WO_3基气敏传感器薄膜材料的性质及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微结构气敏传感器与电子鼻是近年来国际上传感器领域的研究热点,微结构气敏传感器是利用微电子、微机械加工和薄膜技术将加热测温电阻、测量电极和敏感薄膜集成一体的新一代气敏元件,具有低功耗、易集成、易阵列化、易智能化等优点,因此气敏薄膜材料的研究开发也成为一个热点。
     纳米三氧化钨是重要的半导体材料,在信息存储、变色窗、燃料电池、化学传感器等领域有着广泛的应用前景,成为目前最具开发潜力的材料之一。本论文采用反应磁控溅射法制备了WO_3和Ti掺杂WO_3薄膜,首次得到了p型钛掺杂WO_3薄膜,并用溶胶凝胶法制备了WO_3基Pd掺杂光学型传感器薄膜材料。主要研究内容及结果如下:
     1)采用XRD、XPS、AFM、分光光度计、Hall效应仪、台阶仪等对薄膜样品结构性能、光学性质、电学性质、表面型貌以及掺杂含量等进行了表征,并对纯WO_3薄膜与Ti掺杂WO_3薄膜的进行了比较。揭示了热处理温度与WO_3薄膜晶相变化的关系,研究了掺杂对WO_3气敏薄膜光学性质、电学性质等的影响,得到了WO_3基气敏薄膜的较佳制备及热处理条件。
     2)采用透射谱和单谐振子模型获得了薄膜的的光学常数和光学带隙,计算结果表明WO_3薄膜为间接带隙,原态WO_3薄膜的折射率在可见光范围为2.3-2.0,光学带隙为3.14eV左右,并得到了声子能量。讨论了热处理和Ti掺杂对光学带隙的影响,从理论上验证了取得理想微结构气敏传感器WO_3敏感薄膜的条件。
     3)详细研究了WO_3和WO_3掺杂薄膜的气敏响应特性,并首次利用WO_3的变色特性研究了WO_3基光学型传感器薄膜材料的特性。发现20%氧分压下制备的的样品,对氧化性气体NO2有较理想响应特性,最低测试浓度为0.1ppm,工作温度在150℃-180℃;而p型钛掺杂WO_3薄膜对还原性气体LPG更敏感,响应曲线接近方波,但工作温度较高,在400℃左右。对适于非加电场合使用的WO_3基光学型传感器薄膜材料的研究是本文的创新点之一,我们在实验基础上给出了基于WO_3薄膜光学型传感器的气敏光学机理,而该机理分析方法适用于其它n型半导体气敏光学薄膜。
     上述研究中,对Ti掺杂P型WO_3气敏薄膜的研究是本文的重要特色与创新,而n型半导体气敏光学薄膜的气敏机理分析方法对其它光学气敏薄膜的研究具有重要指导意义。在这些研究的基础上,我们也明确了后续的研究目标。
In the last few years, much attention has been attracted to micro gas sensors and electronic noses in the field of gas sensing technology. The micro gas sensor, in which a heater, a temperature detector, electrodes and sensitive thin film are integrated by microelectronic, micromachining and thin film technology, is a new generation of gas sensor with the advantages of low power consumption and ease of integration. So the semiconductor oxide thin films gradually become the main development direction in the researches of sensitive thin film.
     As a member of the novel semiconductor materials, tungsten oxide has been under an extensive research in recent years for its unique physicochemical properties. It has been widely used in many different applications, such as electrochromic windows, optical devices, fuel cells, gas sensors, and photocatalyst materials, etc. In this work, WO_3 films and Ti-doping WO_3 films were deposited on glass substrates by reactive magnetron sputtering technology, we first got the p-type Ti:WO_3 films. Pd-doping WO_3 films were prepared by sol-del method, which is used as the sensitive thin film in optical gas sensors.
     The crystal structure, optical properties, surface morphologies and surface compositions of WO_3-based films was studied by X-ray diffraction (XRD), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), Hall Effect measurement and spectrophotometer. The changes of their optical properties and structure after annealed as well as the effect of the Ti-doping on the performances and structure were analyzed. The results show the relationship of crystal phases and annealing temperature. In addition, the process parameters on the WO_3-based sensitive films were discussed.
     The optical constants and optical band gap were calculated in this paper by the single oscillator model and transmission envelope method. The band gap of as-deposited WO_3 film is about 3.14eV and the refractive index is 2.0 to 2.3 between 400nm to 2400nm. The impact of annealing temperature and Ti-doping on optical constants and optical band gap of WO_3 films are investigated, too.
     Results of the test of film gas sensors based on WO_3 and Ti-doping WO_3 are discussed in this paper, too. Sensor properties were investigated using resistance measurements upon test gas exposures. The experiments were performed at different operating temperatures as well as on different gas concentrations. The pure WO_3 films deposited under 20% oxygen pressure and annealed at 450℃showed excellent sensitivity to 1ppm NO_2 gas, the sensitivity exceed 15. While p-type Ti:WO_3 films showed excellent sensitivity to PLG gas and the response curve almost show the square-wave figure. The sensor character and gas sensitive mechanism are analyzed. The change of transmissivity of Pd-doping WO_3 films have been investigated in H2 gas with different concentration. The gas sensitivity and response time have been studied, too. The transmissivity change mechanism of gas sensitive thin films was explained based on the theory of optical transfer. The theory study was consistent with the experiments and can be used to analyze other n-type optical gas sensor thin films.
     At the end of this paper a short conclusion for the past work and the goal for future research are made.
引文
[1]徐毓龙,徐玉成.气敏传感器及其发展动向[J].电子科技导报,1997,(6):14-17.
    [2]贾良菊,应鹏展,许林敏等.气敏传感器的研究现状与发展趋势[J],煤矿机械, 2005,(4):3-5.
    [3] Keisen Kanda, Toru Maekawa. Development of a WO3 thick-film-based sensor for the detection of VOC[J]. Sensors and Actuators B. 2005,(108): 97-101.
    [4]杨志华,余萍,肖定全.半导体陶瓷型薄膜气敏传感器的研究进展[J].功能材料, 2004,1(35):4-6.
    [5] P.T. Moseley, B .C .Tofield Eds.Solid State Gas Sensors[M]. BristolAdam Hilger,1987.
    [6] Wolfgang Gopel, Klaus Dieter Schierbaum.SnO2 sensors: current status and future prospects[J]. Snsors and Actuators, B 1995 (26-27):1-12.
    [7] N. Yamazoe. Chemical sensors R and D in Japan[J]. Sensors and Actuators B, 1992 (6):9-15.
    [8] Q.Wu, K.M.Lee and C.C.Liu. Development of chemical sensors using microfabrication and micromachining techniques.[J] Sensors and Actuators B, 1993,(13-14):1-6.
    [9] H.Meixner,U .Lampe. Metal Oxide sensors[J]. Sensors and Actuators B, 1996, (33):198-202.
    [10] S. K. Deb. The reversible colouration-bleaching process in tungsten trioxide under the action of an applied electric[J]. Appl Opt Suppl. 1969,(3)192-195.
    [11] W.H.Brattain, J.Barden. Surface properties of germanium[J]. Bell. Systen Tech.J. 1953, (32):1-6.
    [12] Q.Wu, K.M.Lee, C.C.Liu. Development of Chemical Sensors using Microfabrication and micromachining techniques[J]. Sensors and Actuators B. 1993, (16):1-6.
    [13] R.E.Cavicchi. Optimize temperature-pulse sequences for the enhancement of chemically specific response patterns from micro-hotplate gas sensor[J]. Sensors and Actuators B. 1996,(33):142-146.
    [14] S.K.H.Fung. Thermal analysis and design of a micro-hotplate for integrated gas-sensor applications[J]. Sensors and Actuators A. 1996, (54):482-487.
    [15]李建平,朱慧敏.微结构气敏传感器研究现状与发展. STC’97会议文集. P268.
    [16] T.Siyama, A.Kato, K.Fujiishi, M.Nagatani. A new detector for gaseous components usingsemiconducting thin films[J]. Anal. Chem. 1962,(34):1502-1503.
    [17] N. Yama Zoe, N.Miura. Evrionmental Gas Sensing[J]. Sensors and Actuators B, 1994, (20):95-102.
    [18] S.Semancik, R.E.Cavicchi. The use of surface and thin film science in the development of advanced gas sensors[J]. Applied Surface Science, 1993, (70/71): 337- 346.
    [19] G.S berveglieri. Recent developmentsin semiconducting thin-film gas sensors[J]. Sensors and Actuators B. 1995, (23):103-109.
    [20] Giorgio Sberveglieri. Classical and novel techniques for the preparation of SnO2 thin-film gas sensors[J]. Sensors and Actuators B, 1992,(6)239-247.
    [21] H.M eixner, J.G erblinger,U.Lampe, et al. Thin-film gas sensors based on semiconducting metal oxides[J], Sensors and Actuators B, 1995, (23):119-125.
    [22] W.Gopel, K.D.Schierbaum. SnO2 sensors:current status and future prospects[J],Sensors and Actuators B, 1995,( 26-27):1-12.
    [23]高晓光,李建平,王悦等. SnO2和SnO2-Ag薄膜的电学特性[J].真空科学与技术,2001,1(21):9-13.
    [24] Li Ranping, Wang Yue, Gao Xiaoguang, et al.H2S sensing properties of the SnO2 based composite thin films[J].Sensors and Actuators B, 2000, (65):111-113.
    [25] J.M izei, V.Lanto. Simultaneous Response of Work Function and Resistivity of some SnO2-based Samples to H2 and H2S[J]. Sensors and Actuators B, 1991, (4):163-168.
    [26] J.Tamaki, T.Maekawa, N.Miura, et al.CuO-SnO2 element for highly sensitive and selectived detection of H2S[J]. Sensors and Actuators B, 1992, (9):197-203.
    [27] T.Seiyama, A. Kato. A new detector for gaseous components using semiconductor thin film[J]. Anal. Chem. 1962, (34):1502-1503.
    [28] X.L.Cheng, H. Zhao, L.H. Huo, S.Gao, J.G Zhao. ZnO nanoparticle thin film: preparation, characterization and gas-sensing property[J]. Sensors and Actuators B, 2004, (102):248-252.
    [29] Y. Tsutomu, W Satoshi, N. Tatsuo, et al. Gas-sensing properties of ultrathin zinc oxide films[J]. Sensors and Actuators B, 1993, (14):594-595.
    [30] M. Bender, E. Fortunato, P. Nunes, et al. Highly sensitive ZnO ozone detectors at room temperature[J]. Japanese Journal of Applied Physics, Part 2. 2003, (42):435-437.
    [31] M. Bender, E. Gagaoudakis, E. Douloufakis, et al. Production and characterization of zinc oxide thin films for room temperature ozone sensing[J]. Thin Solid Films, 2002, (418) 45-50.
    [32]任玉芳.稀土元素在气敏半导体中的作用[J].中国稀土学报, 1985, (3):15-19.
    [33] B.Bhooloka Rao. Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour[J]. Mater. Chem. Phy. 2000, (64): 62-65.
    [34]王晓平,稀土掺杂ZnO半导体气敏传感器的性能研究[J].湘潭大学自然科学学报,1999 ,(21):109-111.
    [35] B.P. J. de Lacy Costello, R.J. Ewen, P.R.H. Jones, et al. A study of the catalytic and vapor-sensing properties of zinc oxide and tin dioxide in relation to I-butanol and dimethyldisulphide. Sensors and Actuators B, 1999, (61):199-207.
    [36] T.H. Kwon, S.H. Park, J.Y Ryu, H.H. Choi. Zinc oxide thin film doped with A12O3, TiO2 and V2O5 as sensitive sensor for trimethylamine gas[J]. Sensors and Actuators B, 1998, (46):75-79.
    [37]全宝富,沈艳宾,卢革宇等.掺杂剂与ZnO材料的气敏特性[J].吉林学自然科学学报, 1993, (3):77-80.
    [38] N. Jayadev Dayan, S.R. Sainkar, A.A. Belkehar et al. On the highly selective ZnO:AlzO3 based thick film hydrogen sensors[J]. Mater. Sci. Lett. 1997, (16): 1952-1954.
    [39] Sun H, Cantalini C, Lozzi L, et al. Microstructural effect on NO2 sen-sitivity of WO3 thin film gas sensors: Part 1. Thin film devices, sensors and actuators[J]. Thin Solid Films, 1996, 287(1): 258-265
    [40]黄忠宇,孙良彦,平田光寿,NO2高选择性气敏元件及其表面修饰[J],传感技术学报,1993,(4):10 -13 .
    [41] Akiyama M, Tamaki J , Miura N , et al . WO3-based semiconductor sensor highly sensitive to NO and NO2[J]. Chem Lett , 1991,(9):1611-1616.
    [42] Barret E P S , Georgiades GC, Sermon P A. The mechanismof operation of WO3-based H2S sensors[J]. Sensors and Actuators B, 1990, (1) :116-122.
    [43] Dwyer D J . Surface chemistry of gas sensors :H2S on WO3 films[J]. Sensors and Actuators B, 1991,(5) :155-161.
    [44] Fruhberger B, Grunze M, Dwyer D J. Surface chemistry of H2S- sensitive WO3 films[J]. Sensors and Actuators B, 1996,(31):167-174.
    [45] Lin Hong - Ming , Hsu Chi - Ming , Yang Huey - Yih, et al . Nanocrystalline WO3-based H2S sensors[J]. Sensors and Actuators B, 1994,(22):63-68.
    [46] Xu Z, Veletino J F, Lec R , et al . Electrical properties of WO3 films[J]. Vac Sci Technol A,1990, (8) :3634-3670.
    [47] Daniel M F , Desbat B, Lassegues J C, et al . Infrared and Raman spectroscopies of rf sputtered WO3 films[J]. Solid State Chem,1988 ,(73) :127-133.
    [48] Smith.D.J, Vetelino.J.F, Falconer.R.S,et al. Stability, sensitivity and selectivity of WO3 films for sensing application[J]. Sensors and Actuators B, 1993 (13/14): 264-268.
    [49] Caron.J.J, Kenny.T.D, Legore.L.J,et al. A surface acoustic wave nitric oxide sensor[C].1997 IEEE International Freq Cont Symp,1997,156-162.
    [50] Sharma R K, Chan P, Tang Zh A n, et al. Invest igat ion of stability and reliability of tin oxide thin-film for integrated micro-machined gas sensor devices[J]. Sensors and Actuators B, 2001, (81) : 9-16.
    [51] SauvanM , Pijolat, Christophe, Selectivity improvement of SnO2 films by superficial metallic films[J]. Sensors and Actuators B, 1999, 58 (1/2/3) : 295-301.
    [52] Safonova O V, Delabouglise G, Chenevier B, et al. CO and NO2 gas sensitivity of nanocrystalline tin dioxide thin films doped with Pd, Ru and Rh [J]. M aterials Science and Engineering C, 2002, 21 (1/2 ) : 105-111.
    [53] M.Bendahan, R.Boulmani, J.L.Seguin. Characterization of ozone sensors based on WO3 reactively sputtered films: influence of O2 concentration in the sputtering gas, and working temperature[J]. Sensors and Actuators B. 2004, (100): 320–324.
    [54]徐毓龙,曹全喜,周晓华.金属氧化物半导体电阻型气敏传感器作用机理[J].传感技术学报, 1992,(2): 53-64.
    [55] S.Hahn. SnO2 thick film sensors at the ultimate limits. Ph.D. Thesis. Universit?t Tübingen. 2002.
    [56] G.A.de Wijs, P.K. Boer. R.A.d. and G. Kresse. Anomalous behavior of the semi conducting gap in WO3 from first-principles calculations[J]. Phys.Rev. B,1999, (59):2684-2693.
    [57] P.Woodward, A.Sleight. Ferroelectric tungsten oxide[J]. Sol. State Chem,1997,(131): 9-17.
    [58] E.Salje. Structural phase transitions in the system WO3-NaWO3[J]. Ferroelectrics, 1976,(12):215-217.
    [59] E Saljie, K Viswanathan. Physical properties and phase transitions in WO3[J]. Acta Crystallogr A , 1975, (31), 356–359.
    [60] S.Tanisaki. On the Phase Transformation of Tunesten Trioxide below Room TemDerature[J]. Phvs. Jpnz. 1960,(15):566-573.
    [61] B.O.Loopstra, H.M.Rietveld. Further refinement of the structureoftbetungstentrioxide[J]. Acta Cryst. B, 1969, (25): 1420-1421.
    [62] R.Diehl, G.Brandt, E.Saljie. The crystal structure of triclinic WO3[J]. Acta Crystallogr.B, 1978, (34): 1105-1111.
    [63] P.Woodward,A.Sleight, T.Vogt. Structure refinement of triclinic tungsten trioxide[J]. Phys.Chem.Solids, 1995, (56) :1035-1315.
    [64] E.Salje. Structural phase transitions in the system WO3-NaWO3[J]. Ferroelectrics,1976, (12):215~217
    [65] P.M.Woodward, A.W.Sleight, T.Vogt. Forroelectric tungsten trioxide[J].Solid State Chem,1997, (131):9-17.
    [66] A.Kuzmin, J.Purans, E.Cazzaneili,et al. X-ray diffraction, extended X-ray absorption fine structure and Raman spectroscopy studies of WO3 powders and (1-x)WO3-y·xReO2 mixtures[J]. Appl.Phys, 1998, (15):5515-5524.
    [67] G.R.Bamwenda and H.Arakawa. The visible light induced photocatalytic activity of tungsten trioxide powders[J]. Appl.Catal A, 2001, (210):181-191.
    [68] W.Sahle, M.Nygren. Electrical conductivity and high resolution electron microscopy studies of WO3-x crystals with 0≤x≤0.28[J]. Solid State Chem, 1983, (48):154-160.
    [69] C.G..Granqvist. Electrochromic tungsten oxide films:Review of progress 1993-1998[J]. Solar Energy Mater Solar Cells, 2000, (60):201-262.
    [70] Y.Zhao, Z.C.Feng, Y.Liang. Laser-induced coloration of WO3[J]. Appl.Phys.Lett. 1997, (71) 2227~2229.
    [71] A.G..Darrin. Variable emissivity through MEMS technology. Inter Society Conference on Thermal Phenomenon, 2000:264-270.
    [72] K.Viswanathan, K.Brandt, E.Salje. Crystal sturucture and charge carrier concentration of W18O49[J]. Solid State Chem., 1981, (36):45-51
    [73]周永济著.半导体材料[M].北京:北京理工大学出版社, 1992.
    [74] J.A.Venables. Nucleation calculations in a pair-binding model[J]. Physical Review B. 1987, 36(8):4153-4162.
    [75]吴自勤,王兵著.薄膜生长[M].北京:科学出版社,2001.
    [76] X.Wang. S.S.Yee and W.P.Carey.Transition between neck controlled and grain boundary controlled sensitivity of metal oxide gas sensors [J]. Sensors and Actuators B, 1995, (24-25),454-457.
    [77] D.R.Rosseinsky, R.J.Mortimer. Electrochromic systems and the prospects for devices[J]. Adv.Mater. 2001, (13):783-793.
    [78] A.I.Gavrilyuk. Photochromism in WO3 thin films[J]. Electrochimica Acta, 1999, (44):3027-3037.
    [79] G.Leftheriotis, S.Papaefthimiou. Effect of the tungsten oxidation states in the thermal coloration and bleaching of amorphous WO3 films[J]. Thin Solid Films, 2001,(384):298-306.
    [80] P.Gerard. A.Deneuville. Color in“tungsten trioxide”thin films[J]. J.Appl.Phys.,1997,(48): 4265-4255.
    [81] Chemseddine A, Morineau R, Livage J. Electrochromism of colloidal tungsten oxide[J]. Solid State Ionics, 1983, (9/10):357-362.
    [82] Lampert C M. Electrochromic Materials and Devices for Energy Effcient Windows [J] .Solar Energy Mater. 1984, (11) : 1-27.
    [83] Scarminio J, Gorenstein A. Electrochromism and Photochromism in Amorphous Molybdenum Oxide Film [J]. Thin Solid Films,1997,(302):66-70.
    [84]吴广明,吴永刚,倪星元等.全故态电致色灵巧窗的研究进展[J].真空科学与技术, 1997(17):275-282
    [85] S.K.Deb. Optical and photoelectric properties and colour centres in thin films of tungsten oxides[J]. Philos Mag. 1973, (27):801-822.
    [86] C.Bechinger, E.Wirth, P.Leiderer. Photochromic coloration of WO3 with visible light[J]. Appl.Phys.Lett. 1996, (68):2834-2836.
    [87] Y.A.Yang, Y.W.Cao, P.Chen. Visible-light photochromism in electrolytically pretreated WO3 thin films[J]. Phys.Chem Solids. 1998, (59):1667-1670.
    [88] Zayat M, Reisfeld R, Minti H. Gasochromic Effect in Platinum-doped Tungsten Trioxide Films the Sol-gel Method Prepared by Sol-Gel[J]. Sci. and Technol. 1998,(11):161-168.
    [89] Georg, W.Graf, R.Neumann, V.Wittwer. Stability of Gasochromic WO3 Films[J]. Solar Energy Materials and Solar Cells. 2000, (63):165-176.
    [90] D.Schweiger, A.Georg, W.Graf, V.Wittwer. Examination of the kinetics and performance of a catalytically switching (gasochromic) device[J]. Solar Energy Materials and Solar Cells.1998,(54): 99-108.
    [91] Georg, W.Graf, D.Schweiger, V.Wittwer. Switchable Glazing with a Large Dynamic Range inTotal Solar Energy Transmittance (TSET)[J]. Solar Energy. 1998, 62(3): 215-228.
    [92] U.Opara Krasovec, B.Orel, A.Georg, V.Wittwer. The Gasochromic Properties of Sol-gel WO3 Films with Sputtered Pt Catalyst. Solar Energy. 2000,68(6):541-551.
    [93] Georg, W.Graf, R.Neumann, V.Wittwer. Mechanism of the Gasochromic Coloration of Porous WO3 Films[J]. Solid State Ionics. 2000,(127):319-328.
    [94] Georg, W.Graf, V.Wittwer. The Gasochromic Coloration of Sputtered WO3 Films with a Low Water Content[J]. Electrochimica Acta. 2001, (46):2001-2005.
    [95] A.Georg, W.Graf, R.Neumann, V.Wittwer. The Role of Water in Gasochromic WO3 Films[J]. Thin Solid Films. 2001, (384):269-275.
    [96] V.Makarov, M.Trontelj. Novel varistor material based on tungsten oxide[J]. Mater.Sci.Lett. 1994,(13): 937-939.
    [97] V. Makarov, M.Trontelj. Effect of Al2O3 on the microstructure and electrical properties of WO3-based varistor ceramics[J]. Eur.Ceram.Soc. 2000, (20):747-749.
    [98] A.L.Syagailo, V.O.Makarov. Electrical properties of WO3-based ceramics[J]. Inorgnic Materials. 2001, (37): 381-384.
    [99] Y.Wang, Z.Aburas, K.L.Yao, Z.L.Liu. Effects of doping and temperature on nonlinearity of WO3 varistor[J]. Materials Chemistry and Physics. 1999,(58):51-54.
    [100] Y.Wang, K.L.Yao, Z.L.Liu. Novel nonlinear current-voltage characteristics of sinter tungsten oxide[J]. Mater.Sci.Lett. 2001, (20) :1741~1743.
    [101] A.G.S.Filho, J.G.N.Matias, N.L.Dias,et al. Microstructural and electrical properties of sintered tungsten trioxide[J]. Mater.Sci. 1999, (34):1031-1035.
    [102] R.J.D.Tilley. Correlation between dielectric constant and defect structure of non-stoichiometric solids[J]. Nature. 1977, 269(15): 229-231.
    [103] H.Y.Wang, P.Xu, T.M.Wang. Doping of Nb2O5 in photocatalytic nanocrystalline/nanoporous WO3 films[J]. Thin Solid Films. 2001, (388):68-72.
    [104] H.Y.Wang, P.Xu, T.M.Wang. The preparation and properties study of photocatalytic nanocrystalline/nanoporous WO3 thin films[J]. Materials and Design. 2002, (23):331-336.
    [105] [日]金原粲,腾原英夫著,王力衡,郑海涛译.薄膜[M].北京:电子工业出版社, l988
    [106]李美成,杨建平,王菁等.脉冲激光薄膜制备技术[J],真空与低温,2000,(2):63-70.
    [107]杨恢东,丁瑞钦.纳米半导体薄膜制各技术[J].真空与低温,1999,(2):81-87.
    [108]赵文轸.溶胶-凝胶科学技术的发展与现状[J].材料导报,1996,( 6):12-15.
    [109]黄传真,艾兴,侯志刚等.溶胶-凝胶法的研究和应用现状[J].材料导报,1997,(3):8-9.
    [110]尚世铉著.近代物理实验技术(II)[M].北京:高等教育出版社,1993.
    [111]李学丹,万英超,姜样祺等著.真空沉积技术[M].浙江:浙江大学出版社, 1994.
    [112]杨邦朝,王文生著.薄膜物理与技术[M].成都:电子科技大学出版社, 1994.
    [113]王力衡,黄运添,郑海涛著.薄膜技术[M].北京:清华大学出版社, 1991.
    [114]王豫,陈敏,羊新胜等.磁控溅射法制备WO3薄膜及其非线性电学性质[J].功能材料与器件学报,2003.9(1):31-33 .
    [115] W. Walter, S. Y. Chu. Physical and structural properties of ZnO sputtered films[J]. Mater Lett. 2002,(55): 67-70.
    [116] Z. Z. Ye, J. G. Lu, H. H. Chen. Preparation and characteristics of p-type ZnO films by DC Szyszka reactive magnetron sputtering[J]. Cryst. Growth, 2003,(58): 253:258.
    [117] D. Garg,P.B. Henderson, R.E. Hollingsworthb. An economic analysis of the deposition of electrochromic WO3 via sputtering or plasma enhanced chemical vapor deposition[J]. Materials Science and Engineering B, 2005,(119): 224-231.
    [118] X.G. Wang, Y.S. Jang, N.H. Yang, etc. Structure-property relationships in electrochromic WO3 films deposited by reactive sputtering[J]. Solar Energy Materials & Solar Cells. 2000, (63):197-205.
    [119] H. Kamal, A.A. Akl, K. Abdel-Hady. Influence of proton insertion on the conductivity, structural and optical properties of amorphous and crystalline electrochromic WO3 films[J]. Physica B. 2004,3 (49):192–205.
    [120] Hiroshi Irie, Hisashi Mori, Kazuhito Hashimoto. Interfacial structure dependence of layered TiO2/WO3 thin films on the photoinduced hydrophilic property[J]. Vacuum. 2004, (74):625-629.
    [121] M. Gillet, K. Aguir, C. Lemire, E. Gillet. The structure and electrical conductivity of vacuum-annealed WO3 thin films[J]. Thin Solid Films. 2004, (467):239- 246.
    [122] M. Bendahan, R. Boulmani, J.L. Seguin, K. Aguir. Characterization of ozone sensors based on WO3 reactively sputtered films: influence of O2 concentration in the sputtering gas, and working temperature[J]. Sensors and Actuators B. 2004,(100): 320-324.
    [123] H. Shanak, H. Schmitt, J. Nowoczin, C. Ziebert. Effect of Pt-catalyst on gasochromic WO3 films: optical, electrical and AFM investigations[J]. Solid State Ionics. 2004, (171): 99-106.
    [124]王敬义著.薄膜生长理论[M].武汉:华中理工大学出版社, 1993.
    [125]王贺权、沈辉、巴德纯等.氧流量对直流反应磁控溅射制备TiO2薄膜的光学性质的影响[J].中山大学学报(自然科学版), 2005,(44):36-39.
    [126]周水溶著.半导体材料[M].北京:北京理工大学出版出版社, 1992.
    [127] N. Yamazoe, Y. Kurokawa , T. Seiyama. Effects of additives on semiconductor gas sensors [J]. Sensors and Actuators B, 1983,(4): 283-289.
    [128] Tomoki M,Jun T,Norio M,et al. Gold-loaded tungsten oxide sensor for detection of ammonia in air Chem. Lett . 1992 :639.
    [129] Tomoki M, Yuichi A ,Jun T,et al. Promoting Effects of Noble Metals on the Detection of Ammonia By Semiconducting Gas Sensor [J].Sensors and Actuators B,1993 , (13– 14) :421 - 424.
    [130]全宝富,周生玉,孙良彦. WO3中的掺杂及其气敏特性[J].功能材料,1997,28(2) :177-181.
    [131] J.I. Yang, H. Lim and S.D. Han. Influence of binders on the sensing and electrical characteristics of WO3-based gas sensors[J]. Sensors and Actuators B,1999, (60) :71 - 77.
    [132] T.Inoue, K.Ohtsuka, Y. Yoshida et al. Metal oxide semiconductor NO2 sensor[J]. Sensors and Actuators B,1995, (24– 25):388- 391.
    [133] Ferroni M,Boscarino D ,Comini E ,et al. Electrical Properties of Nanocrystalline WO for Gas Sensing[J].Sensors and Actuators B,1999, (58) :289- 294.
    [134] Frühberger B ,Grunze M,Dwyer D J . Surface chemistry of H2S-sensitive tungsten oxide films Sensors and Actuators B, 1996, (31) :167 - 174.
    [135]戴振清,孙以材,潘国峰等.金属氧化物掺杂对TiO2气敏特性的影响[J].传感器世界, 2003,9(9):10-13
    [136]黄新民,解挺著.材料分析测试方法[M].北京:国防工业出版社, 2006.
    [137] Nishio K, Sei S ,Tsuchiya T. Nishio K,Sei T,Tsuchiya T. Preparation of electrochromic tungsten oxide thin films by solgel process[J]. Journal of the Ceramic Society of Japan ,1999 , 107 (3) : 199-203.
    [138] Taylor D J,Cronin J P,Allard L F,et al. Microstructure of Laser-fired, Sol-gel-derived Tungsten Oxide Films[J].Chem.Mater,1996,8(7):1396-1401.
    [139] Yeon-GonMo, Dillon R O, Snyder P G. Visible and infrared photochromic properties of amorphous WO3-x films[J].Journal of Vacuum Science and Technology A , 1999, 17 (5) : 2933-2938.
    [140]吴广明,杜开放,陈宁等. WO3纳米薄膜的制备与气致变色特性研究[J].功能材料, 2003,6(34) : 707-710.
    [141] Nishio K, Sei T, Tsuchiya T. Preparation of electrochromic tungsten oxide thin films by solgel process[J]. Journal of the Ceramic Society of Japan, 1999, 107(3): 199 -205.
    [142] Washizu, A. Yamamoto, Y. Abe, et al. Optical and electrochromic properties of RF reactively sputtered WO3 films[J].Solid State Ionics, 2003, (165): 175- 180.
    [143] S. Sawada, G.C. Danielson. Electrical conduction in crystals and ceramics of WO3 [J]. Phys. Rev. 1959, (113):803-805.
    [144] Cullity D. Elements of X-ray Diffraction[M]. Addison-Wesley Publishing Co. , Reading, Massachusetts, 1978.
    [145] Ogawa H. Hall measurement studies and an electrical conduction model of tin oxide ultrafine partriclc films [J ] . J . Appl . Physics , 1982 , (53) : 4448-4455.
    [146] Belanger d , Dodelet J P , Lambos B A , Pickson J J . Thickness dependence of transport properties of doped plycrystalline tin oxide films [J]. Electrochem. Soc. 1985 , 132 (6) :1398-1405.
    [147] Major S , Bana A. Thickness dependente properties of Indiunr doped ZnO film[J] . Thin Solid Films, 1984, (143):19226.
    [148] Andrievski R A. Grain size and recrystallization of TiN , ZrN and CrN alloy and multillayer films[J] . Thin Solid Films, 1995,(261) :83-86.
    [149] Kohl D. Surface processes in the detection of reducing gases with SnO2 based devices[J] . Sensors and Actuators B, 1989,(18) :71-113.
    [150] Sen S , Heary D. J . Baner C.L. Characterization of R. F. Sputtered ZnO thin-film by X-ray diffraction and scanning microscopy[J] . Thin Solid Films, 1982, (94) :7-14.
    [151] Mochida T. Highly sensitive and selective H2S sensor from r.f.sputtered SnO2 thin-film[J]. Sensors and Actuators B, 1995, (24-25):433-437.
    [152] Chaonan Xu , Yamazoe N. Grain size effect on gas sensitivity of porous SnO2 based elements[J] . Sensors and Actuators B, 1991, (3): 147- 153.
    [153] Yamazoe N. New approaches for improving semiconductor gas sensors [J]. Sensors and Actuators B, 1991, (5):7-19.
    [154] Xiodong Wang, Sinclair S. Yee, W. Patrick Carey. Transition between neck-boundary-controlled sensitivity of metal-oxide gas sensors [J] . Sensors and Actuators B, 1995, (24-25) :454-457.
    [155] L. Bruno, R. Laluaze. Tin oxide thin-film gas sensor prepared by chemical vapour deposition. Influence of grain size and thickness on electrical properties[J]. Sensors and Actuators B, 1994, (18-19) :195-199.
    [156] A. Subrahmanyam,A. Karuppasamy, Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films[J]. Solar Energy Materials & Solar,2007,91(4):266-274.
    [157]伞海生,李斌,冯博学等.由缺陷引起的Burstein-Moss和带隙收缩效应对CdIn2O4透明导电薄膜光带隙的影响[J] .物理学报, 2005, 54(2):842-847.
    [158]王建祺,吴文辉,冯大明著.电子能谱学(XPS/AES/UPS)引论[M].北京:国防工业出版社1992.
    [159] Briggs D ,Seah M P. Practical surface analysis by Auger and X-ray photoelect ron spect roscopy : practical surface analysis. John Wiley & Son ,Ltd ,1983 ,(182) :5-11
    [160] Carp O,Huisman C L,Reller A. Photoinduced reactivity of titanium dioxide[J]. Prog. Solid State Chem. 2004,(32):33-35
    [161]杜俊平,陈启元,赵娟等.铈掺杂WO3的表征及其光解水催化性能的研究[J].无机化学学报, 2007,6(23): 1005-1010.
    [162]埃文斯著,胡玉才等译.结晶化学导论[M].北京:人民教育出版社, 1981.
    [163]徐毓龙著.氧化物与化合物半导体基础[M].西安:西安电子科技大学出版社, 1991.
    [164]李标荣著.无机介电材料[M].上海:上海科技出版社, 1986.
    [165]杨树人,王宗昌,王兢著.半导体材料[M].北京:科学出版社, 2004.
    [166] A. Ruiz, A.Cornet, G. Sakai, et al. Preparation of Cr-doped TiO2 thin film of p-type conduction for gas sensor application [J]. Chem.Lett, 2002, (9): 892-893.
    [167] A.Ruiz, G.Sakai, A.Cornet, et al. Cr-doped TiO2 gas sensor for exhaust NO2 monitoring [J]. Sensors and Actuators B, 2003, (93): 509-518.
    [168] Arndt D P, Azzam R M A, BennettJM , et al. Multiple determinations of the optical constants of thin-film coating materials. [J] Applied Optics. 1984, (20):3571-3596.
    [169] Rusli and G..A. J. Amaratunga. Determination of the optical constants and thickness of thin films on slightly absorbing substrates. Applied Optics, 1995, (34):7914-7924.
    [170] Dirk Poe1man , Philippe Frederic Smet. Methods for the determination of the Optical constants of thin films from single transmission measurements: a Critical review [J] Phys, D:Appl. Phys. 2003,36(15):1850-1857.
    [171] Swanepoel R. Determination of the thickness and optical constants of amorphous silicon[J]. J Phys E ,1983,(16) :1-14
    [172] Hou Ya2Qi , Ming Da Zhang . Influence of Annealing Temperature on the Properties of Titanium Oxide thin Film[J]. Applied Surface Science, 2003, (218):97– 105.
    [173] M.G. Hutchins, O. Abu-Alkhair, M.M. El-Nahass,et al.Structural and optical characterisation of thermally evaporated tungsten trioxide (WO3) thin films[J]. Materials Chemistry and Physics, 2006,(98):401-405.
    [174] Ozkan E,Tepehan F Z. Optical and structural characteristics of sol-gel-deposited tungsten oxide and vanadium-doped tungsten oxide films[J]. Solar Energy Materials & Solar Cells, 2001, (8) :265-277.
    [175] Mo Y G,Dillon R O ,Snyder P G. Visible and infrared photochromic properties of amorphous WO3- x films[J ] . Journal of Vacuum Scienceand Technology A ,1999 ,17 (5) :2933 - 2938.
    [176] Taylor D J ,Cronin J P ,Allard L F ,et al. Microstructure of laser - fired sol - gel derived tungsten oxide films[J] . Chem Mater ,1996,(8) :1396- 1401.
    [177] Wemple S H ,DiDomenico M. Behavior of electronic dielectric constant in covalent and ionic materials[J]. Phys Rev B ,1971,(3) :13-38
    [178] F. P. Koffyberg, K. Dwight, and A. Wold. Interband transitions of semiconducting oxides determined from photoelectrolysis spectra[J]. Solid State Commun, 1979, (30): 433-437.
    [179] Kubo T, Y Nishikitani J. Deposition temperature dependence of optical gap and coloration efficiency spectrum in electrochromic tungsten oxide films[J]. Electrochem. Soc, 1998, (145) :1729-1734.
    [180] M.G. Hutchins, O. Abu-Alkhair, M.M. El-Nahass,et al.Structural and optical characterisation of thermally evaporated tungsten trioxide (WO3) thin films[J]. Materials Chemistry and Physics, 2006,(98):401-405.
    [181] G.Sberveglieri, Recent development in semiconducting thin-film gas sensors, Sensors and Actuators B, 1995,(23):103-109.
    [182] H. Meixner, U. Lampe. Metal Oxide sensors, Sensors and Actuators B, 1996, (33):198-202.
    [183] J.F .McAleer, P.T Moseley, J.O.W Norris, David E .Williams. Tin dioxide gas sensors, P art1-Aspects of the surface chemistry revealed by electrical conducta nce variations[J].Chem. Soc. 1987, (83):1323-1346.
    [184] G. Korotchenkov, V.Brynzari, S.Dmitriev. Electrical behavior of SnO2 thin films in humidatmosphere[J]. Sensors and Actuators B , 1999, (54):197-201.
    [185]简弃非,刘海燕. SnO2纳米传感器的灵敏度-温度特性曲线拟合研究[J].传感技术学报,2005,18(1): 50-52.
    [186] C.A. Papadopoulos, J.N. Avaritsiotis, A model for the gas sensing properties of tin oxide thin films with surface catalysts[J]. Sensors and Actuators B , 1995, (28) :201-210.
    [187] R.E .Cavicchi, J.S. Suehle, K.G. Kreder, M.Gaitan, P.Chaparala. Optimized temperature-pulse sequences for the enhancement of chemically specific response patterns from micro-hot plate gas sensor[J].Sensors and Actuators B, 1996, (33):142-146.
    [188]张立德著.超微粉体制备与应用技术[M].北京:中国石化出版社, 2001.
    [189]魏永光,刘存著.现代传感技术[M].沈阳:东北大学出版社, 2001.
    [190]徐毓龙.金属氧化物气敏传感器(Ⅳ)[J].传感器学报,1996,(3):75-76.
    [191] Sanjines R, Levy F. Some aspects of the interaction of oxygen with polycrystalline SnO2 thin films[J]. Sensors and Actuators B,1990,(1):176-182.
    [192] Y.F.DONG . Ethanol-sensing characteristics of pure and pt–acivate CdIn2O4 films prepared by r.f.reactive sputtering[J]. Sensors and Actuators B, 2000, (67): 254-257.
    [193] Morrison S R. Selectivity in semiconductor gas sensors. Sensors and Actuator B, 1987,(12):425-440,
    [194] Leite E R,Weber I T, Longo E, et al. A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor app lications[J]. Advanced Materials, 2000, 12 (13) : 965- 969.
    [195]吴兴惠,王彩君著.传感器与信号处理[M].北京:电子工业出版社, 1998.
    [196]牛蒙年,鲍风歧.用统计理论对半导体陶瓷气敏机理的研究[J].传感技术学报,1991,4(2):23-28
    [197] D. S. Lee, S. D. Han. Nitrogen oxides-sensing characteristics of WO3-based nanocrystalline thick film gas sensor [J]. Sensors and Actuators B, 1999,(60):57-63.
    [198] Tabu Chin, Ma Tsumu. Control of carrier concentration in thin cuprous oxide Cu2O film s by atomic hydrogen [J]. JpnJ Appl Phys, 2002, 41(8) :5060-5063.
    [199] ISH IZU KAS, MARU YAMA T , A K IMO TOK. Thin-film deposit ion of Cu2O by reactive radio-frequency magnetron sputtering [J]. JpnJ Appl Phys, 2000, 39 (8A ) : 786-788.
    [200] ISH IZU KASO , KATOS, MARU YAMAT, et al. Nitrogen doping into Cu2O thin films deposited by reactive radio-frequency magnetron sputtering[J]. JpnJ Appl Phys, 2001,40(4B):2 765-2768.
    [201] SATOH, MINAMIT , TAKAAS, et al. Transparent conducting P-type NiO thin films prepared by magnetron sputtering [J]. Thin Solid Films, 1993, 236(122): 27-31.
    [202] SAS IB, GO PCHANDRAN K G, MANOJ P K, et al. Preparation of transparent and semiconducting NiO films [J]. Vacuum, 2002, 68 (2): 149-154.
    [203] KAWA ZO E H, YA SU KAWAM , HYODOH, et al. P-type electrical conduction in transparent thin films of CuAlO2 [J ]. Nature, 1997, 389(6654) : 939-942.
    [204] X. Wang, N. Miura, N.Yamazoe, Study of WO3-based sensing materials for NH3 and NO detection[J]. Sensors and Actuators B, 2000, (66):74-76.
    [205] Hoel, L.F. Reyes, P. Heszler ,V. Lantto, C.G. Granqvist. Nanomaterials for environmental applications: novel WO3-based gas sensors made by advanced gas deposition [J].Current Applied Physics, 2004,(4):547-553.
    [206]徐毓龙.金属氧化物气敏传感器[J].传感技术学报,1996,(4):93-99.
    [207] Xu.C.N, Tamaki.J, Miura.N, et al. Grain size on gas sensitivity of Porous SnO2-based elements [J]. Sensors and Actuators B, 1991,(3):147-155.
    [208]方容川著.固体光谱学[M].合肥:中国科学技术大学出版社, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700