α-Si_3N_4陶瓷的液相烧结及其介电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
放电等离子烧结作为一种制备材料的新技术,可以对多种新型材料实现快速烧结,并可最大限度地保持材料原有的特性。本文即是利用SPS这一特点,分别以MgO、MgO与SiO_2、MgO与Al_2O_3、MgO与AlPO_4作为烧结助剂和复合烧结助剂,于烧结温度不高于1500℃,制备了系列α-Si_3N_4陶瓷,对其物相、显微结构、力学性能和介电性能进行测试分析,重点研究了SPS条件下,α-Si_3N_4陶瓷的液相烧结过程和致密化机理,以及密度的调控与其介电性能之间的关系。
     研究表明,MgO能有效促进α-Si_3N_4陶瓷致密化进程,烧结温度1500℃时,4%的加入量,致密度可达96%,但烧结的起始温度为1350℃:MgO与SiO_2复合烧结助剂进一步降低了氮化硅材料的起始烧结温度(1150℃);MgO与Al_2O_3复合烧结助剂,烧结温度1450℃时,烧结样致密度可达96%以上,材料开始烧结温度为1200℃,致密化主要在1400℃-1450℃完成;MgO和AlPO_4复合烧结助剂不但降低了氮化硅的起始烧结温度(1100℃),而且能使α-Si_3N_4在较宽的温度范围内实现烧结,可通过对烧结条件和A1PO_4加入量调控烧结样的致密度。
     烧结样的XRD和SEM测试和分析表明,主晶相仍为α-Si_3N_4,晶粒没有或几乎没有长大,表明SPS快速烧结技术有助于抑制晶粒的长大,实现材料的细晶化,保持粉料原有的主物相。
     SPS工艺条件下,氮化硅材料的致密化主要是由于颗粒的重排实现的,可分为颗粒的初始重排,颗粒的扩展重排和气孔闭合阶段,液相的粘性流动、液相粘度的迅速降低、晶界的滑动及气孔的排除是促进烧结体致密化的主要因素,但各阶段侧重点有所不同。
     烧结样的力学性能主要取决于其相对密度。以MgO与AlPO_4作复合烧结助剂,可以显著提高低致密度烧结体的力学性能,当材料的致密度为631.61%时,材料的抗弯强度仍然可达89MPa以上。
     对材料的介电性能测试分析表明,材料的介电常数介于4.5~8.5之间,材料的致密度达至一定程度(93%以上)后,烧结助剂的种类和含量的变化,对介电常数的影响不大,介电常数基本上维持为一定值;材料的介电损耗介于0.001~0.03之间,它受材料致密度的影响较大,对烧结助剂的种类和含量较为敏感,AlPO_4的加入可显著降低烧结样的介电损耗。
As one of the novel techniques for fabricating materials, Spark Plasma Sintering (SPS) could finish rapid sintering for diverse materials and preserve the characteristic to the best extent. In light of this advantage, in this work, a series of α-Si_3N_4 ceramics were prepared below 1500℃ with MgO, MgO&SiO_2, MgO&Al_2O_3, MgO&AlPO_4 as the sintering aid respectively. Phase composition, microstructure, mechanical property and dielectric performance were explored, and the emphasis was focused mainly on the liquid sintering process and densification mechanism of α-Si_3N_4, and the dependence of dielectric property on density.It is found that MgO can effectively help to the densification of α-Si_3N_4 at 1500 ℃, with 4wt% of MgO, the relative density reaches 96%, but the starting sintering temperature is as high as 1350℃ with MgO&SiO_2 as mixed sintering aid, the starting sintering temperature is reduced to 1150℃; when using MgO& Al_2O_3 as the sintering aid, at 1450℃ , the relative density could be above 96% and the starting sintering temperature is around 1200℃. the densification process finishes between 1400-1450℃. the mixed sintering aid MgO&AlPO_4 not only brings down the starting sintering temperature (~1100℃), but also enables sintering to be conducted in a wider temperature range, and the relative density could be tuned by sintering condition and content of AlPO_4.XRD(X-Ray Diffraction) and SEM(Scanning Electron Microscopy) indicate that the major phase is α-Si_3N_4 and grain fails to grow any larger, which prove that SPS helps to prevent the grain from growing, preserve the main phase and realize the downsize of grain.In SPS process, the densification of Si_3N_4 is caused by the realigning of grains, which could be cut into the following steps: the initial realigning, the extensive realigning and elimination of closed pores. The liquid viscosity flowing, the quick decrease of liquid viscosity, the slip of grain boundary and vanish of pores are main contributors to densification, whereas the role of each of them differs in each step.
    
    The mechanical property relies on the relative density. The mixed sintering aid MgO&AlPO_4 can enhance the strength of sintered samples with a low density. Although the relative density is as low as 63.61%, the bending strength stays above 89MPa.The dielectric constant ranges 4.5~8.5. As long as the density is high to certain extent(e.g. 93%), the dielectric constant tends to certain value and the species of sintering aid and its content difference influences little on the dielectric constant. The dielectric loss varies from 0.001 to 0.03, which is sensitive to the relative density, sintering aid and its content. The addition of AlPO_4 remarkably reduces the dielectric loss of the sintered sample.
引文
[1] 瑞松,季惠明,蔡舒等.工程结构陶瓷.天津:天津大学出版社,2002.
    [2] 宇田川重和,柳田博明,须腾仪一.新型无机硅化合物(基础与应用),钱均,安时天,张中译.北京:中国建筑工业出版社,1989:160 - 205.
    [3] E. Guge, G. Woetting. Materials selection for ceramic compinents in automobiles. Industrial Ceramic, 1999, 19(3) : 196.
    [4] Frederick H.S. , Juris V. , In Inst of Technol. Controlled Density Silicon Nitride Material. Processing of the 16th symposium. On Electromagnetic Windows[C], Atlanta, Ga, USA : Georgia Institute of Technology, 1982 : 81 - 86.
    [5] Wang C M, Pan X Q, Ruhlw M, et al. Silicon nitride crystal structure and observations of lattice defects. J Mater Sci, 1996, 31 : 5281 - 5298.
    [6] 江东亮.精细陶瓷材料.北京:中国物资出版社,2000,87.
    [7] Wang C. M, Pan X. Q, Ruhlw M, Riley EL and Mitomo M. Silicon nitride crystal structure and observation of lattice defects. J. Mater. Sci. , 1996, 31 : 5281 ~ 5298.
    [8] Priest H. F, Burus F. C, Priest G. L and Skaar E. C. Oxygen content of alpha silicon nitride. J. Am. Ceram. Soc. 1973, 7 : 395 ~ 399.
    [9] Wang C. M. Fine structure features in α - silicon nitride powder particles and their implications. J. Am. Ceram. Soc. 1995, 78 : 3393 ~ 3396.
    [10] 王华彬,张学忠,韩杰才等.自蔓延高温合成氮化硅的生长机理.材料科学与工艺,2001,9(1):64 ~ 66.
    [11] Heinrich J, Henn N, Bohmer M. The pressure dependence of microstructure and mechanical properties of hot isostatically pressed Si_3N_4. Mater. Sci. Eng, 1985, 71 : 131 ~ 136.
    [12] 杨海涛,汤宇凌,徐润泽等.氮化硅陶瓷烧结过程中的致密化与相变.中国有色金属学报,1996,6(4):150 - 153.
    [13] 王零森编著.特种陶瓷.中南工业大学出版社,1994.
    [14] 李世普.特种陶瓷工艺学.武汉工业大学出版社.
    [15] [日]宗保重行编.池文俊译.近代陶瓷.上海:同济大学出版社,1988.
    [16] 郭瑞松,蔡舒,季惠明等.工程结构陶瓷.天津大学出版社,2002.
    [17] 闫宏.氮化硅陶瓷及其制备工艺.中国建材,1996,(9):43 - 45.
    [18] 材料科学与技术丛书.R.W卡恩,P.哈森,E.J.克雷默主编.陶瓷工艺(第二部分)[英]理查德,J.布鲁克主编.清华大学新型陶瓷与精细加工国家重点实验室译.科学出版社,1999:90 - 104.
    [19] 祝昌化,将俊,高玲,杨海涛.氮化硅陶瓷的制备及进展.山东陶瓷,2001,24(3): 12—15.
    
    [20] Pyzik A. J and Carrou D.E Technology of Self - Reinforced Silicon Nitride, Ann. Rev.Mater.Sci. , 1994, 24 : 189 - 212.
    [21] Lai K.R and Tien T.Y. Kinetics ofβ - Si_3N_4 Grain Growth in Si_3N_4 Ceramic Sintered under High Nitrogen Pressure. J.Am.Ceram.Soc. , 1993, 76 : 91 - 96.
    [22] M.Mitomo. J.Mater.Sci. , 11(1976) : 1103.
    [23] R.E.Loehman, etal. J.Am.Ceram.Soc. , 1980, 63(3 - 4) : 144.
    [24] W.A.Sanders, etal. J.Am.Ceram.Soc. , 1985, 68(7) : C - 160.
    [25] Daniel Suttor, etal. J.Am.Ceram.Soc. , 1992, 75(5) : 1063.
    [26] Goto Y and Thamas G. Phase Transformation and Micro - structural Changes of Si_3N_4 During Sintering. J.Mater. Sci. , 1995, 30 : 21 - 94.
    [27] 徐友仁,黄莉萍,符锡仁,严东生.添加稀土氧化物的热压氮化硅陶瓷.中国科学,1996,11:120—126.
    [28] Yoon S.Y, Alcatsu T and Uasuda E. The Microstructural and Geep Deformation of Hotpressed Si_3N_4 With Different Amounts of Sinter Additives. J.Mater.Res. , 1996, 11 : 120 - 126.
    [29] D.L. Johnson. Ceramic International. 1991, 172 : 95 - 300.
    [30] S.H.Risbud, C.H.Shan. Materials Science and Engineering. 1995, A204 : 146 - 151.
    [31] H.Su, D.L.Johnson. Journal of the American Ceramic Society. 1996, 79 : 3199 - 3201.
    [32] J.Hong, L.Gao, S.D.D.L.Torre, K.Miyamoto, H.Miyamoto. Materials Letters. 2000, 43 : 27 - 31.
    [33] C.H.Shan, S.H.Risbud. Materials Science and Engineering. 1994, B26 : 55 - 60.
    [34] L.Gao, H.Z.Wang, J.S.Hong, H.Miyamoto, K.Miyamoto, Y.Nishikawa, S.D.de la Torre. Nanostructured Materials. 1999, 11 : 43 - 49.
    [35] 傅恒志,朱明,杨尚勤.空间技术与材料科学.北京:清华大学出版社,2000,37—40.
    [36] 黎义,李建保,张大海,敖明.航天透波多功能复合材料的介电性能分析.宇航材料工艺,2001,6:4—9.
    [37] Hench L L, Dove D B. Physics of Electronic Ceramics. Marcel Dekker, Inc. , New York, 1971 : 120 - 124.
    [38] 宋银锁.高速战术导弹天线罩材料综述.航空兵器,2001:42—44.
    [39] J. Barta, M. Manele and R. Fisher. Preparation and Properties of Silicon Nitride for Radome Applications. Processing of the 16th symposium on Electromagnetic Windows[C], Atlanta, Ga, USA : Georgia Institute of Technology, 1982 : 87 - 91.
    [40] 张伟儒,王重海,刘建等.高性能透波Si_3N_4 - BN基陶瓷复合材料的研究.硅酸盐通报,2003,3:3—6.
    [41] 郭文利,徐廷献,李爱华.纳米氮化硅制备天线罩材料介电性能的研究.硅酸盐学报,2003,31(7):698—701.
    
    [42] 黄莉萍,薛文龙,李敏中.添加氧化镁的热压氮化硅制备工艺和性能研究.硅酸盐学报,1979,7(4):346—354.
    [43] P. Popper. Special ceramics. 1970, 5 : 377.
    [44] W.Kingery.清华大学译.陶瓷导论.中国建筑工业出版社,1987:286.
    [45] Lewis, M. H. , Bhatti, A. R. , Lumby, R. J. & North, B. The microstructure of sintered silicon - aluminum - oxygen - nitrogen ceramics. Journal of Materials Science, 1980, 15 : 103 - 130.
    [46] Hampshire, S. & Jack, K. H. Densification and transformation mechanisms in nitrogen ceramics. NATO ASI Series, Series E : Applied Sciences, 1983, 65 : 225 - 30.
    [47] Bowen, L. J. , Carruthers, T. G. & Brook, R. J. Hot - pressing of silicon nitride with yttrium oxide and lithium oxide as additives. Journal of the American Ceramic Society 61, 335 - 9 (1978).
    [48] Bowen, L. J. , Weston, R. J. , Carruthers, T. G. & Brook, R. J. Mechanisms of densification during the pressure sintering of α - silicon nitride. Adv. Ceram. Process. Proc. Int. Meet. Mod. Ceram. Technol. 3rd, 1978, 162 : 5.
    [49] Peng Hong. Spark Plasma Sintering of Si3N4 - Based Ceramics. Department of Inorganic Chemistry, Stockholm University, 2004.
    [50] 周玉.陶瓷材料学.哈尔滨工业大学出版社,1995:342.
    [51] R. L. Coble and W. D. Kingery. J. Am. Ceram. Soc. 1956, 39 : 377.
    [52] J.D. Walton. J. Am. Ceram. Soc Bull. 1974, 53 : 255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700