低维纳米金属氧化物半导体敏感特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低维纳米金属氧化物半导体由于具有高比表面积、不易团聚、电子定向传导等特点而被广泛地研究,并应用于各种厚、薄膜传感器。本论文研究了低维纳米ZnO、TiO_2、SnO_2的湿、气敏特性。
     首先,研究了水热法制备的花状ZnO纳米棒束的湿敏特性;静电纺丝法制备的KCl掺杂ZnO纳米纤维的湿敏特性;电爆炸法制备的KCl掺杂Cu-Zn/CuO-ZnO纳米粒子的湿敏特性;静电纺丝法制备的KCl掺杂TiO_2纳米纤维的湿敏特性,以及TiO2晶体结构对纳米纤维的湿敏特性的影响。
     其次,研究了水热法制备的哑铃状ZnO微晶对CH_3COCH_3的敏感特性;添加模板剂获得的SnO_2纳米纤维对NH_3、C_2H_5OH、CH_3COCH_3、C_6H_5CH_3敏感特性的影响;溶胶—凝胶法制备的Sm_2O_3掺杂的SnO_2纳米粒子对C_2H_2的敏感特性。
     最后,设计制作了基于溶胶—凝胶法制备的In/Pd掺杂的SnO_2纳米粒子的共平面型微结构传感器,研究了该传感器对CO的敏感特性;设计制作了基于辐射功率的微热板测温装置。
     本论文通过以上三个部分的工作,较系统地研究了常规的湿、气敏感材料由于结构低维化而引起的性能的改善,为更深入广泛地研究其它低维金属氧化物半导体的敏感特性提供了实验和理论基础。同时,为改善湿、气敏传感器的性能提供了新的途径。
Sensing materials have been evolved from bulk materials to large-sized particle materials, to small-sized particle materials, and to low-dimensional nanomaterials. In recent years, low-dimensional nanomaterials have attracted much focus owing to their anti-aggregation, high surface area, and oriented electron conduction.
     This paper aims at describing the humidity and gas sensing properties of some low-dimensional nanostructure metal-oxide semiconductors (MOS) (ZnO, TiO2, and SnO2).
     Flower-like ZnO nanorods are synthesized via a hydrothermal method. The impedance of the corresponding sensor decreases by about 5 orders of magnitude with increasing relative humidity (RH) from 11% to 95%. The response time is about 5 s (from 25% RH to 95% RH), and the recovery time is about 10 s. The sensing mechanism of flower-like ZnO nanorods is discussed based on complex impedance plots.
     KCl-doped ZnO nanofibers are synthesized via an electrospinning method. The humidity sensing properties of these fibers can be concisely controlled by adjusting the compositions in their precursors. For pure ZnO nanofibers, the impedance changes only about 1 order of magnitude with poor linearity on a semilogarithmic scale. While the 5.7 wt% KCl-doped ZnO nanofibers show improved humidity sensing properties with their impedance varying more than 5 orders of magnitude and better linearity. Especially, the response time and recovery time of KCl-doped ZnO nanofibers is only about 2 and 1 s, respectively (from 25% RH to 95% RH).
     KCl-doped Cu-Zn/CuO-ZnO nanoparticles in mass production are synthesized via a wire electrical explosion method. The impedance of the corresponding humidiy sensor varies about 4 orders of magnitude in the range of 11% to 95% RH. The response and recovery times are about 40 and 50 s, respectively (from 25% RH to 95% RH).
     KCl-doped TiO2 nanofibers with different crystallographic structures (anatase, rutile, and mixed anatase and rutile structures) are synthesized via an electrospinning method, and their humidity sensing properties are investigated. The KCl-doped TiO2 nanofibers with mixed structures show the highest sensing performance among all the fibers. The impedance of this sample linearly decreases by more than 4 orders of magnitude with increasing RH from 11% to 95% on a semilogarithmic scale. The response and recovery times are about 3 and 4 s, respectively (from 25% RH to 95% RH).
     Dumbbell-like ZnO microcrystals are synthesized via a hydrothermal method. The sensor fabricated from these microcrystals exhibits high CH3COCH3 sensing properties at 300°C. The response is about 4 to 1 ppm CH3COCH3, the response time is about 1.5 s, and the recovery time is about 3 s. Especially, the sensor presents successful discrimination between CH3COCH3, and C2H5OH.
     SnO2 nanofibers with and without template agent in the precursor are synthesized via an electrospinning method. Gas sensing properties of these two samples are investigated by exposing the corresponding sensors to NH3, C2H5OH, CH3COCH3, and C6H5CH3, respectively. Comparing with nanofibers without template agent, the SnO2 nanofibers with template agent hold enhanced response value and higher saturated-detection-concentration. The response is 28 for the nanofibers without template agent to 500 ppm NH3 at 280°C, and is 59 for the nanofibers with template agent. The corresponding saturated-detection-concentration is 2000 and 5000 ppm, respectively. Similar improvements are also observed in the cases of C2H5OH, CH3COCH3 and C6H5CH3.
     Sm2O3-doped SnO2 are are synthesized via a sol-gel method. The sensor based on 6 wt% Sm2O3-doped SnO2 displays high C2H2 response at 180°C. The response is about 3 to 10 ppm C2H2, the response and recovery times are 3 and 17 s, respectively.
     In/Pd-doped SnO2 is synthesized via a sol-gel method and coated on a silicon substrate with Pt electrodes to fabricate a micro-structure sensor. The heater electrodes and signal electrodes of the sensor are designed on the same plane with the same cathode. The sensor response is about 3 to 1 ppm CO, the response and recovery times are 15 and 20 s, respectively.
     A temperature measurement based on radicalization power for micro-hotplate is designed and fabricated. By means of comparing the relation between the radialization power and the temperature, the temperature of a micro surface area can be accurately discerned. The experimental result based on this method is quite similar to that of simulation by the finite element analysis (FEA) software of Ansys in theory.
引文
[1]黄德欢.纳米技术与应用[M].中国纺织大学出版社, 2001.
    [2]张立德,牟季美.纳米材料和纳米机构[M].科学出版社, 2001.
    [3]殷好勇.低维(Via族化合物)半导体纳米材料的制备及表征[D].浙江大学博士论文, 2005.
    [4] SERVICE R F. Silicon lights the way to faster data flow [J]. Science 2001, 293: 1413-1414.
    [5] BRUS L. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state [J]. J. Phys. Chem., 1984, 80: 4403-4409.
    [6] KUBO R. Electronic properties of metallic fine particles [J]. J. Phys. Soc. Jpn., 1962, 17: 975-986.
    [7] KAWABATA A, KUBO R. Electronic properties of fine metallic particles. II. Plasma resonance absorption [J]. J. Phys. Soc. Jpn., 1966, 21: 1765-1772.
    [8] WANG Y, MAHLER W. Degenerate four-wave mixing of CdS/polymer composite [J]. Opt. Commun., 1987, 61: 233-236.
    [9]赵于文.低温等离子体在化学合成中的应用[J].现代化工, 1991, 5: 48-52.
    [10] BARBARA B, WERNSDORFER W. Quantum tunneling effect in magnetic particles [J]. Curr. Opin. Solid State. Mater. Sci., 1997, 2: 220-225.
    [11]岳光辉.低维纳米功能材料制备及研究[D].兰州大学博士论文, 2007.
    [12]余江龙,张志东,王慧兰,黄大文,张子新.零维纳米材料的特性及研究现状[J].辽宁工程技术大学学报(自然科学版), 1999, 18: 173-176.
    [13] CHATTERJEE A, CHAKRAVORTY D. Electrical-conductivity of sol-gel derived metal nanoparticles [J]. J. Mater. Sci., 1992, 27: 4115-4119.
    [14]刘建军,王爱民,张海峰,丁炳哲,胡壮麒.高压原位合成块体纳米Mg—Zn合金[J].材料研究学报, 2001, 15: 299-302.
    [15] CONDE O, DEUS A M, FERREIRA M L G, SILVESTRE A C, VILAR R. Versatile reactor for LVCD large films production [J]. Vacuum, 1989, 39: 861.
    [16] ANDERS A. Approaches to rid cathodic arc plasmas of macroand nanoparticles: a review [J]. Sur. Coat. Techn., 1999, 120-121: 319-330.
    [17] YANG N, YANG H B, QU Y Q, FAN Y Z, CHANG L X, ZHU H, LI M H, ZOU G Z. Preparation of Cu–Zn/ZnO core–shell nanocomposite by surface modification and precipitation process in aqueous solution and its photoluminescence properties [J]. Mater. Res. Bull., 2006, 41: 2154-2160.
    [18]索辉.纳米晶气敏材料的合成、表征及纳米晶薄膜栅FET式新型气敏元件的研制[D].吉林大学博士论文, 1998.
    [19] SEA D, DEB P, MAZUMDER S, BASUMALLICK A. Microstructural investigations of ferrite nanoparticles prepared by nonaqueous precipitation route [J]. Mater. Res. Bull., 2000, 35: 1243-1250.
    [20] KIM J H, GERMER T A, MULHOOLAND G W EHRMAN S H. Size-monodisperse metal nanoparticles via hydrogen-free spray pyrolysis [J]. Adv. Mater., 2002, 14: 518-521.
    [21] KOLMAKOV A, MOSKOVITS M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures [J]. Annu. Rev. Mater. Res., 2004, 34: 151-180.
    [22] RAO C N R, NATH M. Inorganic nanotubes [J]. Dalton Trans., 2003, 1: 1-24.
    [23] FERT A, PIRAUX L. Magnetic nanowires [J]. J. Magn. Magn. Mater., 1999, 200: 338-358.
    [24] POKROPIVNY V V. Non-carbon nanotubes (review). I. Synthesis methods [J]. Power Metall Met. Ceram., 2001, 40: 485-496.
    [25] PAN Z W, DAI Z R, WANG Z L. Nanobelts of semiconducting oxides [J]. Science, 2001, 291: 1947-1949.
    [26] WANG Z L, PAN Z W. Nanobelts of semiconductive oxides-a structurally and morphologically controlled nanomaterials system [J]. Int. J. Nanosci., 2002, 1: 41-51.
    [27] SUENAGA K, COLLIEX C, DEMONCY N, LOISEAU A, PASCARD H, WILLAIME F. Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon [J]. Science, 1997, 278: 653-655.
    [28] ZHANG Y, SUENAGA K, COLLIEX C, IIJIMA S. Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon [J]. Science, 1998, 281: 973-975.
    [29] LI Q, WANG C R. Fabrication of Zn/ZnS nanocable heterostructures by thermal reduction/sulfidation [J]. Appl. Phys. Lett., 2003, 82: 1398-1400.
    [30] HU J Q, BANDO Y, LIU Z W, SEKIGUCHI T, GOLBERG D D, ZHAN J H. Epitaxial heterostructures: side-to-side Si-ZnS, Si-ZnSe biaxial nanowires, and sandwich-like ZnS-Si-ZnS triaxial nanowires [J]. J. Am. Chem. Soc., 2003, 125: 11306-11313.
    [31] PARK W I, YI G C, KIM M Y, PENNYCOOK S J. Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures [J]. Adv. Mater., 2003, 15: 526-529.
    [32] WU Y, FAN R, YANG P D. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires [J]. Nano Lett., 2002, 2: 83-86.
    [33] LAO J Y, HUANG J Y, WANG D Z, REN Z F. ZnO nanobridges and nanonails [J]. Nano Lett., 2003, 2: 235-238.
    [34] GAO P X, WANG Z L. Self-assembled nanowire-nanoribbon junction arrays of ZnO [J]. J. Phys. Chem. B, 2002, 106: 12653-12658.
    [35] XIA Y N, YANG P D, SUN Y G, WU Y Y, MAYERS B, GATES B, YIN Y D, KIM F, YAN H Q. One-dimensional nanostructures: synthesis, characterization, and applications [J]. Adv. Mater., 2003, 15: 353-389.
    [36] DRESSELHAUS M S, DRESSELHAUS G, AVOURIS(EDS.) PH. Carbon nanotubes - synthesis, structure, properties and applications [M]. Springer: Berlin, 2001.
    [37]成会明.碳纳米管制备、结构、物理及应用[M].化学工业出版社,北京, 2002.
    [38] WAGNER R S, ELLIS W C. Vapor-liquid-solid mechanism of single crystal growth [J]. Appl. Phys. Lett., 1964, 4: 89-90.
    [39] YANG P D, WU Y Y, FAN R. Inorganic Semiconductor Nanowires [J]. Int. J. Nauosci., 2002, 1: 1-39.
    [40] LEW K K, PAN L, DICKEY E C, REDWING J M. Vapor-liquid-solid growth of silicon-germanium nanowires [J]. Adv. Mater., 2003, 15: 2073-2076.
    [41] YANG P D, YAN H Q, MAO S, RUSSO R, JOHNSON J, SAYKALLY R, MORRIS N, PHAM J, HE R, CHOI H J. Controlled growth of ZnO nanowires and their potical properties [J]. Adv. Funct. Mater., 2002, 12: 323-331.
    [42] WU Y, YANG P D. Direct observation of vapor-liquid-solid nanowire growth [J]. J. Am. Chem. Soc., 2001, 123: 3165-3166.
    [43] STACH E A, PAUZAUSKIE P J, KUYKENDALL T, GOLDBERGER J, HE R R, YANG P D. Watching GaN nanowires grow [J]. Nano Lett., 2003, 3: 867-869.
    [44] MORALES A M, LIEBER C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science, 1998, 279: 208-211.
    [45] CHEN J, DENG S Z, XU N S, ZHANG W X, WEN X G, YANG S H. Temperature dependence of field emission from cupric oxide nanobelt films [J]. Appl. Phys. Lett., 2003, 83: 746-748
    [46] WU Q, HU Z, WANG X Z, LU Y N, CHEN Y. Synthesis and optical characterization of aluminum nitride nanobelts [J]. J. Phys. Chem. B, 2003, 107: 9726-9279.
    [47] HU P A, LIU Y Q, CAO L C, ZHU D B. Self-assembled growth of ZnS nanobelt networks [J]. J. Phys. Chem. B, 108 (2004) 936-938.
    [48] WANG Z K, SHIMIZU Y, SASAKI T, KAWAGUCHI K, KIMURA K, KOSHIZAKI N. Catalyst-free fabrication of single crystalline boron nanobelts by laser ablation [J]. Chem. Phys. Lett., 2003, 368: 663667.
    [49] LEE S T, WANG N, ZHANG Y F, TANG Y H. Novel methods of nanoscale wire formation [J]. MRS Bulletin, 1999, 24: 13-19.
    [50] LEE S T, WANG N, LEE C S. Semiconductor nanowires: synthesis, structure and properties, Mater. Sci. Eng. A, 2000, 286: 16-23.
    [51] WANG N, TANG Y H, ZHANG Y F, LEE C S, BELLO I, LEE S T. Si nanowires grown from silicon oxide [J]. Chem. Phys. Lett., 1999, 299: 237-242.
    [52] JUNG C H, LEE M J, KIM C J. Preparation of carbon-free B4C powder from B2O3 oxide by carbothermal reduction process [J]. Mater. Lett., 2004, 58: 609-614.
    [53] CHEN L L, YE H H, GOGOTSI Y, MCNALLAN M J. Carbothermal syn-thesis of boron nitride coatings on silicon carbide [J]. J. Am. Ceram. Soc., 2003, 86: 1830-1837.
    [54] LEE G G, KIM B K. Effect of raw material characteristics on the carbothermal reduction of titanium dioxide [J]. Mater. Trans., 2003, 44: 2145-2150.
    [55] LIANG C H, YING P L, LI C. Nanostructuredβ-Mo2C prepared by carbothermal hydrogen reduction on ultrahigh surface area carbon material [J]. Chem. Mater., 2002, 14: 3148-3151.
    [56] SEO W S, KOUMOTO K, ARIA S. Morphology and stacking faults ofβ-silicon carbide whisker synthesized by carbothermal reduction [J]. J. Am. Ceram. Soc., 2000, 83: 2584-2592.
    [57] HASHISHIN T, IWANAGA H, YAMAMOTO Y. Effect of impurities on silicon nitride whiskers synthesized from silica-containing natural substances [J]. J. Mater. Res., 2003, 18: 2760-2764.
    [58] REN R M, YANG Z G, SHAW L L. Nanostructured TiN powder prepared via an integrated mechanical and thermal activation [J]. Mater. Sci. Eng. A-Struct., 2000, 286: 65-71.
    [59] KRISHNARAO R V, SUBRAHMANYAM J, YADAGIRI M. Formation of TiN whiskers through carbothermal reduction of TiO2 [J]. J. Mater. Sci., 2002, 37: 1693-1699.
    [60] RAO C N R, GUNDIAH G, DEEPAK F L, GOVINDARAJ A, CHEETHAM A K. Carbon-assisted synthesis of inorganic nanowires [J]. J. Mater. Chem., 2004, 14: 440-450.
    [61] TRENTLER T J, HICKMAN K M, GEOL S C, VIANO A M, GIBBONS P C, BUHRO W E. Solution-Liquid-Solid growth of crystalline III-V semiconductors: an analogy to Vapor-liquid-solid growth [J]. Science, 1995, 270: 1791-1794.
    [62] RUDOLPH J, REDDY K L, CHIANG J P, SHARPLESS K B. Highly efficient epoxidation of olefins using aqueous H2O2 and catalytic methyltrioxorhenium/pyridine: Pyridine-mediated ligand acceleration [J]. J. Am. Chem. Soc., 1997, 119: 6189-6190.
    [63] MARKOWITZ P D, ZACH M P, GIBBONS P C, PENNER R M, BUHRO W E. Phaseseparation in AlxGa1-xAs nanowhiskers grown by the solution-liquid-solid mechanism [J]. J. Am. Chem. Soc., 2001, 123: 4502-4511.
    [64] LOURIE O R, JONES C R, BARTLET B M, GIBBONS P C, RUO R S, BUHRO W E. CVD growth of boron nitride nanotubes [J]. Chem. Mater., 2000, 12: 1808-1810.
    [65] DINGMAN S D, RATH N P, MARKOWITZ P D, GIBBONS P C, BUHRO W E. Low-temperature, catalyzed growth of indium nitride fibers from azido-indium precursors [J]. Angew. Chem. Int. Ed., 2000, 39: 1470-1472.
    [66] QIAN Y T. Handbook of Nanostructured Materials and Nanotechnology [M]. Edited by Nalwa, volume1: synthesis and processing, A., 424-437.
    [67] HEATH J R, LEGOUSE F K. A liquid solution synthesis of single crystal germanium quantum wires [J]. Chem. Phys. Lett., 1993, 208: 263-268.
    [68] JIANG Y, WU Y, ZHANG S Y, XU C Y, YU W C, XIE Y, QIAN Y T. A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature [J]. J. Am. Chem. Soc., 2000, 122: 12383-12384.
    [69] JIANG Y, QU Y, YUAN S W, XIE Y, QIAN Y T. Preparation and characterization of CuInS . J. Mater. Res., 2001, 16: 2805-2809.
    [70] LIU X Y, ZENG J H, ZHANG S Y, ZHENG R B, LIU X M, QIAN Y T. Novel bismuth nanotube arrays synthesized by solvothermal method [J]. Chem. Phys. Lett., 2003, 374: 348-352.
    [71] WANG X, LI Y. Selected-control hydrothermal synthesis ofα- andβ-MnO2 single crystal nanowires [J]. J. Am. Chem. Soc., 2002, 124: 2880-2881.
    [72] TANG K B, QIAN Y T, ZENG J H, YANG X G. Solvothermal route to semiconductor nanowires [J]. Adv. Mater., 2003, 15: 448-450.
    [73] YANG Q, TANG K B, WANG C R, QIAN Y T, ZHANG S Y. PVA-assisted synthesis and characterization of CdSe and CdTe nanowires [J]. J. Phys. Chem. B, 2002, 106: 9227-9230.
    [74] HU H M, MO M S, YAN B J, ZHANG X J, LI Q W, YU W C, QIAN Y T. Solvothermal synthesis of Sb2S3 nanowires on a large scale [J]. J. Cryst. Growth, 2003, 258: 106-112.
    [75] WANG D B, YU D B, SHAO M W, YU W C, QIAN Y T. Solvothermal preparation of Sb2Se3 nanowires [J]. Chem. Lett., 2002, 31: 1056-1057.
    [76] XIE Y, LI B, SU H L, LIU X M, QIAN Y T. Solvothermal route to CoTe2 nanorods [J]. Nanostruct. Mater., 1999, 11: 539-544.
    [77] XIE Y, SU H L, LI B, QIAN Y T. Solvothermal preparation of tin phosphide nanorods [J]. Mater. Res. Bull., 2000, 35: 675-680.
    [78] LI Y D, LIAO H, QIAN Y. Solvothermal elemental direct reaction to CdE (E= S, Se, Te) semiconductor nanorod [J]. Inorg. Chem., 1999, 38: 1382-1387.
    [79] LIU Z P, PENG S, XIE Q, HU Z K, YANG Y, ZHANG S Y, QIAN Y T. Large-scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process [J]. Adv. Mater., 2003, 15: 936-940.
    [80] ZHOU D, SERAPHIN S. Production of silicon carbide whiskers from carbon nanoclusters [J]. Chem. Phys. Lett., 1994, 222: 233-238.
    [81] DAI H, WANG E W, LU Y Z, FAN S, LIBER C M. Synthesis and characterization of carbide nanorods [J]. Nature, 1995, 375: 769-773.
    [82]邱洪晋.自组装微米/纳米结构导电聚苯胺的研究[D].中国科学院化学研究所博十学位论文, 2001.
    [83] ZHENG M, ZHANG L, ZHANG X, ZHANG J, LI G. Fabrication and optical absorption of ordered indium oxide nanowire arrays embedded in anodic alumina membranes [J]. Chem. Phys. Lett., 2001, 334: 298-302.
    [84] ROUTKEVITCH D, TAGER A A, HARUYAMA J, ALMAWLAWI D, MOSKOVITS M, XU J M. Nonlithographic nano-wire arrays: fabrication, physics, and device application [J]. IEEE Trans. Electron Devices, 1996, 43: 1646-1658.
    [85] GREINER A, WENDORFF J H. Electrospinning: a fascinating method for the preparation of ultrathin fibers [J]. Angew. Chem. Int. Ed., 2007, 46: 5670-5703.
    [86] AJAYAN P M, EBBESEN T W. Nanometre-size tubes of carbon [J]. Rep. Prog. Phys., 1997, 60: 1025-1062.
    [87] HARRIS P J F. Carbon nanotubes and related structures-new materials for the twenty first century [J]. Cambridge University Press, 1999.
    [88] LITLE R B. Mechanistic aspects of carbon nanotube nucleation and crowth [J]. J. Clust. Sci., 2003, 14: 135-185.
    [89] THOSTENSON E T, REN Z F, CHOU T W. Advances in the science and technology of carbon nanotubes and their composites: a review [J].Compos. Sci. Technol., 2001, 61: 1899-1912.
    [90] ELETSKII A V. Carbon nanotubes [J]. Usp. Fiz. Nauk., 1997, 167: 945-972.
    [91] WANG G, LI G. Titania from nanoclusters to nanowires and nanoforks [J]. Eur. Phys. J. D., 2003, 24: 355-360.
    [92] ZHANG J, SUN L D, JIANG X C, LIAO C S, YAN C H. Shape evolution of one-dimensional single-crystalline ZnO nanostructures in a microemulsion system [J]. Cryst. Growth Des., 2004, 4: 309-313.
    [93] CHEN D L, GAO L. Novel morphologies of nickel sulfides: nanotubes and nanoneedles derived from rolled nanosheets in a w/o microemulsion [J]. J. Cryst. Growth, 2004, 262: 554-560.
    [94] XU J, LI Y D. Formation of zinc sulfide nanorods and nanoparticles in ternary W/O microemulsions [J]. J. Collid. Interf. Sci., 2003, 259: 275-280.
    [95] WANG H, LU Y N, ZHU J J, CHEN H Y. Sonochemical fabrication and characterization of stibnite nanorods [J]. Inorg. Chem., 2003, 42: 6404-6411.
    [96] GATES B, MAYERS B, GROSSMAN A, XIA Y N. A sonochemical approach to the synthesis of crystalline selenium nanowires in solutions and on solid supports [J]. Adv. Mater., 2002, 14: 1749-1752.
    [97] SUN X H, LI C P, WONG N B, LEE C S, LEE S T, TEO B K. Templating effect of hydrogen-passivated silicon nanowires in the production of hydrocarbon nanotubes and nanoonions via sonochemical reactions with common organic solvents under ambient conditions [J]. J. Am. Chem. Soc., 2002, 124: 14856-14857.
    [98] ZHU Y C, LI H L, KOLTYPIN Y, HACOHEN Y R, GEDANKEN A. Sonochemical synthesis of titania whiskers and nanotubes [J]. Chem. Commun., 2001, 24: 2616-2617.
    [99] CAO L M, TIAN H, ZHANG Z, ZHANG X Y, GAO C X, WANG W K. Nucleation and growth of feather-like boron nanowire nanojunctions [J]. Nanotechnology, 2004, 15: 139-142.
    [100] LEE K Y, IKUNO T, TSUJI K, OHKURA S, HONDA S, KATAYAMA M, OURA K, HIRAO T. Microelectronics and nanometer structures [J]. J. Vac. Sci. Technol. B, 2003, 21:1437-1441.
    [101] WANG Y Q, DUAN X F. Crystalline boron nanowires [J]. Appl. Phys. Lett., 2003, 82: 272-274.
    [102] LI L, WANG G H, HONG J M. Synthesis and characterization of ruilte TiO2 Nanowhiskers [J]. J. Mater. Res., 1999, 14: 3346-3354.
    [103] VENKATACHALAM S, LIDA Y, KANNO Y. Preparation and characterization of Al doped ZnO thin films by PLD [J]. Superlattice. Microst., 2008, 44: 127-135.
    [104] HOCHAUER D, MITTERER C, PENOY M, MICHOTTE C, MARTINZ H P, KATHREI M. Titanium doped CVD alumina coatings [J]. Surf. Coat. Technol., 2008, 203: 350-356.
    [105] CHANG J F, LIN W C, HON M H. Effects of post-annealing on the structure and properties of Al-doped zinc oxide films [J]. Appl. Surf. Sci., 2001, 183: 18-25.
    [106] NICOLL C A, SALTER C L, STEVENSON R M, HUDSON A J, ATKINSON P, COOPER K, SHIELD A J, RITCHIE D A. MBE growth of In(Ga)As quantum dots for entangled light emission [J]. J. Cryst. Growth., 2009, 311: 1881-1814.
    [107] MEIXNER H, LAMPE U. Metal oxide sensors [J]. Sens. Actuators B, 1993, 33: 198-202.
    [108] CORCORAN P, SHURMER H V, GARDNER J W. Integrated tin oxide sensors of low power consumption for use in gas and odour sensing [J]. Sens. Actuators B, 1993, 15-18: 32-37.
    [109] HOWE R T, BOSER B E, PISANO A P. Industrial applications of magnetoresistive sensors [J]. Sens. Actuators B, 1996, 56: 156-167.
    [110] POIRIER G E, CAVICCHI R E, SEMANCIK S. Ultrathin heteroepitaxial SnO films for use in gas sensors [J]. J. Vac. Sci & Tech. A, 1993, 11: 1392-1395.
    [111] GIULIO M D, MANNO D, MICOCCI G, SERRA A, TEPORE A. Sputter deposition of tungsten trioxide for gas sensing applications [J]. J. Mater. Sci. Mater. Electron., 1998, 9: 317-322.
    [112] PATEL N G, PATEL P D, VAISHNAV V S. Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature [J].Sen. Actuators B, 2003, 96: 180-189.
    [113] SUBRAMANIAN N S, SANTHI B, SORNAKURNAR T, SUBBARAJ G K, VINOTH C, MURUGAN G. Studies on pyrolytically sprayed SnO2 and Sb-SnO2 thin films for LPG sensor applications [J]. Ionics, 2004, 10: 273-282.
    [114] KOTSIKAU D, IVANOVSKAYA M, ORLIK D, FALASCONI M. Gas-sensitive properties of thin and thick film sensors based on Fe2O3–SnO2 nanocomposites [J]. Sen. Actuators B, 2004, 101: 199-206.
    [115] ESFANDYARPOUR B, MOHAJERZADEH S, FAMINI S, KHODADADI A, SOLEIMANI E A. High sensitivity Pt-doped SnO2 gas sensors fabricated using sol–gel solution on micromachined (1 0 0) Si substrates [J].Sen. Actuators B, 2004, 100: 190-194.
    [116] SINNER-HETTENBACH M, G?THELID M, WEI? T, BARSAN N, WEIMAR U, SCHENCK H., GIOVANELLI L, LAY G L. Electronic structure of SnO2(1 1 0)-4×1 and sputtered SnO2(1 1 0) revealed by resonant photoemission [J]. Surf. Sci., 2002, 499: 85-93.
    [117] XU C N, TAMAKI J, MIURA N, YAMAZOE N. Grain size effects on gas sensitivity of porous SnO2-based elements [J]. Sen. Actuators B, 1991, 3: 147-155.
    [118] COMINI E, FAGLIA G, SBERVEGLIERI G, PAN Z W, WANG Z L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts [J]. Appl. Phys. Lett., 2002, 81: 1869-1871.
    [119]梁迎新.基于准一维纳米材料的器件与物理[D].中国科学院物理研究所博十学位论文, 2005.
    [120]康昌鹤,唐省吾等.气、湿敏感器件及其应用[M].科学出版社, 1988.
    [121] WIT M D, VANNESTE E, GEISE H J, NAGELS L J. Chemiresistive sensors of electrically conducting poly(2,5-thienylene vinylene) and copolymers: their responses to nine organic vapours [J]. Sens. Actuators B, 1998, 50: 164-172.
    [122] ZHANG X, MCGILL S A, XIONG P. Origin of the humidity sensitivity of Al/AlOx/MHA/Au molecular tunnel junctions [J]. J. Am. Chem. Soc., 2007, 129: 14470-14474.
    [123] SAEVELS S, BERNA A Z, LAMMERTYN J, NATALE C D, NICOLA? B M. Characterisation of QMB sensors by means of the BET adsorption isotherm [J]. Sens. Actuators B, 2004, 101: 242-251.
    [124] CHEN C. Humidity in plant tissue culture vessels [J]. Bios. Eng., 2004, 88: 231-241.
    [125] PANCHERI L, OTON C J, GABURRO Z, SONCINI G, PAVESI L. Very sensitive porous silicon NO2 sensor [J]. Sens. Actuators B, 2003, 89: 237-239.
    [126] RAMIREZ F H, BARTH S, TARANCON A, CASALS O, PELLICER E, RODRIGUEZ J, RODRIGUEZ A R, MORANTE J R, MATHUR S. Water vapor detection with individual tin oxide nanowires [C]. Nanotechnology, 2007, 18: 424016.
    [127] WAN Q, LI Q H, CHEN Y J, WANG T H, HE X L, GAO X G, LI J P. Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires [J]. Appl. Phys. Lett., 2004, 84: 3085-3087.
    [128] QIU Y, YANG S. ZnO Nanotetrapods: controlled vapor-phase synthesis and application for humidity sensing [J]. Adv. Funct. Mater., 2007, 17: 1345-1352.
    [129] ZHAN X, YANG M, LEI Z, LI Y, LIU Y, YU G, ZHU D. Photoluminescence, electroluminescence, nonlinear optical, and humidity sensitive properties of poly(p-diethynylbenzene) prepared with a nickel acetylide catalyst [J]. Adv. Mater., 2000, 12: 51-53.
    [130]张彤.电阻型湿敏元件的电特性研究与集成一体化多功能传感器的设计研制[D].吉林大学博士论文, 2001.
    [131] VARGHESE O K, GONG D, PAULOSE M, ONG K G, DICKEY E C, GRIMES C A. Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure [J]. Adv. Mater., 2003, 15: 624-627.
    [132] KOLMAKOV A, ZHANG Y, CHENG G, MOSKOVITS M. Detection of CO and O2 using tin oxide nanowire sensors [J]. Adv. Mater., 2003, 15: 997-1000.
    [133] WAN Q, LI Q H, CHEN Y J, WANG T H, HE X L, LI J P, LIN C L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors [J]. Appl. Phys. Lett., 2004, 84: 3654-3656.
    [134] ZHANG D, LIU Z, LI C, TANG T, LIU X, HAN S, LEI B, ZHOU C. Detection of NO2 down to ppb levels using individual and multiple In2O 3 nanowire devices [J]. Nano Lett., 2004, 4: 1919-1924.
    [135] KIM I D, ROTHSCHILD A, LEE B H, KIM D Y, JO S M, TULLER H L. Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers [J]. Nano Lett., 2006, 6: 2009-2013.
    [136] KUANG Q, LAO C, WANG Z L, XIE Z, ZHENG L. High-sensitivity humidity sensor based on a single SnO2 nanowire [J]. J. Am. Chem. Soc., 2007, 129: 6070-6071.
    [137] LIAO L, LU H B, LI J C, LIU C, FU D J, LIU Y L. The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation [J]. Appl. Phys. Lett., 2007, 91: 173110.
    [138] KAUR J, KUMAR R, BHATNAGAR M C. Effect of indium-doped SnO2 nanoparticles on NO2 gas sensing properties [J]. Sens. Actuators B, 2007, 126: 478-484.
    [139] RYU K, ZHANG D, ZHOU C. High-performance metal oxide nanowire chemical sensors with integrated micromachined hotplates [J]. Appl. Phys. Lett., 2008, 92: 093111.
    [140] JIANG K, LIU W, WAN L, ZHANG J. Manipulation of ZnO nanostructures using dielectrophoretic effect [J]. Sens. Actuators B, 2008, 134: 79-88.
    [141] PARK W I, YI G C, KIM M, PENNYCOOK S J. ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy [J]. Adv. Mater., 2002, 14: 1841-1843.
    [142] XU C X, SUN X W, DONG Z L, YU M B, Zinc oxide nanodisk [J]. Appl. Phys. Lett., 2004, 85: 3878-3880.
    [143] KIM D, WAKAIKI S, KOMURA S, NAKAYAMA M, MORI Y, SUZUKI K. Self-assembled formation of ZnO hexagonal micropyramids with high luminescence efficiency [J]. Appl. Phys. Lett., 2007, 90: 101918.
    [144] CHEN J J, YU M H, ZHOU W L, SUN K, WANG L M. Room-temperature ferromagnetic Co-doped ZnO nanoneedle array prepared by pulsed laser deposition [J]. Appl. Phys. Lett., 2005, 87: 173119.
    [145] MATSUI H, TABATA H. Self-organized nanostripe arrays on ZnO (10-10) surfaces formed during laser molecular-beam-epitaxy growth [J]. Appl. Phys. Lett., 2005, 87: 143109.
    [146] GATTORNO G R, JACINTO P S, VAZQUEZ L R, NEMETH J, DEKANY I, DIAZ D. Novel synthesis pathway of ZnO nanoparticles from the spontaneous hydrolysis of zinc carboxylate salts [J]. J. Phys. Chem. B, 2003, 207: 12597-12604.
    [147] CARNES C L, KLABUNDE K J. Synthesis, isolation, and chemical reactivity studies of nanocrystalline zinc oxide [J]. Langmuir, 2000, 16: 3764-3772.
    [148] WONG E M, BONEVICH J E, SEARSON P C. Growth kinetics of nanocrystalline ZnO particles from colloidal suspensions [J]. J. Phys. Chem. B, 1998, 102: 7770-7775.
    [149] LI W J, SHI E W, ZHONG W Z, YIN Z W. Growth mechanism and growth habit of oxide crystals [J]. J. Cryst. Growth, 1999, 203: 186-196.
    [150] CHOI K S, LICHTENEGGER H C, STUCKY G D. Electrochemical synthesis of nanostructured ZnO films utilizing self-assembly of surfactant molecules at solid-liquid interfaces [J]. J. Am. Chem. Soc., 2002, 124: 12402-12403.
    [151] NENOV T, YORDANOV S. Ceramic sensor device materials [J]. Sen. Actuators B, 1992, 8: 117-122.
    [152] YOKOMIZO Y, UNO S, HARATA M, HIRAKI H, YUKI K. Microstructure and humidity-sensitive properties of ZnCr2O4-LiZnVO4 ceramic sensors [J]. Sen. Actuators B, 1983, 4: 599-606.
    [153] JOANNI E, BAPTISTA J L. ZnO-Li2O humidity sensors [J]. Sen. Actuators B, 1993, 17: 69-75.
    [154] COSTA M E V, MANTAS P Q, BAPTISTA J L. Effect of electrode alterations on the a.c. behaviour of Li2O-ZnO humidity sensors [J]. Sen. Actuators B, 1995, 27: 312-314.
    [155] STAMBOLOVA I, KONSTANTINOV K, VASSILEV S, PESHEV P, TSACHEVA TS. Lanthanum doped SnO2 and ZnO thin films sensitive to ethanol and humidity [J]. Mate.Chem. Phys., 2000, 63: 104-108.
    [156] TAI W P, KIM J G, OH J H. Humidity sensitive properties of nanostructured Al-doped ZnO:TiO2 thin films [J]. Sen. Actuators B, 2003, 9: 477-481.
    [157] Y LI, YANG J, SHE Y. Humidity sensors using in situ synthesized sodium polystyrenesulfonate/ZnO nanocomposites [J]. Talanta, 2004, 62: 707-712.
    [158] GUO L, JI Y L, XU H. Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure [J]. J. Am. Chem. Soc., 2002, 124: 14864-14865.
    [159] GAO P X, WANG Z L. High-yield synthesis of single-crystal nanosprings of ZnO [J]. Small, 2005, 1: 945-949.
    [160] KONG X Y, WANG Z L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts [J]. Nano Lett., 2003, 3: 1625-1631.
    [161] YAN H, HE R, JOHNSON J, LAW M, SAYKALLY, YANG R J, DENDRITIC P. Dendritic nanowire ultraviolet laser array [J]. J. Am. Chem. Soc., 125 (2003) 4728-4729.
    [162] ZHANG B P, BINH N T, WAKATSUKI K, SEGAWA Y, YAMADA Y, USAMI N, KAWASAKI M, KOINUMA H. Pressure-dependent ZnO nanocrsytal growth in a chemical vapor deposition process [J]. J. Phys. Chem. B, 2004, 108: 10899-10902.
    [163] WANG Z, QIAN X, YIN J. Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route [J]. Langmuir, 2004, 20: 3441-3448.
    [164] FENG P, WAN Q, WANG T H. Contact-controlled sensing properties of flowerlike ZnO nanostructures [J]. Appl. Phys. Lett., 2005, 87: 213111.
    [165] LI C C, DU Z F, LI L M, YU H C, WAN Q, WANG T H. Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature [J]. Appl. Phys. Lett., 2007, 91: 032101.
    [166] ZHANG H, WU J, ZHAI C, DU N, MA X, YANG D. From ZnO nanorods to 3D hollow microhemispheres: solvothermal synthesis, photoluminescence and gas sensor properties [J]. Nanotechnology, 2007, 18: 455604.
    [167] GREENSPAN L. Humidity fixed points of binary saturated aqueous solutions [J]. J. Res. NBS, 1977, 81A: 89-96.
    [168] BONDARENKA V, GREBINSKIJ S, MICKEVI?IUS S, VOLKOV V, ZACHAROVA G. Thin films of poly-vanadium-molybdenum acid as starting materials for humidity sensors [J]. Sens. Actuators B, 1995, 28: 227-231.
    [169] WANG J, WAN H, LIN Q. Properties of a nanocrystalline barium titanate on silicon humidity sensor [J]. Meas. Sci. Technol., 2003, 14: 172-175.
    [170] AGARWAL S, SHARMA G L. Humidity sensing properties of (Ba, Sr) TiO3 thin films grown by hydrothermal–electrochemical method [J]. Sens. Actuators B, 2002, 85: 205-211.
    [171] GENG W, WANG R, LI X, ZOU Y, ZHANG T, TU J, HE Y, LI N. Humidity sensitive property of Li-doped mesoporous silica SBA-15 [J]. Sen. Actuators B, 2007, 127: 323-329.
    [172] ZHANG T, WANG R, GENG W, LI X, QI Q, HE Y, WANG S. Study on humidity sensing properties based on composite materials of Li-doped mesoporous silica A-SBA-15 [J]. Sen. Actuators B, 2008, 128: 482-487.
    [173] WANG Z, CHEN C, ZHANG T, GUO H, ZOU B, WANG R, WU F. Humidity sensitive properties of K+-doped nanocrystalline LaCo0.3Fe0.7O3 [J]. Sen. Actuators B, 2007, 126: 678-683.
    [174] SADAOKA Y, MATSUGUCHI M, SAKAI Y, AONO H, NAKAYAMA S, KUROSHIMA H.Humidity sensors using KH2PO4-doped porous (Pb, La) (Zr, Ti) O3 [J]. J. Mater. Sci., 1987, 22: 3685-2692.
    [175] TRAVERSA E, BEARZOTTI A, MIYAYAMA M, YANAGIDA H. Study of the conduction mechanism of La0.2CuO4-ZnO heterocontracts at different relative humdities [J]. Sens. Actuators B, 1995, 24-25: 714-718.
    [176] TRAVERSA E, GNAPPI G, MONTENERO A, GUSMANO G. Ceramic thin films by sol-gel processing as novel materials for integrated humidity sensors [J]. Sens. Actuators B, 1996, 31: 59-70.
    [177] FENG C D, SUN S L, WANG H, SEGRE C U, STETTER J R. Humidity sensing properties of Nafion and sol-gel derived SiO2/Nafion composite thin films [J]. Sens. Actuators B, 1997, 40: 217-222.
    [178] CASALBORE-MICELI G, YANG M J, CAMAIONI N, MARI C M, LI Y, SUN H, LING M. Investigations on the ion transport mechanism in conducting polymer films [J]. Solid State Ionics, 2000, 131: 311-321.
    [179] QUARTARONE E, MUSTARELLI P, MAGISTRIS A, RUSSO M V, FRATODDI I, FURLANI A. Investigations by impedance spectroscopy on the behaviour of poly (N,N-dimethylpropargylamine) as humidity sensor [J]. Solid State Ionics, 2000, 136-137: 667-670.
    [180] SCHAUB R, THOSTRUP P, LOPEZ N, L?GSGAARD E, STENSGAARD I, N?RSKOV J K, BESENBACHER F. Oxygen vacancies as active sites for water dissociation on rutile TiO2 (110) [J]. Phys. Rev. Lett., 2001, 87: 266104.
    [181] ANDERSON J H, PARKS G A. The electrical conductivity of silica gel in the presence of adsorbed water [J]. J. Phys. Chem., 1968, 72: 3662-3668.
    [182] FRENOT A, CHRONAKIS I S. Polymer nanofibers assembled by electrospinning [J]. Curr. Opin. Colloid Interface Sci., 2003, 8: 64-75.
    [183] DOSHI J, RENEKER D H. Electrospinning process and applications of electrospun fibers [J]. J. Electrost., 1995, 35: 151-160.
    [184] LI D, XIA Y. Electrospinning of nanofibers: Reinventing the wheel? [J]. Adv. Mater., 2004, 16: 1151-1170.
    [185]吕砚山.常见电工电子技术手册[M].北京化学工业出版社, 1995.
    [186] FANG X, RENEKER D H. DNA fibers by electrospinning [J]. J. Macromolecular Sci. Phys. B, 1997, 36: 169-173.
    [187] DEMIR M M, YILGO I, YILGOR E, ERMAN B. Electrospinning of polyurethane fibers [J]. Polymer, 2002, 43: 3303-3309.
    [188] SHIN Y M, HOHMAN M M, BRENNER M P, RUTLEDGE G C. Experimental characterization of electrospinning: the electrically forced jet and instabilities [J]. Polymer, 2001, 42: 9955-9967.
    [189] FONG H, CHUN I, RENEKER D H. Beaded nanofibers formed during electrospinning [J]. Polymer, 1999, 40: 4585-4592.
    [190] SILKE M, JEAN S S, BRUCE D C. Micro- and nanostructured surface morphology on electrospun polymer fibers [J]. Macromolecules, 2002, 35: 8456-8466.
    [191] HOU H, JUN Z, REUNING A, SCHAPER A, WENDORFF J H, GREINER A. Poly(p-xylylene) nanotubes by coating and removal of ultrathin polymer template fibers [J]. Macromolecules, 2002, 35: 2429-2431.
    [192] WAN Q, YANG H B, SHI J L, ZOU G T. Preparation and characterization of nanocrystalline powders of Cu-Zn alloy by wire electrical explosion method [J]. Mat. Sci. Eng. A-Struct., 2001, 307: 190-194.
    [193] BONINI N, CAROTTA M C, CHIORION A, GUIDI V, MALAGùC, MARTINELLI G, PAGLIALONGA L, SACERDOTI M. Doping of a nanostructured titania thick film: structural and electrical investigations [J]. Sens. Actuators B, 2000, 68: 274-280.
    [194] MONTESPERELLI G, PUMO A, TRAVERSA E, GUSMANO, BEARZOTTI A, MONTENERO A, GNAPPI G. Sol-gel processed TiO2-based thin films as innovative humidity sensors [J]. Sens. Actuators B, 1995, 25: 705-709.
    [195] TRAVERSA E, BARONCINI M, BARTOLOMEO E D, GUSMANO G, P INNOCENZI. A. MARTUCCI. Electrical humidity response of sol–gel processed undoped and alkali-doped TiO2-Al2O3 thin films [J]. J. Eur. Ceram. Soc., 1999, 19: 753-758.
    [196] YING J, WAN C, HE P. Sol–gel processed TiO2–K2O–LiZnVO4 ceramic thin films as innovative humidity sensors [J]. Sens. Actuators B, 2000, 62: 165-170.
    [197] TAI W P, OH J H. Fabrication and humidity sensing properties of nanostructured TiO2–SnO2 thin films [J]. Sens. Actuators B, 2002, 85: 154-157.
    [198] TAI WP, OH J H. Preparation and humidity sensing behaviors of nanocrystalline SnO2/TiO2 bilayered films [J]. Thin Solid Films, 2002, 422: 220-224.
    [199] HOLC J, HROVAT M, SLUNEěKO J. Temperature characteristics of electrical properties of (Ba,Sr)TiO3 thick film humidity sensors [J]. Sens. Actuators B, 1995, 26: 99-102.
    [200] TRAVERSA E. Ceramic sensors for humidity detection: the state-of-the-art and future developments [J]. Sens. Actuators B, 1995, 23: 135-156.
    [201] K KATAYAMA, HASEGAWA K, TAKAHASHI Y, AKIBA T, YANAGIDA H. Humidity sensitivity of Nb2O5-doped TiO2 ceramics [J]. Sens. Actuators A, 1990, 24: 55-60.
    [202] BAVYKIN D V, FRIEDRICH J M, WALSH F C. Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications [J]. Adv. Mater., 2006, 18: 2807-2824.
    [203] YAN W, CHEN B, MAHURIN S M, SCHWARTZ V, MULLINS D R, LUPINI A R, PENNYCOOK S J, DAI S, OVERBURY S H. Preparation and comparison of supported gold nanocatalysts on anatase, brookite, rutile, and P25 polymorphs of TiO2 for catalytic oxidation of CO [J]. J. Phys. Chem. B, 2005, 109: 10676-10685.
    [204] JHO J H, KIM D H, KIM S J, LEE K S. Synthesis and photocatalytic property of a mixture of anatase and rutile TiO2 doped with Fe by mechanical alloying process [J]. J. Alloy Compd., 2008, 459: 386-389.
    [205] ZHAO L, HAN M, LIAN J. Photocatalytic activity of TiO2 films with mixed anatase and rutile structures prepared by pulsed laser deposition [J]. Thin Solid Films, 2008, 516: 3394-3398.
    [206] LIU Z, ZHANG X, NISHIMOTO S, JIN M, TRYK D A, MURAKAMI T, FUJISHIMA A, FUJISHIMA A. Anatase TiO2 nanoparticles on rutile TiO2 nanorods: a heterogeneous nanostructure via Layer-by-Layer assembly [J]. Langmuir, 2007, 23: 10916-10919.
    [207] WU F Q, REN H, ZOU B, WANG Z Y, ZHANG T, ZOU L H, XU B K. Preparation of TiO2 nanocrystalline and its sensitive property to TMA [J]. Acta Phys.–Chim. Sin., 2005, 54: 556-559.
    [208] TONG T, ZHANG J, TIAN B, CHEN F, HE D. Preparation and characterization of anataseTiO2 microspheres with porous frameworks via controlled hydrolysis of titanium alkoxide followed by hydrothermal treatment [J]. Mate. Lett., 2008, 62: 2970-2972.
    [209] YE M, CHEN Z, WANG W, ZHEN L, SHEN J. Large-scale synthesis and characterization of fan-shaped rutile TiO2 nanostructures [J]. Mate. Lett., 2008, 62: 3404-3406.
    [210] GOMEZA H, MALDONADOA A, OLVERA M L, ACOSTA D R. Gallium-doped ZnO thin films deposited by chemical spray [J]. Sol. Energ. Mat Sol. C., 2005, 87: 107-116.
    [211] TAI W P, OH J H. Humidity sensing behaviors of nanocrystalline Al-doped ZnO thin films prepared by sol-gel process [J]. J. Mater. Sci-Mater. El., 2002, 13: 391-394.
    [212] KONG J, FRANKLIN N R, ZHOU C, CHAPLINE M G, PENG S, CHO K, DAI H. Nanotube molecular wires as chemical sensors [J]. Science, 2000, 287: 622-625.
    [213] KOLMAKOV A, KLENOV D O, LILACH Y, STEMMER S, MOSKOVITS M. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles [J]. Nano Lett., 2005, 5: 667-673.
    [214] LAW M, KIND H, MESSER B, KIM F, YANG P. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature [J]. Angew. Chem. Int. Ed., 2002, 16: 2405-2408.
    [215] XIE G, YU J, CHEN X, JIANG Y. Gas sensing characteristics of WO3 vacuum deposited thin films [J]. Sens. Actuators B, 2007, 123: 909-914.
    [216] NOH S, FU X, CHEN L, MEHREGANY M. A study of electrical properties and microstructure of nitrogen-doped poly-SiC films deposited by LPCVD [J]. Sens. Actuators B, 2007, 136: 613-617.
    [217] BARSAN N, KOZEJ D, WEIMAR U. Metal oxide-based gas sensor research: How to? [J]. Sens. Actuators B, 2007, 121: 18-35.
    [218] CAIHONG W, CHU X, WU M. Highly sensitive gas sensors based on hollow SnO2 spheres prepared by carbon sphere template method [J]. Sens. Actuators B, 2007, 120: 508-513.
    [219] ATASHBAR M Z, SINGAMANENI S. Room temperature gas sensor based on metallic nanowires [J]. Sens. Actuators B, 2005, 111-112: 13-21.
    [220] RUIZ A M, CORNET A, SHIMANOE K, MORANTE J R, YAMAZOE N. Transition metals (Co, Cu) as additives on hydrothermally treated TiO2 for gas sensing [J]. Sens. Actuators B, 2005, 109: 7-12.
    [221] KILLAT D, KLUGE J V, UMBACH F, LANGHEINRICH W, SCHMITZ R. Measurement and modelling of sensitivity and noise of MOS magnetic field-effect transistors [J]. Sens. Actuators A, 1997, 61: 346-351.
    [222] NING F, BRUUN E. An offset-trimmable array of magnetic-field-sensitive MOS transistors (MAGFETs) [J]. Sens. Actuators A, 1997, 58: 109-112.
    [223] OSORIO-SAUCEDO R, LUNA-ARREDONDO E J, CALLEJA-ARRIAGA W, REYES-BARRANCE M A. New chemical sensor based on a MOS transistor with rear contacts and two flat surfaces [J]. Sens. Actuators B, 1996, 37: 123-129.
    [224] LI R C C, CHAN P C H, CHEUNG P W. Analysis of a MOS integrated gas sensor using a surface chemistry based model [J]. Sens. Actuators B, 1995, 28: 233-242.
    [225] ZHU B L, XIEA C S, WANG W Y, HUANG K J, HU J H. Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2 [J]. Mater. Lett., 2004, 58: 624-629.
    [226] GONG H, WANG Y J, TEO S C, HUANG L. Interaction between thin-film tin oxide gassensor and five organic vapors [J]. Sens. Actuators B, 1999, 54: 232-235.
    [227] JING Z, WU S. Synthesis, characterization and gas sensing properties of undoped and Co-dopedγ-Fe2O3-based gas sensors [J]. Mater. Lett., 2006, 60: 952-956.
    [228] JIE Z, HUA H L, SHAN G, HUI Z, GUI Z J. Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating [J]. Sens. Actuators B, 2006, 115: 460-464.
    [229] JANATA J, JOSOWLCZ M, DEVANEY D M. Chemical sensors [J]. Anal. Chem., 1994, 66: 207-228.
    [230] FRANKE M E, KOPLIN T J, SIMON U. Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? [J]. Small, 2006, 2: 36-50.
    [231] CHEN Y J, XUE X Y, WANG Y G, WANG T H. Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods [J]. Appl. Phys. Lett., 2005, 87: 233503.
    [232] NERI G, BONAVITA A, MICALI G, RIZZO G, PINNA N, NIEDERBERGER M, BA J. Effect of the chemical composition on the sensing properties of In2O3–SnO2 nanoparticles synthesized by a non-aqueous method [J]. Sens. Actuators B, 2008, 130: 222-230.
    [233] ZHANG T, QI Q, LIU K X, LIU L, ZHANG L, XU B K. Temperature measurement based on radialization power for micro-hotplate [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 780-784.
    [234] YAMAZOE N, FUCHIGAMI J, KISHIKAWA M, SEIYAMA T. Interactions of tin oxide surface with O2, H2O and H2 [J]. Surf. Sci., 1979, 86: 335-344.
    [235] RANI S, ROY S C, BHATNAGAR M C. Effect of Fe doping on the gas sensing properties of nano-crystalline SnO2 thin films [J]. Sens. Actuators B, 2007, 122: 204-210.
    [236] ZHANG Y, HE X, LI J, MIAO Z, HUANG F. Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers [J]. Sens. Actuators B, 2008, 132: 67-73.
    [237]钱之银,陆志浩,楼其民,程真何.变压器油中溶解气体判断方法综述[J]. High Voltage Apparatus, 2002, 38: 34-37.
    [238]张利刚.变压器油中溶解气体的成分和含量与充油电力设备绝缘故障诊断的关系[J].变压器, 2000, 37: 39-42.
    [239] SARRO P M. Silicon carbide as a new MEMS technology [J]. Sens. Actuators, 2000, 82: 210-218.
    [240] NAGLER O, TROST M, HILLERICH B, KOZLOWSKI F. Efficient design and optimization of MEMS by integrating commercial simulation tools [J]. Sens. Actuators A, 1998, 66: 15-20.
    [241] GAO P, YAO K, TANG X, HE X, SHANNIGRAHI S, LOU Y, ZHANG J, OKADA K. A piezoelectric micro-actuator with a three-dimensional structure and its micro-fabrication [J]. Sens. Actuators A, 2006, 130-131: 491-496.
    [242] LI G Q, LAI P T, ZENG S H, HUANG M Q, LI B. A new thin-film humidity and thermal micro-sensor with Al/SrNbxTi1?xO3/SiO2/Si structure [J]. Sens. Actuators A, 1999, 75: 70-74.
    [243] SEIDEMANN V, BüTEFISCH S, BüTTGENBACH S. Fabrication and investigation of in-plane compliant SU8 structures for MEMS and their application to micro valves and micro grippers [J]. Sens. Actuators A, 2002, 97-98: 457-461.
    [244] SEMANCIK S, CAVICCHI R E, WHEELER M C, TIFFANY J E, POIRIER G E, WALTON R M, SUEHLE J S, PANCHAPAKESAN B, DEVOE D L. Microhotplate platforms for chemical sensor research [J]. Sens. Actuators B, 2001, 77: 579-591.
    [245] SHARMA R K, CHAN P C H, TANG Z, YAN G, HSING I M, SIN J K O. Investigation of stability and reliability of tin oxide thin-film for integrated micro-machined gas sensor devices [J]. Sens. Actuators B, 2001, 81: 9-6.
    [246] ASTIéS, GUéA M, SCHEID E, GUILLEMET J P. Design of a low power SnO2 gas sensor integrated on silicon oxynitride membrane [J]. Sens. Actuators B, 2000, 67: 84-88.
    [247] LEE S M, DYER D C, GARDNER J W. Design and optimization of a high-temperature silicon micro-hotplate for nanoporous palladium pellistors [J], Microelectron. J., 2003, 34: 115-126.
    [248] STORM U, BARTELS O, BINDER J. A resistive gas sensor with elimination and utilization of parasitic electric fields [J]. Sens. Actuators B, 2001, 77: 529-533.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700