23 cm~3/g, respectively.
引文
1.IUPAC, manual of symbols and terminology, Pure Appl. Chem., 31 (1972): 578-638.
    
    2.Sayari, Catalysis by crystalline mesoporous molecular sieves, Chem. Mater., 8 (1996): 1840-1852.
    
    3.M.S. Wong, J.Y. Ying, Amphiphilic templating of mesostructured zirconium oxide, Chem. Mater., 10 (1998): 2067-2077.
    
    4. 赵程,罗昆,张恒,复合材料的研究现状及展望,浙江万里学院学报,18(2) (2005):103-106.
    
    5. 乐红英,马臻,华伟明,高滋,二氧化钛介孔分子筛的合成和表征,化学学 报,58(7)(2000):777-780.
    
    6. 郑金玉,邱坤元,危岩,有机小分子模板法合成二氧化钛中孔材料,高等学 校化学学报,21(4)(2000):647-649.
    
    7. 陈航榕,施剑林,张文华,严东升,高比表面积有序多孔氧化锆合成与表征, 无机材料学报,15(2000):1123-1126.
    
    8.C. Su, B.Y. Hong, CM. Tseng, Sol-gel preparation and photocatalysis of titanium dioxide, Catal.Today, 96 (3) (2004): 119-126.
    
    9.A.J. Maira, K.L. Young, C.Y. Lee et al., Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO_2 catalyst, J. Catal., 192 (2000):??185-196.
    
    10. L.J. Alemany, M.A. Ba(?)ares, E. Pardo, F. Martin-Jimenez, J.M. Blasco, Morphological and structural characterization of titanium dioxide system, Mater. Characterization, 44 (3) (2000): 271-275.
    
    11. S.D. Park, Y.H. Cho, W.W. Kim, S.J. Kim, Understanding of homogeneous spontaneous precipitation for monodispersed TiO_2 ultrafine powders with rutile phase around room temperature, J. Solid Stat. Chem., 146 (1999): 230-238.
    
    12.高濂,陈锦元,黄军华,严东生,醇盐水解法制备二氧化钛纳米粉体,无机 材料学报,10(4)(1995):423-428.
    
    13.林元华,张中太,黄淑兰等,纳米金红石型TiO_2粉体的制备及其表征,无 机材料学报,14(1999):853-856.
    
    14.赵旭,王子忱,赵静哲等,球形二氧化钛超的制备,功能材料,31(3)(2000): 303-305.
    
    15.施利毅,胡莹玉,张剑平等,微乳液反应法合成二氧化钛超细粒子,功能材 料,30(5)(1999):495-497.
    
    16.杨秀培,纳米氧化锌制备研究进展,四川师范学院学报,24(3)(2003): 347-351.
    
    17.刘珍,梁伟,许并社等,纳米材料制备方法及其研究进展,材料科学与工艺, 8(3)(2000):103-108.
    
    18.李斌,杜芳林,沉淀法制备纳米氧化锌粉体,青岛科技大学学报,25(1)(2004): 21-25.
    
    19.李国栋,李本林,陈晓熠,张勇,低成本无团聚纳米氧化锌的制备,云南大 学学报(自然科学版),25(5)(2003):423-427.
    
    20.刘超峰,胡行芳,祖庸,以尿素为沉淀剂制备纳米氧化锌粉体,无机材料学 报,11(27)(2002):15.
    
    21.卫志贤,雷目盈,李晓娥等,纳米氧化锌中试研究,无机盐工业,31(5)(1999): 8.
    
    22. Y.Y. Tay, S. Li, F. Boey, Y.H. Cheng, M.H. Liang, Growth mechanism of spherical ZnO nanostructures synthesized via colloid chemistry, Physica B:??Physics of Condensed Matter, 394 (11) (2007): 372-376.
    
    23.沈兴海,高宏成,纳米微乳液制备法,化学通报,(11)(1995):6-9.
    
    24.徐甲强,纳米氧化锌的乳液合成、结构表征与气敏性质,无机化学学报,14 (3)(1998):355-359.
    
    25. Y.X. Zhang, GH. Li, Y.X. Jin, Y. Zhang, J. Zhang, L.D. Zhang, Hydrothermal synthesis and photoluminesecence of TiO_2 nanowires, Chem. Phys. Lett., 365 (2002): 300-304.
    
    26. P.D. Cozzoli, A. Kornowski, H. Weller, Low-temperature of soluble and processable organic-capped anatase TiO_2 nanorods, J. Am. Chenu Soc., 125 (2003): 14539-14548.
    
    27. J J. Wu, C.C. Yu, Aligned TiO_2 nanorods and nanowalls, J. Phys. Chem. B, 108 (2004): 3377-3379.
    
    28. Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides, Science, 291 (2001): 1947-1949.
    
    29. M.H. Huang, S. Mao, H. Feick, et al. Room-temperature ultraviolet nanowire nanolasers, Science, 292 (2001): 1897-1899.
    
    30. Y. Zhang, H. Jia, X. Luo, et al. Synthesis, microstructure and growth mechanism of dendrite ZnO nanowires, J. Phys. Chenu B, 107 (2003): 8289-8293.
    
    31. S. Li, C.Y. Lee, T.Y. Tseng, Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process, J. Cryst. Grow., 247 (2003): 357-362.
    
    32. J. Zhang, W. Yu, L. Zhang, Fabrication of semiconducting ZnO nanobelts using a halide, Phys. Lett. A, 299 (2002): 276-281.
    
    33. S.C. Lyu, Ye Zhang, H. Ruh, H.J. Lee, H.W. Shim, Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires, Chenu Phys. Lett., 363 (2002): 134-138.
    
    34. X. Wang, Y. Ding, C.J. Summers, et al. Large-scale synthesis of six-nanometer-wide ZnO nanobelts, J. Phys. Chenu B, 108 (26) (2004): 8773-8777.
    
    35. B. Liu, H.C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter??regime of 50nm, J. Am. Chem. Soc, 125 (2003): 4430-4431.
    
    36. Z. Wang, Zinc oxide nanostructures: growth, properties and applications, J. Phys: Condens. Matter, 16 (2004): R829-858.
    
    37. William L. Hughes, Zhong L. Wang. Formation of piezoelectric single-crystal nanorings and nanobows, J. Am. Chem. Soc, 126 (2004): 6703-6709.
    
    38. X. Wang, Y. Ding, C.J. Summers, Z. L. Wang, Large-scale synthesis of six-nanometer-wide ZnO nanobelts, J. Phys. Chem. B, 108 (2004): 8773-8777.
    
    39. A. Wold, Photocatalytic properties of titanium dioxide (TiO_2), Chem. Mater., 5 (1993): 280-283.
    
    40. R.A. Caruso, M. Giersig, F. Willig, M. Antonietti, Porous "coral like" TiO_2 structures produced by templating polymer gels, Langmuir, 14 (1998): 6333-6336.
    
    41. J.W. Long, K.E. Swider, C.I. Merzbacher, D.R. Rolison, Voltammetric characterization of Ruthenium oxide-based aerogels and other RuO_2 solids: the nature of capacitance in nanostructured materials, Langmuir, 15 (1999): 780-785.
    
    42. R.A. Caruso, M. Antonietti, M. Giersig, H.P. Hentze, J. Jia, Modification of TiO_2 network structures using a polymer gel coating technique, Chem. Mater., 13 (2001): 1114-1123.
    
    43. S.I. Matsushita, T. Miwa, D.A. Tryk, A. Fujishima, New mesostructured porous TiO_2 surface prepared using a two-dimensional array-based template of silica particles, Langmuir, 14 (1998): 6441-6447.
    
    44. K.P. Kumar, Porous nanocomposites as catalyst supports: Part I. 'second phase stabilization', thermal stability and anatase-to-rutile transformation in titania-alumina nanocomposites, Appl. Catal. A General, 119(1994): 163-183.
    
    45. C. Garzella, E. Comini, E. Tempesti, C. Frigeri, G. Sberveglieri, TiO_2 thin films by a novel sol-gel processing for gas sensor applications, Sens. Actuators B, 68 (2000): 189-196.
    
    46. B.L. Zhang, B.S. Chen., K.Y. Shi, S.J. He, X.D. Liu, Z.J. Du, K.L. Yang,??Preparation and characterization of nanocrystal grain TiO_2 porous microspheres, Appl Catal. B, 40 (2003): 253-258.
    
    47. M.N. Kamalasanan, S. Chandra, Sol-gel synthesis of ZnO thin films. Thin solid films, 288 (1996): 112-115.
    
    48. F.D. Paraguay, W.L. Estrada, D. R. N. Acosta, E. Andrade and M. Miki-Yoshida, Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis, Thin solid films, 350 (1999): 192-202.
    
    49. T. Minami, H. Sonohara, S. Takata and H. Sato, Transparent and conductive ZnO thin films prepared by atmospheric-pressure chemical vapor deposition using zinc acetylacetonate, Jap. J.Appl. Phys. Part2, 33(5B) (1994): L743-746.
    
    50. Y.W. Heo, M. Kaufman, K. Pruessner, D.P. Norton, F. Ren, M.F. Chisholm, P.H. Fleming, Optical properties of Zn_(1-x)Mg_xO nanorods using catalysis-driven molecular beam epitaxy, Solid-State Electronics, 47 (2004): 2269-2273.
    
    51. Kazuhiro Miyamoto, Michihiro Sano, Hiroyuki Kato, Takafumi Yao. High-electron-mobility ZnO epilayers grown by plasma-assisted molecular beam epitaxy, J. Crs. Growth, 265 (2004): 34-40.
    
    52. R.D. Vispute, S. Choopun, R. Enck, A. Patel, V. Talyansky, R.P. Sharma, T. Venkatesan, W.L. Sarney, L. Salamancariba, S.N. Andronescu, A.A. Iliadis and K.A. Jones, Pulsed laser deposition and processing of wide band gap semiconductors and related materials, J. Electr. Mater., 28 (1999): 275-286.
    
    53. S. Bhaduri, S.B. Bhaduri, Enhanced low temperature toughness of Al_2O_3-ZrO_2 nano/nano composites, Nanostruct. Mater., 8 (6) (1997): 755-763.
    
    54.王文中,李良荣,刘兴龙,纳米材料的性能、制备和开发应用,材料导报,6 (1994):8-10.
    
    55.张巨先,高陇桥,李发,无团聚、纳米ZrO_2增韧Al_2O_3基陶瓷材料,真空电 子技术,5(1998):40-43.
    
    56.李云凯,钟家湘,朱鹤孙,刘云飞,碳化硅、氧化锆增韧氧化铝复相陶瓷的 研究,北京理工大学学报,16(5)(1996):561-565.
    
    57. K.T. Ranjit, I. Willner, S. Bossmann, A. Braun, Iron (Ⅲ) phthalocyanine-??modified titanium dioxide: a novel photocatalyst for the enhanced photodegradation of organic pollutants, J. Phys. Chem. B, 102 (47) (1998): 9397-9403.
    
    58. P. S. Awati, S. V. Awate, P. P. Shah,. V. Ramaswamy, Photocatalytic decomposition of methylene blue using nanocrystalline anatase titania prepared by ultrasonic technique, Catal. Comm., 4 (2003): 393-400.
    
    59. J.M. Coronado, S. Kataoka, I. Tejedor-Tejedor, M.A. Anderson, Dynamic phenomena during photocatalytic oxidation of ethanol and acetone over nanocrystalline TiO_2: simultaneous FTIR analysis of gas and surface species, J. Catal., 219 (2003): 219-230.
    
    60. A. Molinari, R. Amadelli, L. Antolini, A. Maldotti, P. Battioni, D. Mansuy, Photoredox and photocatalytic processes on Fe III-porphyrin surface modified nanocrystalline TiO_2, J. Molecular Catal. A: Chemical, 158 (2000): 521-531.
    
    61. J. Chen, D. F. Ollis, W. H. Rulkens, H. Bruning, Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO_2 and metallized TiO_2 suspensions. Part (I): photocatalytic activity and pH influence, Wat Res., 33 (3) (1999): 661-668.
    
    62. J.P.S. Valente, P.M. Padilha, A.O. Florentino, Studies on the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO_2, Chemosphere, 64 (7) (2006): 1128-1133.
    
    63.伍胜,李新平,李颖,TiO_2光催化技术处理制浆造纸废水的试验研究,黑龙 江造纸,34(1)(2006):13-15.
    
    64.孙静,高濂,张青红,制备具有光催化活性的金红石相纳米氧化钛粉体,化 学学报,61(1)(2003):74-77.
    
    65. H. Kozuka, Y. Takahashi, GL. Zhao, T. Yoko, Preparation and photoelectron -chemical properties of porous thin films composed of submicron TiO_2 particles, Thin Solid Films, 358 (2000): 172-179.
    
    66. S. Basu, A. Dutta, Room-temperature hydrogen sensors based on ZnO, Mater. Chem. Phys., 47 (1997): 93-96.
    
    67.惠春,陈寿田,徐爱兰等,半导体SnO_2纳米晶态粉体显微结构对气敏传感 器性能的影响,功能材料,31(2)(2000):180-182.
    
    68. N.C. Greenham, X.G. Peng, A.P. Alivisatos, CdSe nanocrystal rods/poly (3-hexylthiophene) composite photovoltaic devices, Adv. Mater., 11 (11) (1999): 923-927.
    
    69. S.K. Shukla, GK. Parashar, A. P. Mishra, et al. Nano-like magnesium oxide films and its significance in optical fiber humidity sensor, Sens. Actuator. B, 98 (2004): 5-11.
    
    70. F.J. Arrequi, Y. Liu, I.R. Matias, R.O. Claus, Optical fiber humidity sensor using a nano Fabry-Perot cavity formed by the ionic self-assembly method, Sens. Actuator. B, 59 (1) (1999): 54-59.
    
    71. C. Hui, S. Chen, A. Xu, et al. A study of thick - film gas sensors based on nanopowders prepared by hydrothermal synthesis technique, Technical Digest of the Seventh International Meeting on Chemical Sensors, International Academic Publishers, 1998 ,75-77.
    
    72. D. Briand, M. Labeau, J. F. Currie, et al. Pd-doped SnO_2 thin films deposited by assisted ultrasonic spraying CVD for gas sensing: selectivity and effect of annealing, Sensors and Actuators B, 48 (1998): 395-402.
    
    73.徐甲强,刘艳丽,牛新书,纳米ZnS的合成及其气敏性能研究,功能材料,33 (4)(2002):425-427.
    
    74. H. Lin, Shah-jye Tzeng, Peng-jan Hsiau et al., Electrode effects on gas sensing properties of nanocrystalline zinc oxide, Nanostruct. Mater., 10 (3) (1998): 465-477.
    
    75. K. H. An, S. Y. Jeong, H. R. Hwang, Y. H. Lee, Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites, Adv. Mater., 16 (12) (2004): 1005-1009.
    
    76.王育德,纳米微晶巨磁阻抗元器件—21世纪的传感器,汽车电器,2(2000): 22.
    
    77.缪煜清,纳米技术在生物传感器中的应用,传感器技术,21(11)(2002):??61-64.
    
    78.许改霞,王平,李蓉等,纳米传感器技术及其在生物医学中的应用,国外医 学生物工程分册,25(2)(2002):49.
    
    79. D.C. Look, Recent advances in ZnO materials and devices. Mater. Sci. Eng. B, 80 (2001): 383-387.
    
    80. CM. Frans, Van De Pol, Thin-film ZnO properties and applications, Ceram. Bull., 69 (12) (1990): 1959-1965.
    
    81. M. Rajalakshmi, A.K. Arora, Optical phonon confinement in zinc oxide nanoparticles. J.Appl. Phys., 87 (5) (2000): 2445-2448.
    
    82. H. Hahn, R.S. Averback, Low-temperature creep of nanocrystalline titanium (IV) oxide, J. Am. Ceram. Soc, 74 (11) (1991): 2918-2921.
    
    83. N.O. Engin, A.C. Tas, Preparation of porous Ca_(10)(PO_4)_6(OH)_2 and β-Ca_3(PO_4)_2 bioceramics, J. Am. Ceram. Soc, 83 (2000): 1581-1584.
    
    84.刘秀琳,徐红燕,李梅,孟宪平,王琪珑,蒋民华,崔得良,二氧化锆多孔 纳米固体的制备与性质表征,功能材料(增刊),35(2004):3119-3122.
    
    85.孟宪平,微孔型无机粉末的水热热压固化及固化体性能研究,吉林大学博士 论文,13.
    
    86. N. Yamasaki, K. Yanagisawa, M. Nishioka, S. Kanahara, A hydrothermal hot-pressing method: apparatus and application, J. Mater. Sci. Lett, 5 (1986): 355-356.
    
    87. K. Yanagisawa, M. Nishioka, N. Yamasaki, Immoilization of radioactive wastes by hydrothermal hot-pressing, Am. Ceram. Soc. Bull, 54 (12) (1985): 1563-1567.
    
    88. N. Yamasaki, K. Yanagisawa, S. Kanahara, M. Nishiokka, N. Natsuoka, J. Yamazaki, Immobilization of radioactive wastes powder, J. Nucl. Sci. Technol., 21 (1) (1984): 71-73.
    
    89. K. Yanagisawa, M. Nishioka, N. Yamasaki, Immobilization of ratioactive wastes in hydrothermal synthetic rock, properties of waste form containing simulated high-level radioactive waste, J. Nucl. Sci. Technol., 23 (6) (1986): 550-558.
    
    90. K. Yanagisawa, M. Nishioka, N. Yamasaki, Immobilization of low-level radioactive waste containing sodium sulfate by hydrothermal hot-pressing, J. Nucl. Sci. Technol., 26 (3) (1989): 395-397.
    
    91. M. Nishioka, S. Hirai, K. Yanagisawa, N. Yamasaki, Solidification of glass powder with simulated high-level radioactive waste during hydrothermal hot-pressing, J.Am. Ceram. Soc., 73 (2) (1990): 317-322.
    
    92. M. Nishioka, K. Yanagisawa, N. Yamasaki, Solidification of sludge ash by hydrothermal hot-pressing, J. Water Pollution Control Federation, 62 (7) (1990): 926-932.
    
    93. K. Hosoi, S. Kawai, K. Yanagisawa, N. Yamasaki, Densification process for spherical glass powders with the same particle size by hydrothermal hot-pressing, J. Mater. Sci., 26 (1991): 6448-6452.
    
    94. N. Yamasaki, T. Kai, M. Nishioka, K. Yanagisawa, K. Ioku, Porous hydroxy -apatite ceramics prepared by hydrothermal hot-pressing, J. Mater. Sci. Lett., 9 (1990): 1150-1152.
    
    95.刘秀琳,徐红燕,余丽丽等,ZnO纳米颗粒的自组装及多孔纳米固体的研制, 科学通报,49(23)(2004):2410-2415.
    
    96.李梅,刘秀琳,徐红燕等,水和辛胺对ZnO多孔纳米块体孔道结构的影响, 化学学报,63(16)(2005):1510-1514.
    
    97. Xu H.Y., Liu X.L., Li M., et al. Preparation and characterization of TiO_2 bulk porous nanosolids, Mater. Lett., 59 (2005): 1962-1966.
    
    98. Xiulin Liu, Deliang Cui, Qiang Wang, Hongyan Xu, Mei Li, Photoluminescence enhancement of ZrO_2/Rhodamine B nanocomposites, J. Mater. Sci., 40 (5) (2005): 1111-1114.
    
    99.刘秀琳,余丽丽,徐红燕等,TiO_2多孔纳米固体对罗丹明B的热催化降解 作用,化学学报,62(24)(2004):2398-2402.
    
    1. W. Caceri, Nanocomposites of polymers and metals or semiconductors: historical background and optical properties, Macromol. Rapid Commun., 21 (2000): 705-722.
    
    2. P. Judeinstein, C. Sanchez, Hybrid organic-inorganic materials: a land of Multidisciplinarity, J. Mater. Chem., 6 (1996): 511-525.
    
    3. S. Komarneni, Yamasaki, Nanocomposites, J. Mater. Chem., 2 (1992): 1219-1230.
    
    4. D. Yu. Godovski, Electron behavior and magnetic properties of polymer nanocomposites, Adv. Polym. Sci., 119 (1995): 79-122.
    
    5. L.L. Beecroft, C.K. Ober, Nanocomposite materials for optical applications, Chem. Mater., 9 (1997): 1302-1316.
    
    6. R.A. Potyrailo, Polymeric sensor materials: toward an alliance of combinatorial and rational design tools? Angew. Chem. Int. Edit, 45 (2006): 702-723.
    
    7. Yuwono Akhmad Herman, Xue Junmin, Wang John, Elim Hendry Izaac, Ji Wei,Li Ying, White Timothy John, Transparent nanohybrids of nanocrystalline TiO_2in PMMA with unique nonlinear optical behavior, Journal of Materials Chemistry, 13 (2003): 1475-1479.
    
    8. Yuwono Akhmad Herman, Liu Binghai, Xue Junmin, Wang John, Elim Hendry Izaac, Ji Wei, Li Ying, White Timothy John, Controlling the crystallinity andnonlinear optical properties of transparent TiO_2-PMMA nanohybrids, Journal of Materials Chemistry, 14 (2004): 2978-2987.
    
    9.刘舒扬,杨明娇,淡宜,PMMA/TiO_2复合粒子光催化降解有机污染物的性能 高分子材料科学与工程,3(2006):93-97.
    
    10.罗付生,韩爱军,杨毅,李凤生,化妆品用聚甲基丙烯酸甲酯-二氧化钛复合 微球的制备及性能,日用化学工业,2(2002):40-42.
    
    11.官文超,危峰,谷战军,PMMA-TiO_2复合材料作为润滑添加剂的研究,华中 科技大学学报,31(9)(2003):108-110.
    
    12.叶瑞铭,翁畅健,PMMA-TiO_2耐磨复合涂料之合成与研究,第25届高分子 联合会议,2002.
    
    13.赵金安,纳米TiO_2/PMMA复合材料性能的研究,中原工学院学报,5(2006): 10-12.
    
    14.张晔,李磊,李磊,纳米TiO_2-甲基丙烯酸甲酯聚合物均匀分散系的制备和结 构,材料研究学报,12(1998):32-35.
    
    15.张良均,程菊兰,赵仲宇,纳米TiO_2/聚甲基丙烯酸甲酯原位乳液聚合研究, 涂料工业,8(2003):1-3.
    
    16.郭广生,赵伟,王志华,王新朋,郭洪猷,PMMA-TiO_2纳米复合材料的制备.应 用化学,8(2004):821-823.
    
    17. Iketani Kazuya, Sun Ren-De, Toki Motoyuki, Hirota Ken, Yamaguchi Osamu, Sol-gel-derived TiO_2/poly(dimethylsiloxane) hybrid films and their photocatalyticactivities, Journal of Physics and Chemistry of Solids, 64 (2003): 507-513.
    
    18. M. Yang, Y. Dan, Preparation and characterization of Poly (methyl methacrylate) / titanium oxide composite particles, Colloid Polym. Sci., 284 (2005): 243-250.
    
    19.谢晶曦,《红外光谱在有机化学和药物化学中的应用》,北京:科学出版社, 1987.175-284.
    
    20.张美珍,《聚合物研究方法》,中国轻工业出版社,2000,13-23;108-115.
    
    21.蔡正千,《热分析》,高等教育出版社,1993,217-224.
    
    22. C.C. Weng, K.H. Wei, Selective distribution of surface-modified TiO_2nanoparticles in polystyrene-poly (methyl methacrylate) diblock copolymer, Chem. Mater., 15 (2003): 2936-2941.
    
    23. A. Laachachi, M. Cochez, M. Ferriol, J.M. Lopez-Cuesta, E. Leroy, Influence ofTiO_2 and Fe_2O_3 fillers on the thermal properties of poly (methyl methacrylate)(PMMA), Mater. Lett., 59 (2005): 36-39.
    
    24. M. Marinovic-Cincovic, Z.V. Saponjic, V. Djokovic, S.K. Milonjic, J.M. Nedeljkovic, The influence of hematite nanocrystals on the thermal stability of polystyrene, Polym. Degrad. Stab., 91 (2006): 313-316.
    
    25.I.C. Mcneill, A study of the thermal degradation of methyl methacrylate polymers and copolymers by thermal volatilization analysis, Euro. Polym. J., 4 (1968): 21-30.
    
    26.钟世云,许乾慰,王公善,《聚合物降解与稳定化》,化学工业出版社,2002, 92-99.
    
    27. E. Dzunuzovic, K. Jeremic, J.M. Nodeljkovic, In situ radical polymerization of methyl methacrylate in a solution of surface modified TiO2 and nanoparticles, European. Polymer Journal, 43 (2007): 3719-26.
    
    28. T. Kashiwagi, A. Inaba, J.E. Brown, K. Hatada, T. Kitayama, E. Masuda, Effects of weak linkages on the thermal and oxidative degradation of poly (methyl methacrylate), Macro molecules. 19 (1986): 2160-2168.
    
    29.I.G. Popovic, L. Katsikas, H. Weller, The photopolymerization of methacrylic acid by colloidal semiconductors, Polym. Bull.. 32 (1994): 597-603.
    
    30. L. Katsikas, J.S Velickovic, H. Weller, I.G. Popovic, Thermal-gravimetric characterisation of Poly (methyl methacrylate) photopolymerised by colloidal cadmium sulphide, J. Therm. Anal, 49 (1997): 317-323.
    
    31. I.G. Popovic, L. Katsikas, U. Müller, J.S. Velickovic, H. Weller, The homogeneous photopolymerization of methacrylate by colloidal cadmium sulfide,??Macromol. Chem. Phys., 195 (1994): 889-904.
    
    32. J.D. Peterson, S. Vyarovkin, C.A. Wight, Kinetic study of stabilizing effect of oxygen on thermal degradation of poly (methyl methacrylate), J. Phys. Chem. B 103 (1999): 8087-8092.
    
    33.周玉, 《陶瓷材料学》(第二版),科学出版社,2004,250-262.
    
    34.曾可令,王慧,罗民华,《多孔功能陶瓷制备及应用》,化学工业出版社,2006, 109-110.
    
    1. D.F. Ollis, E. Pelizzetti, N. Serpone, Photocatalyzed destruction of water contaminants, Environ, Sci. Technol., 25 (1991): 1522-1529.
    
    2. J.C. D'oliveira, G Al-Sayyed, P. Pichat, Photodegradation of 2- and 3-chlorophenol in titanium dioxide aqueous suspensions, Environ. Sci. Technol., 24 (1990): 990-996.
    
    3. R. Ashi, T. Morikawa, T. Ohwaki, Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293 (2001): 269-271.
    
    4. H. Ross, J. Bending, S. Hecht, Sensitized photocatalytical oxidation of terbutylazine, Sol. Energy Mater. Sol. Cell, 33 (1994): 475-481.
    
    5. H. Hidaka, T.S. Kazuhiko, J. Zhao, N. Serpone, Photoelectrochemical decomposition of amino acids on a TiO_2/OTE paniculate film electrode, J. Photochem. Photobiol. A: Chem. 109 (1997): 165-170.
    
    6. H. Hidaka, J. Zhao, E. Pelizzetti, N. Serpone, Photodegradation of surfactants. 8. Comparison of photocatalytic processes between anionic DBS and cationic BDDAC on the titania surface, J. Phys. Chem., 96 (1992): 2226-2230.
    
    7. T. Tsuru, T. Kan-no, T. Yoshioka, M. Asaeda, A Photocatalytic membrane reactor for gas-phase reactions using porous titanium oxide membranes, Catal. Today, 82 (2003): 41-48.
    
    8. A. Wold, Photocatalytic properties of titanium dioxide (TiO_2), Chem. Mater., 5 (1993): 280-283.
    
    9. R.A. Caruso, M. Giersig, F. Willig, M. Antonietti, Porous "coral like" TiO_2 structures produced by templating polymer gels, Langmuir, 14 (1998): 6333-6336.
    
    10. J.W. Long, K.E. Swider, C.I. Merzbacher, D.R. Rolison, Voltammetric characterization of Ruthenium oxide-based aerogels and other RuO_2 solids: the nature of capacitance in nanostructured materials, Langmuir, 15 (1999): 780-785.
    
    11. R.A. Caruso, M. Antonietti, M. Giersig, H.P. Hentze, J. Jia, Modification of TiO_2 network structures using a polymer gel coating technique, Chem. Mater., 13 (2001): 1114-1123.
    
    12. S.I. Matsushita, T. Miwa, D.A. Tryk, A. Fujishima, New mesostructured porous TiO_2 surface prepared using a two-dimensional array-based template of silica particles, Langmuir, 14 (1998): 6441-6447.
    
    13. K.P. Kumar, Porous nanocomposites as catalyst supports: Part I. 'second phase stabilization', thermal stability and anatase-to-rutile transformation in titania-alumina nanocomposites, AppL Catal. A General, 119(1994): 163-183.
    
    14. E.Y. Kaneko, S.H. Pulcinelli, V. Teixeira da Silva, C.V. Santilli. Sol-gel synthesis of titania-alumina catalyst supports, Appl. Catal. A General, 235 (2002): 71-78.
    
    15. C. Garzella, E. Comini, E. Tempesti, C. Frigeri, G Sberveglieri, T1O2 thin films by a novel sol-gel processing for gas sensor applications, Sens. Actuators B, 68 (2000): 189-196.
    
    16.B.L. Zhang, B.S. Chen., K.Y. Shi, S.J. He, X.D. Liu, Z.J. Du, K.L. Yang, Preparation and characterization of nanocrystal grain TiO_2 porous microspheres, Appl. Catal. B, 40 (2003): 253-258.
    
    17. H. Kozuka, Y. Takahashi, GL. Zhao, T. Yoko, Preparation and photoelectron -chemical properties of porous thin films composed of submicron TiO_2 particles, Thin Solid Films, 358 (2000): 172-179.
    
    18. K. Kato, A. Tsuzuki, Y. Yorii, H. Taoda, T. Kato, Y. Butsugan, Morphology of thin anatase coating prepared from alkoxide solutions containing organic polymer, affecting the photocatalytic decomposition of aqueous acetic acid. J. Mater. Sci., 30 (1995): 837-841.
    
    19. H.Y. Xu, X.L. Liu, M. Li, Z. Chen, D.L. Cui, M.H. Jiang, Preparation and characterization of TiO_2 bulk porous nanosolids, Mater. Lett, 59 (2005):??1962-1966.
    
    20. Mohammad A. Wahab, II. Kim, Chang-Sik Ha, Hybrid periodic mesoporous organosilica materials prepared from l,2-bis(triethoxysilyl)ethane and (3-cyanopropyl)triethoxysilane, Micro. Meso. Mater., 69 (2004): 19-27.
    
    21. S. V. Mattigod, B. P. McGrail, Estimating the standard free energy of formation of zeolites using the polymer model, Micro. Meso. Mater., 27 (1999): 41-47.
    
    22.乐英红,马臻,华伟明,高滋,二氧化钛介孔分子筛的合成和表征,化学学 报,58(7)(2000):777-780.
    
    23.周玉, 《陶瓷材料学》(第二版),科学出版社,2004,250-262.
    
    24.国世驹, 《粉末烧结理论》,冶金工业出版社,1998,261-264.
    
    25.曾可令,王慧,罗民华,《多孔功能陶瓷制备及应用》,化学工业出版社,2006, 109-110.
    
    26.王正熙,《聚合物红外光谱分析和鉴定》,成都:四川大学出版社,1989,90.
    
    27.谢晶曦,《红外光谱在有机化学和药物化学中的应用》,北京:科学出版社, 1987.175-284.
    
    28.张美珍,《聚合物研究方法》,中国轻工业出版社,2000,13-23;108-115.
    
    1. S.Lakhwani, M. N. Rahaman, Adsorption of polyvinylpyrrolidone (PVP) and its effect on the consolidation of suspensions of nanocrystalline CeC>2 particles, J. Mater. Sci., 34 (1999): 3909-3912.
    
    2. Shin Hyeon Suk, Yang Hyun Jung, Kim Seung Bin, Lee Mu Sang, Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution, Journal of Colloid and Interface Science, 274 (2004): 89-94.
    
    3. T. W. Chung, K. Y. Cho, J. W. Nah, T. Akaike, C. S.Cho, Release of adriamycin from polymeric nanoparticle composed of poly(e-caprolactone) and poly (vinylpyrrolidone) in vitro, Proceedings - 28th International Symposium on??Controlled Release of Bioactive Materials and 4th Consumer & Diversified Products Conference, 1 (2001): 528-529.
    
    4. Machulek Junior Amilcar, Moises de Oliveira, Hueder Paulo, Gehlen Marcelo Henrique, Preparation of silver nanoprisms using poly(N-vinyl-2-pyrrolidone) as a colloid-stabilizing agent and the effect of silver nanoparticles on the photophysical properties of cationic dyes, Photochemical & Photobiological Sciences, 2 (2003): 921-925.
    
    5. Zhou H. S., Honma I., Komiyama H., Haus Joseph W., Coated semiconductor nanoparticles: the cadmium sulfide/lead sulfide system's synthesis and properties, J. Phys. Chenu, 97 (1993): 895-901.
    
    6. Itoh Koichi, Pongpeerapat Adchara, Tozuka Yuichi, Oguchi Toshio, Yamamoto Keiji, Nanoparticle formation of poorly water-soluble drugs from ternary ground mixtures with PVP and SDS, Chemical & Pharmaceutical Bulletin, 51 (2003): 171-174.
    
    7. P.K. Khanna, R. Gokhale, V.V.V.S. Subbarao, Poly (vinyl pyrolidone) coated silver nano powder via displacement reaction, Journal of Materials Science, 39 (2004): 3773-3776.
    
    8. Pastoriza-Santos Isabel, Liz-Marzan Luis M., Formation of PVP-Protected Metal Nanoparticles in DMF, Langmuir, 18 (2002):2888-2894.
    
    9. Hirai Hidefumi, Yakura Noboru, Seta Yoko, Hodoshima Shinya, Characterization of palladium nanoparticles protected with polymer as hydrogenation catalyst. React. Funct. Polym., 37 (1998):121-131.
    
    10. Uemura Takashi, Kitagawa Susumu, Prussian Blue Nanoparticles Protected by Poly (vinylpyrrolidone), Journal of the American Chemical Society, 125 (2003): 7814-7815.
    
    11. Duan Chun-ying, Zhou Jing-fang, Preparation and characterization of silver nanoparticles, Huaxue Yanjiu, 14 (2003): 18-20.
    
    12. Hao Encai, Wang Liyan, Zhang Junhu, Yang Bai, Xi Zhang, Shen Jiacong, Fabrication of polymer/inorganic nanoparticles composite films based on??coordinative bonds, Chem. Lett., 1 (1999): 5-6.
    
    13.谢晶曦,《红外光谱在有机化学和药物化学中的应用》,北京:科学出版社, 1987.175-284.
    
    14.张美珍,《聚合物研究方法》,中国轻工业出版社,2000,13-23;108-115.
    
    15.蔡正千,《热分析》,高等教育出版社,1993,217-224.
    
    16.钟世云,许乾慰,王公善,《聚合物降解与稳定化》,化学工业出版社,2002. 92-99.
    
    17. R.G Heideman, P.V. Lambeck, J.GE. Gardeniers, High quality ZnO layers with adjustable refractive indices for integrated optics applications, Optical Materials, 4 (1995): 741-755.
    
    18. Y. Yang, H. Chen, B. Zhao, X. Bao, Size control of ZnO nanoparticles via thermal decomposition of zinc acetate coated on organic additives, J. Cryst. Growth, 263 (2004): 447-453.
    
    19. T. Aoki, Y. Hatanaka, D.C. Look, ZnO diode fabricated by excimer-laser doping, Appl. Phys. Lett., 76 (2000) 3257-3258.
    
    20. A. Mycielski, L. Kowalczyk, A. Szadkowski, et al. The chemical vapor transport growth of ZnO single crystals, J. Alloys Comp., 371 (2004): 150-152.
    
    21. Y. Liu, C.R. Gorla, S. Liang, et al. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD, J. Electron. Mater., 29 (2000): 69-74.
    
    22. T. Yamamoto, T. Shiosaki, A. Kawabata, Characterization of ZnO piezoelectric films prepared by RF planar-magmetron sputting, J. Appl. Phys., 51 (1980): 113-3120.
    
    23. N.K. Zayer, R. Greef, K. Rogers, et al. In situ monitoring of sputtered zinc oxide films for piezoelectric transducers, Thin Solid Films, 352 (1999): 179-184.
    
    24. B. Rao, Zinc oxide ceramic semi-conductor gas sensor for ethanol vapor, Mater. Chem. Phys., 64 (2000): 62-65.
    
    25. K.S. Weipenrieder, J. Miiller, Conductivity model for sputtered ZnO-thin film gas sensors, Thin Solid Films, 300 (1997): 30-41.
    
    26. M.H. Huang, S. Mao, H. Feick, et al. Room-temperature ultraviolet nanowire??nanolasers, Science, 292 (2001): 1897-1899.
    
    27. Y. Zhang, H. Jia, X. Luo, et al. Synthesis, microstructure and growth mechanism of dendrite ZnO nanowires, J. Phys. Chem. B, 107 (2003): 8289-8293.
    
    28. S. Li, C.Y. Lee, T.Y. Tseng, Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process, J. Cryst. Growth, 247 (2003): 357-362.
    
    29. B. Liu, H.C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50nm, J.Am. Chem. Soc, 125 (2003): 4430-4431.
    
    30. J. Zhang, W. Yu, L. Zhang, Fabrication of semiconducting ZnO nanobelts using a halide, Phys. Lett. A, 299 (2002): 276-281.
    
    31. Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides, Science, 291 (2001): 1947-1949.
    
    32. J.Y. Lao, J.G. Wen, Z.F. Ren, Hierarchical ZnO nanostructures, Nano. Lett., 2 (2002): 1287-1291.
    
    33. X. Wang, Y. Ding, C.J. Summers, et al. Large-scale synthesis of six-nanometer-wide ZnO nanobelts, J. Phys. Chem. B, 108 (2004): 8773-8777.
    
    34. C. Jin, W. Zhu, D. Fang, Preparation of nanocrystalline ZnO particle, Fine Chem., 16 (1999): 26-28.
    
    35. Y.H. Lin, Z.L. Tang, Z.I. Zhang, Preparation of nanometer zinc oxide powders by plasma pyrolysis technology and their application, J. Am. Ceram. Soc, 83 (2000): 2869-2871.
    
    36.I. Trindade, J.D. Pedrosa de Jesus, P. OBrien, Preparation of zinc oxide and zinc sulfide powders by controlled precipitation from aqueous solution, J. Mater. Chem., 4 (1994): 1611-1617.
    
    37. N. Audebrand, J.P. Auffredic, D. Louer, X-ray diffraction study of the early stages of the growth of nanoscale zinc oxide crystallites obtained from thermal decomposition of four precursors, general concepts on precursor-dependent microstructural properties, Chem. Mater., 10 (1998): 2450-2461.
    
    38. D. Chen, X. Jiao, G. Cheng, Hydrothermal synthesis of zinc oxide powders with different morphologies, Solid State Commun., 113 (2000): 363 -366.
    
    39. S. Mahamuni, K. Borgohain, B.S. Bendre, J.L. Valene, H.R. Subhash, Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots, J. Appl. Phys., 85 (1999): 2861-2865.
    
    40. X.R. Ye, D.Z. Jia, J J. Qi, X.Q. Xin, Z. Xue, One-Step solid-state reactions at ambient temperatures - a novel approach to nanocrystal synthesis, Adv. Mater., 11 (1999): 941-942.
    
    41. Y. Inubushi, R. Takami, M. Iwasaki, H. Tada, S. Ito, Mechanism of formation of nanocrystalline ZnO particles through the reaction of [Zn(acac)_2] with NaOH in EtOH, J. Colloid. Interf. Sci., 200 (1998): 220-227.
    
    42. G. Rodry'guez-Gattorno, P. Santiago-Jacinto, L. Rendon-Vázquez et al., Novel synthesis pathway of ZnO nanoparticles from the spontaneous hydrolysis of zinc carboxylate salts, J. Phys. Chem. B, 107 (2003): 12579-12604.
    
    43.李梅,刘秀琳,徐红燕,崔得良,任燕,孙海燕,陶绪堂,蒋民华,水和辛 胺对ZnO多孔纳米块体孔道结构的影响,化学学报,63(2005):1510-1514.
    
    44.李梅,孙海燕,刘秀琳,徐红燕,王成建,崔得良,蒋民华,共溶剂对ZnO 多孔纳米块体孔径均匀性的影响,高等学校化学学报,27(2006):1-4.
    
    45.刘秀琳,徐红燕,余丽丽,李梅,王成建,崔得良,蒋民华,ZnO纳米颗粒 的自组装及多孔纳米固体的研制,科学通报,49(2004):2410-2415.
    
    46.刘秀琳,徐红燕,李梅,孟宪平,王琪珑,蒋民华,崔得良,二氧化锆多孔纳 米固体的制备与性质表征,功能材料,35(2004增刊):3119-3122.
    
    47. Hongyan Xu, Xiulin Liu, Mei Li, Zhi Chen, Deliang Cui, Minhua Jiang, Preparation and characterization of TiO_2 bulk porous nanosolids, Mater. Lett., 59 (2005): 1962-1966.
    
    48. H.Y. Xu, X.L. Liu, D.L. Cui, M. Li, M.H. Jiang, A novel method for improving the performance of ZnO gas sensors, Sens. Actuators B, 114 (2006): 301-307.
    
    49.X.L. Liu, H.Y. Xu, L.L. YU, M. Li, C.J. Wang, D.L. Cui, M.H. Jiang, Self-assembly of ZnO nanoparticles and preparation of bulk ZnO porous nanosolids, Chin. Sci.Bullet, 50 (2005): 612-617.
    
    50.刘秀琳,余丽丽,徐红燕等,TiO_2多孔纳米固体对罗丹明B的热催化降解作 用,化学学报,62(24)(2004):2398-2402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700