降糖三黄片对糖尿病大鼠肾脏保护作用及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分文献研究
     糖尿病肾病是糖尿病最常见的微血管并发症之一,是导致终末期肾功能衰竭的重要原因,其特征性病理变化是早期肾小球高灌注、肾小球肥大、系膜区扩张、基底膜增厚及细胞外基质堆积,以致肾小球硬化、肾间质纤维化。DN发病机制非常复杂,其确切的发病机制尚未完全阐明,现代医学认为多个信号转导系统在糖尿病肾病发病过程中具有重要的作用,治疗主要通过控制血糖、控制血压、纠正脂质代谢紊乱以及血管紧张素转化酶抑制剂和血管紧张素受体阻断剂类药物的应用,干预这些系统中的相关环节在不同程度上推迟、控制DN的发展。因此,更好地了解和采取积极的预防措施,减缓疾病的进程是治疗的关键。
     糖尿病肾病乃现代医学的病名,在古代医籍中并没有相对应的病名记载。然而,综观糖尿病肾病的发病机理和临床表现应属于祖国医学中的消渴病及其并发症包括“水肿”、“虚劳”、“肾劳”、“水病”、“胀满”、“尿浊”、“关格”等范畴。中医学认为DN发生是多种因素引起,本虚标实为其基本病机。本虚指阴阳、气血、五脏之虚,标实指痰浊、水湿、瘀血等病理之实。肺、胃脾、肾三脏之阴亏虚,而导致肺燥、胃热、肾虚,其中肾阴不足是决定因素。临床表现多为虚实夹杂。治疗上以中医辨证论治思想为基础,根据病程发展的不同阶段,正邪双方的强弱、进退;机体气血阴阳及脏腑的功能状态,进行整体调节,早期以益气养阴逐瘀,佐以滋补肝肾;中期以温肾健脾为重,辅以益气养血祛瘀;晚期以温补脾肾、佐以利水消肿化瘀。达到减少蛋白尿、改善肾功能、延缓疾病的发展有一定的作用。
     中医药在治疗DN方面有着独特的优势,中药及其配伍的药理效应具有多层次、多靶点、多环节的功能特点,而且远期疗效亦较稳定,具有比西药更大的优势。在临床上,对于症状的改善,肾功能的保护以及延缓和阻止肾脏损害的病程进展,提高DN患者生存质量都有良好的作用。本学科在80年代已经开展对Ⅱ型糖尿病的中医防治研究,围绕气阴不足、瘀血阻络的病机,采用经方桃核承气汤为基础加味研制成降糖三黄片,在临床上治疗Ⅱ型糖尿病取得显著疗效。运用降糖三黄片治疗糖尿病肾病其理论依据是胃、肾之间无论在生理或病理上都相互作用、相互影响。因此,进一步深入探讨降糖三黄片对于糖尿病肾病的疗效及作用机制对于其在临床的广泛应用具有深远的意义。
     第二部分实验研究
     目的:
     以长期高脂饲养(与目前人类饮食生活方式更为接近)的方式,观察中药降糖三黄片对早期糖尿病肾病大鼠的血糖、血脂、肾功能、24小时尿蛋白定量、肾组织组织形态学及肾组织ACE活性、血管紧张素Ⅱ、转化生长因子-β1以及蛋白激酶C的影响,初步探讨其对糖尿病肾病的治疗及其作用机理,为临床应用泻热逐瘀,益气养阴方药治疗早期糖尿病肾病提供实验依据。
     方法:
     清洁级Wistar大鼠普通饲料适应性喂养2W后,随机分为2组,正常组(10只)和造模组,正常组继续以普通饲料喂养,造模组改用高脂高热量饲料喂养一个月。造模前禁食12h,造模组按30mg/kg剂量腹腔内注射STZ,正常组腹腔内注射等量柠檬酸缓冲液。1W后,测定空腹血糖和空腹胰岛素,计算胰岛素敏感指数。连续两次空腹血糖≥11.1mmol/L,查尿糖++以上,胰岛素敏感指数降低,且有多饮、多尿、多食现象确认为2型糖尿病模型。2型糖尿病大鼠成模后,继续以高脂饲料连续喂养8W,即出现糖尿病大鼠的肾脏损害(以电镜结果为证)。糖尿病造模成功后,造模组进一步分层,随机分为模型组、中药组(降糖三黄片干预),西药组(卡托普利干预)。共44只大鼠完成实验,正常组10只,模型组10只,降糖三黄片干预组12只,卡托普利干预组12只(余5只或死亡或不符合条件)。中药组药量按787.5mg/kg/d的剂量给予,西药组药量按照4mg/kg/d的剂量给予,正常组及模型组灌服等量蒸馏水。①STZ注射后1周后大鼠禁食12h后空腹眼眶静脉窦采血,糖尿病大鼠造模成功后8周,处死前腹主动脉采血检测FBG、胆固醇和甘油三酯以及胰岛素。②于造模后四周、八周分别检测大鼠24h尿量、尿蛋白。③无菌操作取双肾,剥离被膜称重,计算肾重/体重指数(KW/BW);取右肾组织4%多聚甲醛初步固定,用于观察肾脏病理形态学变化;血、尿生化指标均用全自动生化分析仪测定。④放免法检测各组肾肌组织中AngⅡ含量及紫外分光亮度法检测ACE活性;⑤免疫组化检测肾皮质TGF-β1蛋白水平和PKC活性;同时以光学显微镜和透视电子显微镜观查肾小球、肾小管-间质的病理形态学改变。
     结果:
     1.实验第8周末,观察大鼠各项指标。结果表明,降糖三黄片明显改善DN大鼠的一般状态,三多一少的症状,体重明显增加,与模型组和西药组大鼠相比,差异显著(P<0.01);降糖三黄片组血糖、血脂水平明显下降,胰岛素敏感指数上升,与模型组和西药组比较有显著性差异(P<0.01;P<0.05);提示中药组对糖代谢有改善作用,并且作用优于西药组;显著改善实验大鼠多尿、多饮的症状,降低24h尿蛋白排泄量,与模型组比较差异显著(P<0.01)。
     2.利用放射免疫法和紫外分光亮度法检测各组实验动物肾脏标本中的肾组织血管紧张素Ⅱ(AngⅡ)含量和血管紧张素转换酶(ACE)活性。结果表明:模型组肾组织ACE活性明显增强,与正常组、中药组、西药组比较有显著的差异(P<0.01);说明降糖三黄片具有一定的抑制DN大鼠肾组织中ACE活性,但其作用强度则低于血管紧张素转换酶抑制剂(ACEI)的卡托普利。模型组大鼠肾组织AngⅡ的含量比正常组、西药组和中药组显著升高(P<0.01);两治疗组之间比较无统计学意义(P>0.05)。实验结果说明,降糖三黄片和西药卡托普利均有一定降低DN大鼠肾组织中AngⅡ含量的作用,表明中西药都能通过调节AngⅡ的分泌,起到保护肾功能的作用。
     3.本实验通过光镜、电镜观察各组8周末肾组织形态学变化。结果表明:模型组肾脏局灶肾小管内见蛋白沉积,肾小球增大,毛细血管基质增生,肾小球基底膜增厚,部分肾小管上皮细胞水肿变性。透射电镜观察结果显示肾小球基底膜呈阶段性增厚,有的模糊不清,上皮足突广泛融合或部分融合,滤过膜间隙增大,系膜区扩大,系膜细胞增多。降糖三黄片组经治疗8周后上述病理改变比模型组显著减轻;提示造模组大鼠肾脏组织损害可能从模型建立初期已经发生,并且呈进行性加重。模型组及西药组的肾小球硬化指数、肾小球毛细血管基质增生程度均高于正常组和中药组,其中肾小球毛细血管基质增生程度与正常组和中药组比较差异明显(P<0.05);肾小球平均横截面积(MGA)较正常组和中药组显著增大(P<0.01),提示模型组及西药组的肾小球硬化明显。降糖三黄片对于延缓DN的肾脏病理损害疗效确切。
     4.采用免疫组化方法观察降糖三黄片对DN大鼠肾组织中TGF-β1的表达和PKC活性。免疫组化结果显示,TGF-β1阳性表达部位主要在肾小管胞浆,模型组TGF-β1明显高于正常组和中、西药组(P<0.01),西药组略低于中药组但无显著性差异。模型组肾小管PKC活性明显高于正常组,差异具有统计学意义(P<0.01)。中药组和西药组差异不大,但仍高于正常组(P<0.01),与模型组相比则明显降低,有统计学意义(P<0.01)。
     结论:
     1.中药降糖三黄片不仅能从客观指标上降低糖尿病大鼠的血糖、血脂水平,改善胰岛素抵抗,还能够明显改善糖尿病大鼠“三多一少”的症状,体现了中医学整体观念的思想。
     2.中药降糖三黄片能够降低DN大鼠尿蛋白排泄,抑制早期肾脏肥大,减轻肾脏病理损害和延缓肾脏病理进展,其作用机制与纠正脂代谢紊乱及血液流变学异常有关。
     3.降糖三黄片对DN大鼠肾组织AngⅡ有一定的抑制作用,这可能是其具有改善肾功能、减轻肾脏病理损害和延缓肾脏病理进展的作用机制之一
     4.降糖三黄片能抑制DN大鼠PKC和TGF-β1的过度表达,减少细胞外基质积聚,是减轻肾脏病理损害的重要环节。
     5.降糖三黄片对DN大鼠肾组织的保护作用可能是通过抑制肾组织AngⅡ活性、调控大鼠肾组织PKC活性的升高及转位,下调TGF-β1的过度表达,进而减少肾小球细胞外基质的积聚,使肾脏病理得到改善甚至逆转,从而达到保护肾脏的作用。
Part One:Literature Review
     Diabetic nephropathy (DN) is one of the micro-vascular complication caused by diabetic mellitus (DM) and it has been the leading cause of end-stage renal disease with diabetes-related patients. The concept in understanding the pathogenesis of DN is that the results from a series of specific progressive renal pathological changes that have occurred incidence early in the course of diabetes. The early renal pathological changes is characterized by accumulation of extracellular matrix, leading to expansion of glomerular mesangial regions at the expense of filtration surface area, thickening of the glomerular and tubular basement membranes. Important changes in arterioles and in the renal interstitium also occur as well. These changes cause glomerular hypertension and progressive decline in GFR. Systemic hypertension may accelerate progression. The determinants of these early structural abnormalities are, however, largely remain unknown.
     Medical research has demonstrated that a number of signal transduction pathways may have played the important roles in onset of DN. Nowadays, the key element of treatments are patient's education, dietary and exercise counseling, monitoring of glucose control, improving of lipid metabolism disorder and taking ACE inhibitors or angiotensin II receptor blockers accordingly. The treatments may in certain extent to improve and control the symptom of DN and prevent ESRD developing. Therefore, it is crucial to better understand and take the necessary aggressive-preventive measures to slow this progressive disease process.
     Diabetic nephropathy is known as modern medical term and there is no corresponding name has mentioned in ancient Chinese medicine literature. According to pathogenesis and clinical manifestations of Diabetic Nephropathy, it should be categorized in TCM as "wasting-thirsting" or "xiao ke" accompany with its complications, such as "edema", "consumptive disease", "kidney consumption", "dropsy disease", "swollen disease", "turbid urine", "Vomiting and Dysuria Diseases". TCM believes that DN is caused by many factors, its basic pathogenesis is deficiency in origin and excess in superficiality. Deficiency stands for insufficiency in zang-fu organs of qi, blood, yin and yang. Excess represents those pathological products, such as phlegm accumulation, fluid retention, and blood stasis. Yin dysfunction in lung, kidneys, spleen and stomach, caused lung dryness, heat of stomach and deficiency in kidneys Yin. Deficiency in kidney Yin is the main determinants of all. Clinical manifestations shows that intermingled deficiency and excess for many cases. The therapeutic principles are formulated according to the basic theory of TCM and syndrome differentiation. According to the different course of the disease, the conflict between the anti-pathogenic qi and pathogenic depend on strong or weak, advance and retreat, of either side. The principle of treatment is based on syndrome differentiation, development of disease, the strength of human body against the disease, and the function of Zang-fu with its qi and blood, yin and yang to have overall regulation. Treatment is concentrated on replenishing Qi and nourishing Yin as well as removing blood stasis in assistant with tonifying the kidney and liver at early stage. Treatment for invigorate the spleen, warm the kidney supported by benefiting Qi and nourishing blood and removing blood stasis is suggested during metaphase stage; to warm and tonify the spleen and kidney accompany with inducing diuresis and alleviating edema at the advanced stage as a result to reduce proteinuria and improve renal function, controlling the development of the disease. TCM hold unique advantages in treating DN. Pharmacological effects of Chinese medicine and its formulation have multi-level, multi-target and multi-connection features with long term stability of curative effects, which are superior to Western medicine. On clinical practice, it proves that TCM has remarkable curative effects in improving symptoms, protecting renal function, preventing or postpone the progression of renal damage and improving the living quality of patients.
     The research base on TCM classical prescription "Taohe Chengqi Decoction" has already carried out since 80's regarding to the treatment on type 2 diabetes against the pathogenesis of deficiency in Qi and Yin, blood stasis obstruction of collaterals has gained the notable effects. According to the former studies, Jiangtangsanhuang (JTSH) tablet has been developed for the treatment of diabetic nephropathy under the theoretical basis of stomach and kidney in both physiology and pathology are interaction and interfere. Thus, further study on the mechanism of JTSH tablet for DN in order to be broadly adopted by clinical practice has become profound significance.
     Part two:Experimental research
     Objective:
     The study had used high cholesterol diet pattern which is closer to the human lifestyle to observe the effects of JTSH tablet on blood glucose, urinary protein in 24hours, renal function, rennin activity, the content of angiotensinⅡ, the expressions of transforming growth factor-β1, the function of PKC and the pathological changes of renal tissue for the early stage of diabetic nephropathy rats, to reveal the mechanism of reno-protective effect of JTSH Tablet against the experimental DN rats. So as to provide experimental basis of clinical service for treating early stage of Diabetic Nephropathy by using purge Heat and blood stasis with nourish qi and yin therapy.
     Methods:
     Healthy Wistar rats were randomly divided into normal control group (n=10) with regular feed and diabetic model groups with high cholesterol diet (HCD) throughout the study period. The model groups induced lower-dosage streptozocin (STZ) (30mg/kg) after 28 days of HCD and were randomly divided into three group with fasting blood glucose≥11.1mmol/L:early DN group(n=10), JTSH group(787.5mg·kg-1·d-1,n=12) and Captopril group(4mg·kg-1·d-1,n=12). The course of treatment lasted for 8 weeks. The general status (psychosis, diet, hair color, weight, etc.), blood glucose, glycosuria, renal weight/body weight ratio, urine protein in 24 hours were monitored.①One and eight weeks after STZ rejection, fasting blood glucose, cholesterol and insulin levels were detected at first and eighth week after STZ-induced;②Renal tissue were detected for the expression of TGF-β1 and activity of PKC by the method of immune histo-chemistry.③Renal Angiotensin converting enzyme(ACE)activity and angiotensinⅡ(AngⅡ) expression were measured by radio immunity.④The renal pathological changes were observed by optics microscope and electronic microscope.
     Result:
     1. The various items were observed at the end of 8weeks of experiment. The general conditions and the symptoms of polyphagia, polydipsia, polyuria were improved in JTSH group, the body weight had boosted faster than DN and Captopril groups with obvious significant (P<0.01). JTSH group had significantly reduced FBG, cholesterol, glycerin trimyristate level and increase ISI level after 8 weeks treatment comparing with DN and Captopril groups (P<0.01; P<0.05). It indicated that JTSH tablet have better effect in improving glucose metabolism than Captopril. Besides, decrease obviously in the amount of urine and urine protein of 24 hours of treated groups compared with DN group (P<0.05). Kidney coefficient of JTSH group compared with DN and Captopril groups were decreased (P<0.05 and P<0.01) respectively.
     2. The radiative immune method and biochemical method were adopt for detecting angiotensin converting enzyme(ACE)activity and the content of angiotensinⅡ(AngⅡ) in renal tissue. The results indicated that ACE activity increased obviously in DN group compared with the others (P<0.01); ACE activity was low in Captopril group compared with the Normal, JTSH and DN groups respectively (P<0.05, P<0.01). It proved that JTSH can suppress ACE activity in certain extend, while its contribution is not as strong as Captopril as angiotensin converting enzyme inhibitor. The content of AngⅡin renal tissue was raised in DN group compared with others (P<0.01). The comparison between two treated groups was no statistical significance. The result showed that both JTSH tablet and Captopril can protect the renal function by reducing and adjusting the AngⅡin renal tissue of the DN rats.
     3. The rats'renal histopathology was observed by optical microscope and electric microscope at the end of the experiment. It was found that DN group glomerular basement membrane thick, mesangial matrix expansion and part of glomerulor vascular abnormally changed. The treated groups were found the above pathological changes had improved after 8 weeks treatment. It indicates that the damage of renal tissue might have occurred at the very beginning and increased gradually. Glomerular capillaries stromal hyperplasia significantly in DN group and Captopril group compared with JTSH (P<0.05) while index of glomerulosclerosis is increased significantly compared with normal and JTSH group (P<0.01). It looks that JTSH tablets were more effective in improving glomerular sclerosis and renal tubular edema degeneration of DN rats than Captopril, but difference is not outstanding. The result indicates that JTSH can slow down and relieve the kidney damage.
     4. The immunohisto-chemical Method is used for detecting the expression of TGF-β1 and the activity of PKC in kidney among groups. The expression of TGF-β1 among DN group was significantly higher than normal group (P<0.01), as well as JTSH and Captopril groups (P<0.01). The PKC activity in renal tubular was raised in DN group compared with JTSH and Captopril groups (P<0.01), whereas still higher than the normal group (P<0.01).
     Conclusion:
     1. JTSH tablets can significantly reduce FBG, cholesterol and glycerin trimyristate level, as well as ameliorate the insulin resistance. In addition, it can improve "three more and one less" symptoms which embody the holistic concept of TCM.
     2. JTSH tablets can reduce the excretion of urine protein of the DN rat and suppress the hypertrophy of kidney and reduce renal pathological damage at the same time, so as to relief the renal pathological progression. The mechanism of the improvement might have related to JTSH rectified the disorder of lipid metabolism and abnormal of blood rheology.
     3. JTSH can inhibit the expression of AngⅡin renal tissue of the DN rats which could be one of the mechanism of improving renal function and relief renal pathological damage.
     4. JTSH can restrain the PKC and TGF-β1 from over expression which is the important part to reduce the accumulation of extracellular matrix and prevent the renal being damaged.
     5. The mechanism of reno-protective effect of JTSH tablets may probably worked by inhibiting the Angll activities, controlling and transferring the up raising of PKC activities and reducing the expression of TGF-β1 as a result to reduce the accumulation of glomerular extracellular matrix and improved the renal pathology in order to reach the goal in protecting the renal function.
引文
1. The Diabetes Control and Complications Trial Research GrouP. The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications In Insulin-Dependent Diabetes Mellitus. N Engl J Med,1993; 329(14): 977-986.
    2. Perico N,Benigni A,Gabanelli M. Atrial Natriuretic peptide and prostacyclin synergistically mediate hyperfiltration and hyperperfusion of diabetic rats. Diabetes, 1992; 41(4):533-538.
    3. Chen S, Cohen MP, Ziyadeh FN. Amadori glycated albumin in diabetic nephropathy: pathophysiologic connections. Kidney International,2000; 58(Suppl77):40-44.
    4. Lehmann R, Schleicher ED. Molecular mechanism of diabetic nephropathy. Clin Chim Acta,2000; 297(1-2):135-144.
    5. Osicka TM,Yu Y,Panagiotopoulos S,et al. Prevention of albuminuria by aminoguanidine or ramipril in streptozotocin-induced diabetic rats is associated with the normalization of glomerular protein kinase C. Diabetes,2000; 49(1):87-93.
    6. Koya D,King GL. Protein kinase C activation and the development of diabetic complications. Diabetes,1998; 47(6):859-866.
    7. Mellor H, Parker PJ.The extended Protein kinase C superfamily. Biochem J,1998; 332 (Pt 2):281-292.
    8. JensenL J,Ostergard J,Flyvbjerg A. AGE-RAGE and AGE Cross-link interaction important players in the pathogenesis of diabetic kidney disease [J]. Horm Metab Res, 2005; 37supp(11):26-34.
    9.陈雅静.Ⅳ型胶原酶与糖尿病肾病[M].国外医学.内分泌学分册,2002; 22(4): 256-258.
    10. Banerjec S,Ghosh US,Saha SJ. Role of GFR estimation in assessment of the Status of nephropathy in type 2diabetes mellitus[J]. J Assoc Physicians India,2005; 53: 181-184.
    11.徐虹.肾素-血管紧张素系统与肾脏病.中华儿科杂志,2001;39(12):761.
    12. The diabetes control and complication trail research group. The effect of intensive Treatment of diabetes on the development diabetes mellitus. N Eng J Med,1993; 329: 977-986.
    13. United Kingdom prospective diabetes study group. Intensive blood-glueose control with sulphonyureay or insulin compared with conventional treatment and risk of complication in patients with type Ⅱ diabetes. Lancet,1998; 352:837.
    14. Niwa T. Dialysis related amyloidosis:pathogenesis focusing on AGE modification. Semin Dial,2001; 14(2):123-126.
    15. Boyd-white J, Williams JC. Effect of cross-linking in matrix permeability:A model for AGE-modified basement membranes. Diabetes,1996; 45:348.
    16. MaoY, Ootaka T, Saito T, et al. The involvement of advanced glycation end products(AGEs) in renal injury of diabetic glomeruloselerosis Association with phenotypic change in renal cells and infiltration of immune cells. Clin ExP NePhrol, 2003; 7:201-209.
    17. Park HK, Ahn CW, Lee GT, et al. Polymorphism of aldose reductase gene and Diabetic microvascular complieations in type 2 diabetes mellitus[J]. Diabetes Res Clin Pract,2002; 55(2):151-157.
    18. Abrass CK. Lipid metabolism and renal disease. Contributions To Nephrology,2006; 151:106-121.
    19. Joles JA,Kunter U, Janssen U, et al. Early mechanisms of renal injury in hypercholesterolemic or hypertriglyceridemic rats. J Amoc Nephrol,2000; 11: 669-683.
    20. Hammad SM. Nephopathy in a hypercholesterolemic mouse model with streptozotocim induced diabetes[J]. Kidney Blood press Res,2003; 26(5):351-353.
    21. Dominguec JH,Tang N,Xu W,et al. Studies of renal injury Ⅲ:Lipid-induced nephropathy in typeⅡ[J]. Kidney Int,2002; 3:196-198.
    22.王红漫,邓华聪,刘万里,等.对氧磷脂酶-1和氧化低密度脂蛋白在2型糖尿病肾病中的作用[J].中华内科杂志,2002;41(3):179-182.
    23. Huang JS, Guh JY, Hung WC, et al. Role of the Janus kinase(JAK)/signal transducers and activators of transcription(STAT) cascade in advanced glycation end-product-induced cellular mitogenesis in NKK-49F cells[J]. Biochem J,1999,342(Ptl): 231-238.
    24. FiorettoP,S.M.,Barboga J etal. Glomerular structure in siblings with insulin dependent diabetes mellitus[J]. J Am Soc Nephrol,1991; 2:289.
    25. Kumaramanickavel G.Ramprasad VL, S.S., et al. Association of Gly82Ser Polymorphism in the RAGE gene with diabetic retinopathy in type 2 diabetic Asian Indian patients [J]. Diabetes Complications,2002; 16(6):391-394.
    26. Howard T, S.F., Elyse PM, et al. Chronie diabetic nephropathy:role of inducible nitric oxide synthase[J]. Pediatr Nephrol,2002; 17:20-29.
    27. G.S.M.M.H.B. Dinucleotide repeat polymorphism of matrix metalloproteinase-9 gene is associated with diabetic nephropathy [J]. Kidney Int,2001; 60:1428-1434.
    28.李正军,刘国安.糖尿病肾病相关基因的研究进展[J].甘肃科技,2005;21(6):143-145.
    29. Derubertis FR, Craven PA. Activation of protein kinase C in glomerular cells in diabetes. Diabetes,1994; 43:1.
    30. Fukui M, Nakamura T, Ebihara I. ECM gene expression and its modulation by insulin in diabetic rats. Diabetes,1992; 41:1520.
    31. Studer RK, Craven PA, Derubertis FR. Role for protein kinase C in the mediation of increased fibronectin by mesangial cells grown in high-glucose medium. Diabetes, 1993; 42:188.
    32. Das Evcimen N, King GL. The role of Protein kinase C activation and the vascular complications of diabetes. Pharmacol Res,2007; 55:498-510.
    33. Karamanos B,Porta M, Songini M, et al.Different risk factors of mieroangiopathy in patients with typel diabetes mellitus of short versus long duration. The EURO DIABIDDM Complications Study. Diabetologia,2000; 43:348-355.
    34. Angnlo J, Cuevas P, Fernandez A, et al. Enhanced thromboxane receptor-mediated responses and Impaired endothelium-dependent relaxation in human corpus cavemosum from diabetic impotent men:role of protein kinase C activity. J Pharmacol EXP Ther,2006; 319:783-789.
    35. Choi ME. Mechanism of transforming growth factor-beta1 signaling. Kidney Int SuPPI, 2000; 77:S53-58.
    36. Vasko R, Koziolek MJ, Ikehata M, et al. Role of basic fibroblast growth factor (FGF-2) in diabetic nephropathy and mechanisms of its induction by hyperglycemia in human renal fibroblasts[J]. Am J Physiol Renal Physiol,2009; (3):EPub ahead of Print.
    37. Rachmani R, Levi Z Slavchevski I, et al. Teaching patients to monitor their risk factor retards the progression of vascular complication in high-risk patients with Type2 diabetes mellitus-a randomized prospective study. Diabet Med,2002; 19 (5):385-392.
    38. UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complication in patients with type 2 diabetes (UKPDS33). Lancet,1998; 352: 837-853.
    39. The DCCT Research Group. Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial (DCCT). Kidney Int.1995; 47:1703-1720.
    40.余学锋.强化血糖控制在DN中的地位[J].临床肾脏病杂志,2007;7(5):212.
    41. Fioretto P, Steffes MW, Sutherland DE, et al. Reversal of lesions of diabetic nephropathy after pancreas transplantation[J]. N Engl J Med,1998; 339:69-75.
    42. Ruilope LM, Luno J. Angiotensin blockade in type2 diabetic renal diseases [J]. Kidney Int.2002; 82(Supp 1):61-63.
    43. Pahor M, Psaty BM, Alderman MH, et al. Therapeutic benefits of ACE inhibitors and other antihypertensive drugs in patients with type2 diabetes[J]. Diabetes Care,2000; 23:888-892.
    44.姜恒丽.美国肾脏病协会2004年年会有关对糖尿病肾病的认识[J].临床荟萃,2005;20(2):114.
    45.叶山东,朱禧星.临床糖尿病学.合肥:安徽科学技术出版社,2005,194.
    46.罗群,李荣伦,刘东海,等.氯沙坦和硝苯地平控释片对原发性高血压微量白蛋白尿的影响.临床肾脏病杂志2003;3(1):19.
    47.张玲.氨氯地平加撷沙坦治疗糖尿病肾病患者的疗效观察.辽宁实用糖尿病杂志,2004;12(5):37-38.
    48. Curb JD, Pressel SL, Cutler, et al. Effect of diuretic-based antihypertensive treatment on cardiovascular disease risk in order diabetic patients with isolated systolic hypertension[J]. JAMA,1996; 276:1886-1892.
    49.吕仁和,赵进喜,王越,等.糖尿病肾病临床研究述评.北京中医药大学学报,1994;17(2):2-6.
    50.赵进喜,邓德强,李靖.糖尿病肾病相关中医病名考辨.南京中医药大学报,2005;21(5):288.
    51.林兰,魏军平,倪青.第四届全国中西医结合糖尿病学术会议纪要.中国中西医结合杂志,1999;(7):446.
    52.冯天保,谢桂权.糖尿病肾病肾小球硬化的中医证治探讨.新中医,2005;3(4):8-10.
    53.南征.消渴肾病(糖尿病肾病)研究.第一版.长春:吉林科学技术出社,2001,5:1-5.
    54.任继学.任继学经验集.第一版.北京:人民卫生出版社出版,2000,195-197.
    55.肖相如.著名肾病学家时振声教授系列经验之八.糖尿病肾病的证治经验.辽宁中医杂志,1998;25(8):346-346.
    56.赵宗江.叶传蕙教授治疗糖尿病肾病的思路与方法.中国中西医结合肾病杂志,2006;7(3):129-131.
    57.董振华,季元.祝谌予治疗糖尿病慢性并发症的经验.中医杂志,1997;38(1):12-14.
    58.张泽生,袁遵守,杨新军等.益肾扶脾化癖降浊法治疗DN64例临床观察[J].新中医;2001,33(11):36-37.
    59.吕仁和.糖尿病及其并发症中西医诊治学.北京人民卫生出版社,1997,328.
    60.高彦彬,吕仁和,王秀琴,等.糖肾宁治疗糖尿病肾病的临床研究.中医杂志,1997;38:96-99.
    61.杨霓芝,李芳,徐大基,等.糖尿病肾病分期辨证治疗的探讨.辽宁中医杂志,1999;26(1):16-17.
    62.曹和欣,何立群.糖肾宁对早期糖尿病肾病大鼠肾脏高过滤的影响.上海中医药杂志,2001;(5):19-21.
    63.朱国茹,施剑.中西医结合治疗早期糖尿病肾病微白蛋白尿.辽宁中医杂志,2000;27(2):80.
    64.高阳,李骐.刘启庭辨治糖尿病肾病经验.河南中医,1997;17(1):31-32.
    65.郑国静,常瑜,程益春.糖尿病肾病的中医治疗思路和方法[J].湖北中医杂志,2004;26(1):23-24.
    66.熊学军,高颖,刘敏.试论温阳法治疗消渴病.新中医,2006;38(9):6.
    67.张水生,赵贤俊.糖尿病肾病的中医病名及病因病机探析.辽宁中医杂志,2006;33(12):1574-1575.
    68.杨文军,赵孔华.脾肾气机升降失常与糖尿病肾病关系探讨[J].山东中医药大学学报,2005;29(3):188-189.
    69.任爱华,阚方旭.糖尿病肾病三焦辨治[J].山东中医杂志,2000;19(6):328-329.
    70.刘洪陆,郭惠芳.从痰瘀论治临床期糖尿病肾病—附181例临床分析.国医论,1999;14(3):22-26.
    71.刘玉宁,陈以平.糖尿病肾病肾小球硬化症的中医病机探讨.新中医;2003,35(7):8.
    72.刘云海,孔海云.糖尿病肾病的中医诊治.中华肾病杂志,1991;(6):374.
    73.戴京璋,吕仁和,赵进喜,等.糖尿病肾病中医证治.北京中医药大学学报,2002;25(5):65-66.
    74.林伍弟.补肾化瘀解毒法治疗2型糖尿病肾病39例[J].中医研究,2004;17(6):22-24.
    75.梁彬强.“固邪深伏”理论与糖尿病肾病发病机理探究[J].山西中医,2007;23(3):72-73.
    76.南征,孙新宇.益肾解毒汤治疗糖尿病肾病临床研究[J].北京中医杂志.2002;21(6):326.
    77.宋增强,冯松杰.糖尿病肾病中“内生之毒”的探讨[J].吉林中医药,2006;26(10):1-3.
    78.邓悦,王宏.糖尿病肾病从“毒损肾络”辨治理论体系探要[J].中医药学报,2003;3(3):2.
    79.何泽,南征.糖尿病肾病“毒损肾络”中医病机假说探讨.医药世界,2006;9:11-12.
    80.李文红.活血化瘀法在DN治疗中的重要作用[J].实用中医内科杂志,2005;19(1):80.
    81.何少霞.金匮肾气丸为主治疗DN46例临床观察[J].北京中医杂志,2004;26(5):40.
    82.魏连波.陈旭红.氯沙坦配合加味六味地黄汤对老年糖尿病肾病早期尿微量白蛋白排泄率的影响[J].中国中西医结合肾病杂志,2000;1(2):85-87.
    83.尹义辉,牟淑敏.程益春治疗糖尿病肾病经验.山东中医药大学学报,2002;26(4):283-284.
    84.毛振营.五苓散合血府逐瘀汤治疗糖尿病肾病160例.光明中医,2003;18(6):9-10.
    85.冯志海.吕靖中教授经方治疗消渴及兼证的经验.光明中医,2006;21(7):27-29.
    86.曹晖,杨丽英,潘文波,等.补阳还五汤治疗早期糖尿病肾病蛋白尿58例.河北中医,2005,27(10):746-747.
    87.陈艳,卫兰香,马茂之等.加味参芪地黄汤对糖尿病肾病蛋白含量的影响[J].中医杂志,1995;(6):347.
    88.林则杰.“气立、升降”理论治疗糖尿病肾病32例.新中医,1999;31(9):26-28.
    89.庞晓英,高继宁,钱雅玉.玉液汤治疗糖尿病肾病所致慢性肾功能不全临床观察.上海中医药杂志,2006;40(9):43-44.
    90.张宏宇.中西医结合治疗早期糖尿病肾病31例临床观察[J].实用诊断与治疗杂志,2004;18(4):296-297.
    91.童蓓丽,仇年芳,王瑞芳.中西医结合治疗早期糖尿病肾病59例总结[J].湖南中医杂志,2006;22(4):11.
    92.范冠杰,唐咸玉,李双蕾,等.益气养阴活血法对早期糖尿病肾病患者一氧化氮的影响. 中国中西医结合结合杂志,2002;22(12):912.
    93.王悦芳,苑彦娟,王彦刚.健脾补肾化瘀通络法治疗糖尿病肾病58例疗效分析.中华实用中西医结合杂志,2003;3(16):782-783.
    94.李波.自拟糖肾安治疗糖尿病肾病24例[J].辽宁中医杂志,1999;26(9):411.
    95.贺学林.陈以平教授治疗DN临床经验[J].中国中西医结合肾病杂志,2000;1(1):7-8.
    96.何立华.芪参饮治疗IDN56例[J].中华实用中西医杂志,2003;3(16):47.
    97.刘承琴,赵建群.滋肾健脾化瘀方治疗早期糖尿病肾病41例.山东中医杂志,2003;22(11):648-649.
    98.杨东威,杨智海,胡文志.中西医结合治疗DN50例[J].湖北中医杂志,2001;23(10):28.
    99.南征,孙新宇,赵贤俊,等.益肾解毒汤治疗DN的临床研究[J].北京中医杂志,2002;21(6):326.
    100.高彦彬,吕仁和,王秀琴,等.糖肾宁治疗DN的临床研究[J].中医杂志,1997;38(2):96-99.
    101.施兰英.活血化瘀治疗糖尿病肾病42例.南京中医药大学学报,2003;19(6):380.
    102.周旭生.加减藿朴夏苓汤治疗DN32例[J].吉林中医药,2003;23(2):16.
    103.盛笑梅.中西医结合治疗DN56例[J].北京中医药大学学报,1999;22(4):65-66.
    104.徐德嵩.活血保肾汤对糖尿病肾病早期干预及血液流变学变化的观察[J].中医药学刊,2005;23(3):564.
    105.龚剑华.温阳利水汤合西药治疗糖尿病肾病31例.浙江中医学院学报,2001;25(5):32-4.
    106.肖连坤,杨成,杨集群.活血化瘀利水泻毒法治疗糖尿病肾病32例.吉林中医药,2003;23(11):21.
    107.王红纲,赵振霄.大黄对DN治疗作用的临床研究.北京中医药大学学报,1996;19(5):36-37.
    108.李天庆,崔昕.汉方药治疗DM及其并发症的研究.国外医学.中医中药分册,1997;(1):9.
    109.王慧芳,马骏,陈国庆等.大黄对早期糖尿病肾病患者肾脏血流动力的影响[J].铁道医学,2001;29(5):320.
    110.赵洪军,韩学忠,徐梅,等.大黄治疗IDN32例[J].中国中西医结合杂志,1996;16(7):429.
    111.任建平,胡锡元,施玉华,等.黄芪对DN影响的研究进展[J].湖北中医学院学报,2000;2(3):53.
    112.刘红,张伟,李曙远.黄芪注射液治疗早期2型糖尿病肾病35例[J].山东中医药大学学报,2001;25(3):202-203.
    113.张慧茹,钟成福.黄芪注射液治疗DN35例临床观察[J].临床荟萃,1998;33(7):55.
    114.张秀峰,高慧燕.黄芪治疗IDN疗效观察[J].上海医药,1999;20(11):20.
    115.唐骅,张国超.黄芪注射液治疗早期糖尿病肾病蛋白尿的临床观察[J].实用医学杂志,1998;14(9):688-689.
    116.史伟,黄立武,唐爱华等.水蛭注射液防治糖尿病肾病作用机理研究[J].山西中医,2001;17(6):53-54.
    117.翁孝钢,王道直,张清贵.川芎嗪治疗糖尿病肾病.新乡医学院学报,1995;12(2):150-152.
    118.唐诗伟,朱红倩,晏永慧,等.川芎嗪治疗2型DN38例观察[J].实用中医药杂志,1999;15(8):3.
    119.石宏志.泽兰对血液流变学影响的研究与进展.中国临床康复,2004;8(34):7776-7777.
    120.国家中医药管理局编.中华本草(下册)[M].上海科学技术出版.1996;1:1654-1656.
    121.李中和,张健明.丹参对糖尿病早期肾病患者血浆内皮素和Ⅳ型胶原的影响.中国综合临床,2002;18(7):621-622.
    122.冯明秀,李英,庞波,等.针灸配合消渴膏穴位帖敷治疗糖尿病309例.中医杂志,1994;35(1):25-26.
    123.郭桂珍.针刺对血糖作用的临床研究.吉林中医药,1990;(3):19.
    124.吉学群,薛莉,于颂华,等.补肾活血针刺法在糖尿病肾病中的应用[J].针灸临床杂志,2005;21(1):43-44.
    125.张涛清.针灸治疗糖尿病疗效及实验观察.中国针灸,1988;8(4):23.
    126.崔建华,罗会新.中药灌肠治疗糖尿病早期肾病30例临床观察[J].甘肃中医,2006;19(8):12-13.
    127.翟文杰,李爱群.中西医结合治疗早期糖尿病肾病68例观察[J].中西医结合,2006;35(9):106.
    128.邓铁涛.略论五脏相关取代五行学说[J].广州中医学学院学报,1988;(2):47.
    129.《灵枢经》[M].北京:人民卫生出版社,1963,75.
    130.《灵枢经》[M].北京:人民卫生出版社,1963,73.
    131.明.张介宾.《类经》[M].北京:人民卫生出版社,1965,729.
    132.清.吴瑭.《温病条辨》[M].北京:中国书店,1994,79.
    133.明.孙文胤.《丹台玉案》[M].上海:上海科学技术出版社,1984,348.
    134.柳长华主编:《陈士铎医学全书》[M].北京:中国中医药出版社,1999,798.
    135.清.汪昂.《医方集解》[M].上海:上海科学技术出版社,1991,145.
    136.清.罗美.《古今名医方论》[M].南京:江苏科学技术出版社,1983,110.
    137.冯世纶,胡希恕讲伤寒杂病论,人民军医出版社,2007,178.
    138.清.钱潢,伤寒溯源集,上海卫生出版社,1957,334.
    139.余荣斋,重订通俗伤寒论,新医书局出版,1956,26.
    140.王庆国等,刘渡舟伤寒论讲稿,人民卫生出版社,2008,338-339.
    141.张延群,韩清.2080例糖尿病患者证型与血糖关系分析[J].中医杂志,1996;37(10):617-619.
    142.罗若茵,吴友忠.试析2型糖尿病证型分布[J].浙江中医学院学报,2003;27(3):15-16.
    143.史学茂,刘玉华,刘学源等.糖尿病患者体外血栓模拟试验的初步观察[J].辽宁中医杂志,1991;18(5):15-17.
    144.李岩,赵雁,黄启福,等.糖尿病肾病络病机制研究[J].中国中医基础医学杂志,2002;8(3):68-70.
    145.广州中医学院伤寒论教研室糖尿病科研小组.加味桃核承气汤对糖尿病患者及糖尿病动物模型的临床及实验研究.内部数据.
    146.张国梁.加味桃核承气汤降糖作用机制的初步探讨[J].中国医药学报,1991;6(2):29-30.
    147.熊曼琪,林安钟,朱章志等.加味桃核承气汤对2型糖尿病大鼠胰岛素抵抗的影响[J].中国中西医结合杂志,1997;17(3):165-166.
    148.熊曼琪.加味桃核承气汤(片)治疗糖尿病的临床疗效观察[J].新中医,1988;20(4):53.
    149.熊曼琪.加味桃核承气汤对糖尿病鼠活体胰腺微循环的影响[J],新疆中医药,1992;(3):9-10.
    150.李惠林,熊曼琪,邓尚平等.加味桃核承气汤对实验性糖尿病大鼠胰高糖素受体的影响[J].中华中医药杂志,1993;(05):52.
    151.苗理平.加味桃核承气汤对糖尿病鼠血糖、血脂水平的影响[J].广州中医学院学报,1989;6(4):233-234.
    152.张国梁.加味桃核承气汤对糖尿病大鼠脂质代谢的影响[J].新中医,1990;(8):53-55.
    153.李赛美,熊曼琪,林安钟等.加味桃核承气汤对糖尿病大鼠冠状动脉结扎致心肌缺血预防作用的研究.广州中医药大学学报,2000;(8):438-440.
    154.李赛美,熊曼琪,林安钟等.不同治法对糖尿病大鼠心脏病变影响的实验研究[J].新中医,1999;31(10):39-41.
    155.熊曼琪,苗理平.加味桃核承气汤对糖尿病鼠肾超微结构的影响[J].中国医药学报,1990;5(5):25-27.
    156.李赛美,储全根,莫伟等.加味桃核承气汤及不同提取物对糖尿病大鼠主动脉弓超微结构的影响[J].广州中医药大学学报,2005;22(2):134-137.
    157.李赛美,王志高,凌佳杰等.加味桃核承气汤含药血清对胰岛素诱导兔血管平滑肌细胞增殖的抑制作用[J].四川中医,2007;25(6):9-11.
    158.李赛美,凌佳杰,王志高等.加味桃核承气汤及其拆方对糖尿病血管病变的体外作用观察[J].广州中医药大学学报,2008;25(1):51-53.
    1. Janssen UI, Phillips AO, Floege J. Rodent models of nephropathy associated with type II diabetes[J]. JNEPHROL.1999; 12:159-172.
    2. Gregory HT, David JN. Recent Insights into Experimental Mouse Models of Diabetic Nephropathy[J]. Nephron Experimental Nephrology.2006; 104:57-62.
    3. 黄松.糖尿病动物模型研究进展[[J].广西医学.2002;24(1):46-48.
    4. 张芳林,李果,刘优萍等.2型搪尿病大鼠模型的建立及其糖代谢特征分析[J].中国实验动物学报.2002;10(1):16-20.
    5. 刘永玉.实验性NIDDM大鼠模型.中华内分泌代谢杂志,1990;6(2):15-18.
    6. 林善锬,吴永贵,余毅,等.苯那普利对糖尿病大鼠肾质p21CIP1蛋白表达的调节及其机制.中华内分泌代谢杂志,1999;25(4):220.
    7. 侯卫国,何立群,朱燕俐.大黄浸膏对糖尿病动物模型的疗效观察.上海中医药杂志,1996;9:封三.
    8. 黄志强.内分泌代谢疾病[M].天津科学技术出版社,2002,330-331.
    9. Taskinen MR, SmithU. Lipid disorders in NIDDM:implications for treatment. Journal of Internal Medicine,1998; 244:361-370.
    10. Barnett AH.Dyslipidaemia in diabetes-AGPguide. Practitioner,2002; 246:120-123.
    11. McGarry JD. Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes,2001; 50(suppl 2):6-7.
    12. Taskinen MR. Diabetic dyslipidaemia:from basic research to clinical practice. Diabetologia,2003; 46:733-743.
    13. Zammit VA, Waterman IJ, Topping D, et al. Insulin stimulation of hepatic Triacylglycerol secretion and the etiology of insulin resistance. J Nutr,2001; 131: 2074-2077.
    14. Garber AJ, Karlsson FO. Treatment of dyslipidemia in diabetes[J]. Endocrino and metabclin North Am,2001; 30:999.
    15. Moorhead J, Chan MK, El-Nahas M, et al. Lipid nephroitoxicity in chronic progressive glomerular and tubulo-interstitial disease[J]. Lancet,1982; 2(8311): 1309-1311.
    16. Moorhead JF. Lipids and progressive kidney disease[J]. Kidney Int Suppl,1991; 31:S35-40.
    17. J Keane WF. The role of lipids in renal decease:future challenges[J]. Kidney Int. Suppl,2000; 59(75):14S27-31.
    18. Attman PO, Alaupovic P, Samuelsson O. Lipoprotein abnormalities as a risk factor for progressive non-diabetic renal disease[J]. Kidney Int Suppl,1999; 71:S14-17.
    19. Fogo AB. Progression and potential regression of glomeruloscle-rosin. Kidney Int, 2001; 59(2):804-819.
    20. Kasiske BL, O'Donnell MP, Schmitz PG, et al. Renal injury of diet-induced hypercholesterolemia in rats[J]. Kidney Int,1990; 37(3):880-891.
    21. Ha H, Roh DD, Kirschenbaum MA, et al. Atherogenic lipopro-reins enhance mesangial cell expression of platelet-derived growth factor:Role of protein tyrosine kinase and cyclic AMP-dependent protein kinase A[J]. J Lab Clin Med,1998; 131: 456-465.
    22. Rovin BH, Tan LC. LDL stimulates mesangial fibronectin production and chemoattractyant expression[J]. Kidney Int,1993; 43:218-225.
    23.苗理平.加味桃核承气汤对糖尿病鼠血糖、血脂水平的影响[J].广州中医学院学报,1989;6(4):233-235.
    24.熊曼琪、梁柳文等,加味桃核承气汤治疗2型糖尿病的临床和实验研究.中国中西医结合杂志1992;12(2):74-76.
    25.熊曼琪、林安钟等,加味桃核承气汤对2型糖尿病大鼠胰岛素抵抗的影响中国中西医结合杂志1997;17(3):165-168.
    26.蒋国彦.实用糖尿病学[M].北京:人民卫生出版社,1996,29.
    27. Matsumae T, Jimi S, Uesugi N, et al. Clinical and morphometrical interrelationships in patients with overt nephropathy induced by non-insulin dependent diabetes mellitus, Nephron,1999; 81(1):41-48.
    28. Hayashi H, Karasawa R, Inn H, et al. An electron microscopic study of glomeruli in Japanese patients with non-insulin dependent diabetes mellitus, Kidney Int,1992; 41(4):749-757.
    1. 房辉,徐刚,寓德民,等.TGF-β1和ECM与糖尿病肾病的关系的实验研究.中国糖尿病杂志,2000;8(4):227-230.
    2. Eng E, Floege J, Young BA, et al. Does extra-cellular matrix expansion in golmerular disease require mesangial cell proliferation.Kidney Int,1994; 45:S45-47.
    3. Wakisaka M, Spiro MJ, Spiro RG. Synthesis of type Ⅵ collagen by cultured glomerular cells and comprison of its regulation by glucose and other factors with that of type Ⅳ collagen. Diabetes,1994; 43:95.
    4. Kitagawa T, Masumi A, Akamatsu Y. Transforming growth factor-β1 stimulates glucose uptake and the expression of glucose transporter mRNA in quiescent Swiss mouse 3 T3 cell. J Biol Chem,1991; 266:18066.
    5. Song Y, Li C, Cai L. Fluvastatin prevents nephropathy likely through suppression of connective tissue growth factor-mediated extra-cellular matrix accumulation[J]. Exper Molec Pathol,2004; 76(1):66-75.
    6. 魏林,王海燕.细胞外基质在人系膜细胞增生性肾小球肾炎中的变化.中华病理杂志,1994;23:7.
    7. Aumailley M. Structure and supramolecular organization of basement membranes. Kidney Int,1995; 47(suppl 49):S4-S7.
    8. 鲁盈,李惊子,郑欣,等.黄芪当归合剂对肾病综合征血清脂谱和肾小球硬化的影响.中国中西医结合杂志,1997;17(7):478-482.
    9. Leehey DJ, Song RH,Alavi N, et al. Decreased degradation enzymes in mesangial cells cultured in high glucose media. Diabetes,1995; 44:929-935.
    10. Strongin AY, et al. Mechanism of cell surface activation of 72KD type Ⅳ collagenase.Isolation of the activated from of the membrane metalloproteinaise. J Biol Chem,1995; 270:5331-8.
    11.何泽.毒损肾络与糖尿病肾病机理研究.北京中医药大学博士研究生学位论文,2001;71.
    1. Takeuchi A. Throckmorton DC, Brogden AP. et al. Periodic high extracellular glucose enhances production of collagen Ⅲ and Ⅳ by mesangial cells. Am J Physiol,1995; 268:13-19.
    2. Ziyadeh FN, Sharma K, Ericken M, et al. Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor-β. J Clin Invest,1994; 93:536-542.
    3. Hoffiman BB, Sharma K, Zhu Y, et al. Transcriptional zctivation of transforming growth factor-β1 in mesangial cell culture by high glucose concentration. Kidney Int, 1998; 54:107-1116.
    4. Wilmer WA,Dixon CL,Herbert C:Chronic exposure of human mesangial cells to high glucose environments activates the p38 MAPK pathway.Kidney Int,2001;60:858-871.
    5. Singh LP, Crook ED:Hexosamine regulation of glucose-mediated laminine synthesis in mesangial cells involves protein kinase A and C. Am J Physiol,2000; 279: F646-F654.
    6. Rocco MV, Chen Y, Goldfarb S, et al. Elevated glucose stimulates TGF-β gene expression and bioactivity in proximal tubule.Kidney Int,41:1992; 107-114.
    7. 熊燕,贾汝汉.肾素-血管紧张素系统在糖尿病肾病发病机制中的新认识.中国中西医结合肾病杂志,2004;5(9):553-555.
    8. 刘红,杨卉.肾素血管紧张素系统与糖尿病肾病.安徽医药,2003;7(2):84-86.
    9. PhilliPs Ml, Gyurko R. In vivo apPlieations of antisense oligonucleotides for peptide research. [J] Regulatory peptides,1995; 59:131-141.
    10. Rincon Choles H, Kasinath BS, Gorin Y, et al. Angiotensin Ⅱ and growth factors in the pathogenesis of diabetic nephropathy. Kindey Int,2002; 82:8-11.
    11. Bakris GL, Re RN.Endothelin modulates angiotensin Ⅱ-inducedmitogenesis of human mesangial cells. Am J Physiol,1993; 264(6 Pt 20):F937.
    12. Ong AC, Jowett TP, Firth JD, et al. An endothelin-1 mediated autocrine growth loop involved in human renal tubular regeneration. Kidney Int,1995; 48:390-401.
    13. Giacchetti G, Sechi LA, Rilli S, et al. The renin-angiotensin-aldosterone system, glucose metabolism and diabetes. Trends Endocrinol M, et al.2005; Apr,16(3): 120-126.
    14. Nguyen G, Delarue F, Burckle C, et al. Pivotal role of the renin/Prorenin receptor in angiotensin Ⅱ production and cellular responses to renin. J Clin Invest,2002; 109(11): 1417-1427.
    15. David JL, Ashok KS, Nahid A, et al. Role of angiotensin Ⅱ in diabetic nephropathy. Kidney Int,2000; 58(s77):s93-s98.
    16. Huang XR, Chen WY, Truong LD, et al. Chymase is upregulated in diabetic nephropathy:implications for an alternative pathway of angiotensin Ⅱ-mediated diabetic renal and vascular disease. J Am Soc Nephrol 2003; 14,1738-1747.
    17.王海燕主编.肾脏病学.北京:人民卫生出版社,第2版,1996,86-96.
    18. Hubert C, Houot AM, Corvol P, et al. Structure of the angiotensin Ⅰ converting enzyme gene:two alternate promoters correspond to evolutionary step of a duplicated gene. J Biol Chem,1991; 266:15377.
    19. Wolf G. New insights into the pathophysiology of diabetic nephropathy:from haemodynamics to molecular pathology. Eur J Clin Invest 2004; 34,785-796.
    20. SinghR, SinghAK, Alavi N, et al. Mechanism of increased angiotensin Ⅱ levels in glomerular mesangial cells cultured in high glucose. J Am Soc Nephrol,2003; 14:873-880.
    21. Redde AS, Ramamurthi R, Miller M, et al. Enalapril improves albuminuria by preventing glomerular loss of heparin sulfate in diabetic rats. Biochem Med Metab Biol,1991; 45:119.
    22. Wolf G, Ziyabeh FN. The role angiotensin Ⅱ in diabetic nephropa-thy:emphasis on nonhemodynamic mechanisms. Am J Kid Dis,1997; 29:153-163.
    23. Wolf G, Neilson EG. Angiotensin Ⅱ as a renal growth factor. J Am Soc Nephrol,1993; 3:1531.
    24. Egido J. Vasoactive hormones and renal sclerosis. Kidney Int,1996; 49:578-597.
    25. Bianchi S, Bigazzi R, Canpese V. Microalbuminuria in essential hypertension. Am J Kidney Dis,1990; 34:973-995.
    26.龚茜玲.生理学.上海:上海医科大学出版社,1993,第1版:80.
    27.董德长.内科各系统与肾脏.北京:人民卫生出版社,1996年,第2版:36-40.
    28. Jokuni Ichikawa, Rayrnond C,Harris. Angiotensin action in the kidney:Renewed insight into the old hormone.Kidney Int,1991; 40(4):583.
    29.张镜如.生理学.北京:人民卫生出版社,1996,第4版:137-140.
    30. Leehey D J, Singh A K, Alavi N,et al.Role of angiotensin 2 in DN[J]. Kidney Int, 2000; 58:s93-s98.
    31.孙纪新,李兴琴.糖尿病早期患者血浆AngⅡ、TXB2、6-K-PGF1,水平变化.临床荟萃,2000;15(2):78-80.
    32. Thasis F, Wolf G,Assad N, et al. Angiotensinase A gene expression and enzyme activity in isolated glomeruli of diabetic rats. Diabetologia,1996; 39:275-280.
    33.曹永风.血管紧张素AngⅡ的综合效应.心血管病学进展,1998;19(1):58.
    1. Pasche B. Role of tansforming growth factor beta in cancer. J Cell Physiol,2001; 186(2):153-168.
    2. Sharma K, Ziyadeh FN. Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator[J]. Diabetes,1995; 44:1139-1146.
    3. Sharm K, Ziyadeh FN, Alzahabi B, et al. Increased renal production of transforming growth factor-beta 1 in patients with type Ⅱ diabetes. Diabetes,1997; 46:854-859.
    4. Zhou AY, Yu L, Li JZ, et al. renal protective effects of blocking the intra-renal Rennin angiotensin system:angiotenin Ⅱ type Ⅰ receptor antagonist compared with Angiotensin -converting enzyme inhibitor. Hypertens Res,2000; 23:391-397.
    5. Korpinen E, Teppo AM, Hukkanen, et al. Urinary transofrming growth factor-beta 1 and alphal-microglobulin in children and adolescents with type 1 diabetes [J]. Dibaetes Care,2000; 23(5):664-672.
    6. Rivarola EW, Moyses-Neto M, Dantas M, et al. Transforming growth factor beta activity in urine of patients with type2 diabetes and diabetic nephropathy[J]. Braz J Med Biol Res,1999; 32:1525-1528.
    7. Bottinger EP, Bitzer M. TGF-β Signaling in renal disease. J Am Soc Nephrol,2002; 1310:2600-2610.
    8. Yakymovyeh I, Ten Dijke P,Heldin CH, et al. Regulation of Smad signaling by protein kinase C[J]. FASEB J,2001; 15:553-555.
    9. Ohashi S, Abe H, Takahashi T, et al. Advanced glycation end products increase collagen specific chaperone protein in mouse diabetic nephropathy. J Biol Chem,2004; 279(19):9816-823.
    10. Morrisey K, Williams JD, Phillips AO:Modulation of proximal tubular cell TGF-β1 production by insulin. J Am Soc Nephral,1999; 10:554.
    11. Rister BL, Cortes P, Zhao X, et al. Intraglomerular pressure and mesangial stretching stimulate extracellular matrix formation in the rat. J Clin Invest,1992; 90:1932-43.
    12. Leehey DJ, Singh AK, Alavei N, et al. Role of angiotensin Ⅱ in diabetic nephropathy. Kidney Int Suppl,2000; 77:S93-98.
    13. Shonklacd ST, Scholey TW. Expression of transforming growth factor-β1 during diabetic renal hypertrophy. Kidney Int,1994; 46(2):430-442.
    14. Hill C. Transforming growth faetor-beta2 antibody attenuated fibrosis in the Experimental diabetic rat kidney. J Endoerinol,2001; 170:647.
    15. Gabriella Gruden, Silvia Zonca, Anthea Hayward, et al. Mechanical stretch-induced fibronectin and transforming growth factor-betal production in human mesangial cells is p38 mitogen-activated protein kinase-dependent. Diabetes,2000; 49:655-61.
    16. Fraser O, Wake field L, Phillips A. Independent regulation of transforming growth factor-beta 1 transcription and translation by glucose and platelet growth factors. AmJ Pathol,2002; 161(3):1039-1049.
    17. Poncelet AC. Schnaper HW. Regulation of human mesangial cell collagen expression by transforming growth factor-beta 1[J]. Am J Physiol,1998; 275(3Pt2):F458-466.
    18.刘志红,黎磊石.探索糖尿病肾病防治的新途径[J].肾脏病与透析肾移植杂志,2002;11(1):1221.
    19. Liu YH. Epithelial to mesenchymal transition in renal fibrogenesis:pathologic significance, molecular mechanism, and therapeutic intervention[J]. J Am Soc Nephrol, 2004;15:1-12.
    20. Saka Y, Fujiwara Y, Ueda N, et al. Glomerulosclerosis induced by in vivo transforming growth factor-β or platelet-derived growth factor gene into the rat kidney. J Clin Invest,1993; 92(6):2597-2601.
    21. Isono M, Mogyorosi A, Dongchel Han, et al. Stimulation of TGF-β type Ⅱ receptor by high glueose in mouse mesangial cells and in diabetic kidney[J]. Am J Phydilo (Renal Physiol).2000; 278(1):F830.
    22. Yung S, Lee CY, Zhang Q, et al. Elevated glucose induction of significance of the dosage adjustment of octreotide in the treatment of acutepancreatitis of moderate severity[J]. Hepatogastroenterology,2001:48(42):1754-1757.
    23. Zhang Z, Zhang Y, Ning G,et al. Combination therapy with AT1 blocker and vitamin D analog markedly ameliorates diabetic nephropathy:blockade of compensatory renin increase[J].Proc Natl Acad Sci USA,2008; 105(41):15896-159011.
    24. Weigert C, Brodbeck K, Klopfer K, et al. Angiotensin Ⅱ induces human TGF-beta 1 promoter activation:similarity to hyperglycaemia[J]. Diabetologia,2002; Jun,45(6): 890-898.
    25. Leehey DJ, Singh AK, A laviN. et al. Role of angiotensin Ⅱ in diabetic nephropathy [J]. Kidney Int Suppl,2000; 77:S93-98.
    26. Burns KD. Angiotensin Ⅱ and its receptors in the diabetic kidney [J]. Am J Kidney Dis, 2000; 36(3):449-467.
    27. Wolf G,Neilson EG. Angiotensin Ⅱ as a renal growth factor [J].Am.Soc. Nephrol. 1993; 3(9):1531-1540.
    28. Mezzano SA, Ruiz-Ortega M, Jesus Egido. Angiotensin Ⅱ and Renal Fibrosis [J]. Hypertension,2001; 38:635.
    29. Kagami S, Border WA, Miller DE, et al. Angiotensin Ⅱ stimulates extracellular matrix protein synthesis through induction of trans-forming growth factor-β expression in rat glomerular mesangial cells. J Clin Invest,1994; 93:2431.
    30. Junaid A, Rosenberyg ME, Hosteiter TH. Interaction of angiotensin Ⅱ (A Ⅱ) and transforming growth factor beta(TGF-β)in the remnant kidney. (abstract) J Am J Soc Nephrol,1993; 4:772.
    31. Anderson S, Jung FF, Ingelfinger JR. Renal rennin-angiotesin system in diabetes: functional, immune-histochemical, and molecular biological correlations. Am J Physiol,1993; 265:F477.
    32. New J.P, Canavan A, Flyvbierg G, et al. Renal enlargement and insulin-like growth factor-1 accumulation in the wistar rat model of experimental diabetes is not prevented by angiotensin converting engyme inhibition. Diabetologia,1996; 39:166.
    33. Fraser D, Brunskill N, Ito T, et al. Long-term exposure of proximal tubular epithelial cells to glucose induces transforming growth factor-β1 synthesis via an Autocrine PDGF loop. American journal of Pathology,2003; 163:2565-2574.
    34. Ina K, Kitamura H, Tat sukawa S, et al. Transformation of interstitial fibroblasts and tubulointer stitial fibrosis in diabetic nephropathy. Med Electron Microsc,2002; 35: 87-96.
    35. Lam S, van der Geest RN, Verhagen NA, et al. Secretion of collagen type IV by human Renal fibroblasts is increased by high glucose via a TGF-beta-independent pathway. Nephrol Dia Transplant,2004; 19:1694-1701.
    36. Hoshi S, Shu Y, Yoshida F, et al. Podocyte injury promotes progressive nephropathy in zucker diabetic fatty rats[J]. Lab Invest,2002; 82(1):25-35.
    37. Li J H, Zhu H J, Huang X R, et al. Smad 7 inhibit s fibrotic effect of TGF-beta on renal tubular epithelial cells by blocking Smad 2 activation[J]. J Am Soc Nephrol, 2002; 13(6):464-472.
    38.王凯,李海浪,邓红.肾小球细胞与糖尿病肾病.东南大学学报,2003;22(2):125-128.
    1. Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature.1980; 284(5751):17-22.
    2. Catharine I, Whiteside, John A. Mesangial cell protein kinase C isozyme activation in the diabetic milieu [J]. Am J Physiol Renal Physiol.2002; 282:975-980.
    3. Koya D. King GI. Protein kinase C activation and the development of diabetic complications. Diabetes,1998; 47:859-866.
    4. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science,1992; 258:607.
    5. Lee MW, Severson DL. Signal transduction in vascular smooth muscle:diacylglycerol second messengers and PKC action. Am J physiol,1994; 2675:C659.
    6. Newton A. Protein kinase C:structure, function and regulation[J]. J Biol Chem,1995; 278 (48):284-295.
    7. Evans VG. Multiple pathways to apoptosis. Cell Biol Inter,1993; 17:461.
    8. King GL, Shiba T, Oliver J, et al. Cellular and molecular abnormalities in the vascular endothelium of diabetes mellitus. Annu Rev Med,1994; 45:179.
    9. Inoguchi T, Battan R, Handler E, et al. Preferential eleveation of protein kinase C isoform βⅡ and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet transplantation. Proc Natl Acad Sci USA,1992;89:1059-11063.
    10. Ishii H, Jirousek MR, Koya D, et al. Amelioration of vascuiar dysfunction in diabetic rats by an oral PKC beta inhicitor. [J]. Science,1996; 272(5262):728-733.
    11. Idris I, Gray S, Donnelly R. Protein kinase C activation:isozyme specific effects on metabolism and cardiovascular complications in diabetes. [J]. Diabetologia,2001; 44(6):659-73.
    12. Craven PA, De Rubertis FR. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats. Possible mediation by glucose[J]. Clin Invest,1998; 83(5): 1667-75.
    13. Craven PA, Davidson CM. Increase in diacylycerol mass in isolated glomeruli by glucose from de novo synthesis of glycerolipids.Diabetes,1990; 39:667.
    14. Webb BL, Hirst SJ, Giembycz MA. Protein kinase C isoenzymes:a review of their structure, regulation and role in regulating airways smooth muscle tone and mitogenesis. Br J Pharmacology,2000; 130(7):1433-1452.
    15. Idris I, Gray S, Donnelly R. Protein kinase C activation:sozyme-specific effects on metabolism and cardiovascular complications in diabetes. Diabetologia 2001; 44(6): 657-8.
    16. Grewal J S, Mukhin YV, Garnovskaya MN, et al. Serotonin 5-HT2A receptor induces TGF-β1 expression in mesangial cells via ERK:proliferative and fibrotic signals. Am J Physiol, 1999; 276(6):922-930.
    17. Haneda M, Kikkawa R, Sugimoto T, et al. Abnormalities in protein kinase C and MAP Kinase caseade in mesangial cells cultured under high glueose conditions. J Diabetes Complications,1995; 9(4),246-248.
    18. Fukui M, Nakamura T, Ebihara I. ECM gene expression and its modulation by insulin in diabetic rats. Diabetes,1992; 41:1520.
    19. Studer RK,Craven PA,Derubertis FR.Role for protein kinase C in the mediation of increased fibronectin by mesangial cells grown in high-glucose medium. Diabetes, 1993; 42:188.
    20. Sharma K, Jin Y, Guo J. Neutralization of TGF-β antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabete mice. Diabetes,1996; 45:522.
    21. Koya D,King G I. Protein kinase C activation and the development of diabetic complication. [J]. Diabetes,1998; 47:857-866.
    22. Xia P, Kramer RM, King GL. Identification of the mechanism for the inhibition of Na, K-ATPase by hyperglycemia involving activation of protein kinase C and cytolic phospholipase A2. J Clin Invest,1995; 96:733.
    23. Koya D,Jirousek MR, LinYW, et al. Characterization of protein kinase Cpisoform activation on the gene expression of transforming growth factor-P,extra-cellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Invest 1997; 100(1):115-126.
    24.张立斌,张惠,刘志民,等.褪黑素对糖尿病大鼠肾脏氧化应激的抑制作用.中华内分泌代谢杂志,2003;19(1):60-62.
    25. Boscoboinik D, Szewczyk A, Hensey C, et al. Inhibition of cell proliferation by a tocopherol. Role of protein kinase C. J Biol Chem,1991; 266:6188-6194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700