R134a在卧式螺旋管内的两相流动与传热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋管因其具有传热效率高、结构紧凑和加工制作方便等优点,在高效蒸汽发生器和冷却器、核反应堆、电站锅炉、船舶动力、石油化工、航天航空、微电子器件冷却、先进燃料电池系统冷却、食品制药、以及制冷与低温技术等领域得到了非常广泛的应用。
     螺旋管内的两相流与传热由于离心力和二次流的作用而比直管内的要复杂的多,其水动力学和传热特性与机理研究是当前两相流与传热领域的重要课题之一。流体在卧式螺旋管内流动方向的连续变化使得作用在流体上的重力和离心力的大小、方向和作用机制都不断发生变化,致使其两相流与传热现象更为复杂。已有卧式螺旋管内两相流与传热的研究大多是以空气—水或水—水蒸汽为工质的,而对环境友好的新制冷剂R134a在卧式螺旋管内的两相流与传热特性与机理的研究却鲜有报道。因此,本文的主要目的是在设计建设两相流与传热实验台基础上,对R134a在卧式螺旋管内流动沸腾的流型、阻力与传热特性进行系统的研究,建立流动与传热过程的流型图,得到沸腾过程中管壁温度的变化特性,发展流动阻力与传热系数计算的经验关联式,并对卧式螺旋管内的凝结传热特性进行研究。
     利用透明螺旋管实验段对流动沸腾过程的流型进行了可视化研究,并对各种流型的形成及其转变特性进行了机理分析。在得到了文献中常见的泡状流、弹状流或塞状流、分层流、波状分层流、块状流以及环状流外,还观察到了两种新流型,本文分别称之为“波环状流型”和“超大气弹流型”。波环状流型出现在较高质量流速、低干度条件下上升段中波状分层流向环状流之间的过渡过程:超大气弹流则出现在相同条件下下降段中分层流和环状流之间的过渡过程。由于卧式螺旋管的上升段和下降段之间流型存在较大的差别,因此,基于实验数据和Kattan流型图,分别发展了R134a卧式螺旋管内流动沸腾上升段和下降段的流型图。
     对卧式螺旋管内的流动沸腾阻力特性进行了研究,得到了工质的干度、质量流速和压力等参数对两相摩擦阻力压降系数φ_(10)~2的影响关系。系统压力和工质干度对φ_(10)~2的影响比较明显,φ_(10)~2随着干度的增加而增加,随着压力的增加而减小。质量流速对φ_(10)~2也有一定的影响,φ_(10)~2随质量流速的增加稍有增加。通过实验数据的回归分析得到了流动沸腾摩擦阻力压降的计算关联式,最大偏差为19.7%,有95.3%的实验数据分布在拟合公式的±15%误差范围内。
     对卧式螺旋管内流动沸腾的壁温分布特性进行了研究与机理分析,得出了卧式螺旋管沿管长和横截面圆周方向的壁温分布规律。螺旋管壁面温度沿管长呈逐渐降低的趋势,沿横截面圆周方向,最外侧壁温最低,最内侧壁温最高。而且在环状流区域,螺旋管顶部截面的内外侧壁面之间的温差比底部截面的内外侧温差要大。
     对卧式螺旋管内流动沸腾的传热特性进行了系统的研究和机理分析,得出了局部传热系数沿管长的变化规律,获得了工质的干度、质量流速、压力以及热流密度和螺旋管结构等参数对局部传热系数的影响关系。沸腾传热系数沿管长总体呈逐渐升高的趋势,传热系数随着干度、热流密度和质量流速的增加而增加,低干度区质量流速对传热系数的影响较小,随着干度的增加质量流速对传热系数的影响愈加显著;在高热流密度、小质量流速的条件下,高干度区传热出现恶化,传热系数有所减小;系统压力和螺旋管曲率对传热系数的影响不大,传热系数随系统压力和曲率的增大稍有增加。通过对实验数据的回归分析,发展了本实验参数范围内R134a卧式螺旋管内流动沸腾传热系数的计算关联式,最大偏差为22.1%,有90.3%的实验数据分布在拟合公式的±15%误差范围内。
     对卧式螺旋管内的凝结传热特性进行了研究,获得了工质的干度、质量流速和冷凝温度对平均凝结传热系数的影响关系。工质的干度和质量流速对平均凝结传热系数的影响较大,传热系数随着干度和质量流速的增加而增加;低干度区质量流速对传热系数的影响较小,随着干度的增加,质量流速对传热系数的影响愈加显著:螺旋管与直管内凝结传热特性的比较表明,螺旋管的平均凝结传热系数比直管的要大,低干度、小质量流速时螺旋管的凝结传热效果更好。
     总之,本文在R134a卧式螺旋管内的两相流与传热的流型、流动阻力和沸腾传热特性等方面都取得了具有一定创新性的研究成果,为制冷空调领域已有设备的更新改造和新设备的开发设计提供了急需的基础数据和设计依据,为新型螺旋管传热器的设计开发奠定了基础。
Helical pipes are widely used in a variety of practical applications,such as in steam generators and coolers,nuclear reactors,power plant boilers,ship power equipment,petrochemical industry,aviation electronic device cooling,advanced cooling system for fuel cells,food and pharmaceutical,as well as refrigeration and cryogenics,due to their high efficiency in heat transfer,compact in volume,and easiness in manufacturing.
     Since the centrifugal forces and the secondary flow resulted from the curved structure,the two-phase flow and heat transfer in helical pipes is much more complex than that in the straight pipes.As a result,the two-phase flow and heat transfer in helical pipes is still an unsolved important problem in the two-phase flow area. Because the magnitude,direction,and working mechanism of the gravitational and centrifugal forces continuously vary due to the continuous variation of flow directions in the horizontal helical pipes,the two-phase flow and heat transfer in the straight helical pipe is much more complex than that in the vertical helical pipes.To date, most of the research activities have been conducted on the gas-water and water-steam two-phase flows in the horizontal helical pipes,not much effort has been devoted to the two-phase flow and heat transfer characteristics and mechanism of environmentally friendly refrigeration of R134a in the horizontal helical pipes. Therefore,the primary objective of this thesis is to establish a new experimental setup for investigating the two-phase flow and heat transfer characteristics in the horizontal helical pipe.The visualization experiment is performed for developing the flow pattern figures.The two-phase flow and boiling heat transfer experiments for R134a in the horizontal helical pipe are conducted for determining the flow frictional pressure drops and boiling heat transfer characteristics,and new correlations for predicting the frictional pressure drops and boiling heat transfer characteristics for R134a are developed based on the obtained experimental data.In addition,the condensation heat transfer characteristics for R134a in the horizontal helical pipe is experimentally determined.
     The flow patterns for two-phase flow in the horizontal helical pipe are obtained through visualization experiment and the mechanism for the flow pattern forming and change features are analyzed.Two new flow patterns,which are tentatively named the "wave annular flow" and "super slug flow ",are observed,in addition to the well-known flow patterns,such as the bubbly flow,plug slug flow,stratified flow, wave stratified flow,dispersed flow,annular flows.Since the flow patterns are different in the rising section and the declining section,two different flow pattern figures are proposed for the rising and declining sections,respectively.
     The flow frictional pressure drops are experimentally determined for the two-phase flow of R134a in the horizontal helical pipe.The effect of the vapor quality, mass flowrate,and system pressure on the flow frictional factorφ_(10)~2 is obtained.The flow frictional factorφ_(10)~2 increases distinctly with increase in the quality and decreases in the system pressure,and increases lightly with increase in the mass flowrate.The new correlation is developed for predicting the flow frictional factors through the regression analysis on the test data with a maximum deviation of 19.7% under an uncertainty of±15%and the confidence level of 95.3%.
     The wall temperature distribution during flow boiling of R134a in the horizontal helical pipe is experimentally determined along with a mechanism analysis.The experimental result show that the wall temperature continuously decreases along the pipe length during the flow boiling of R134a in the horizontal helical pipe.The highest and lowest temperature occurred at the inner and outside of the cross sections, respectively,and the difference in temperature of the top is higher than that of the bottom cross section.
     The flow boiling heat transfer characteristics of R134a in the straight helical pipe is experimentally determined and the mechanism is analyzed.The effects of vapor quality,mass flowrate,pressure,and heat flux on the local boiling heat transfer coefficients are obtained.The local boiling heat transfer coefficients of R134a in the horizontal helical pipe continuously increases along the pipe length and with increases in quality,heat flux,and mass flowrate.The effect of mass flowrate on the heat transfer coefficients is more distinct in the higher quality range than in the lower quality range.The new correlation is developed for predicting the local boiling heat transfer coefficients through the regression analysis on the test data with a maximum deviation of 22.1%under an uncertainty of±15%and the confidence level of 90.3%.
     The condensation heat transfer characteristics for R134a flowing in the horizontal helical pipe is experimentally investigated.The effect of vapor quality, mass flowrate,and average condensing temperature on the average condensation heat transfer coefficients is determined.The vapor quality and mass flowrate have a distinct effect on the average condensation heat transfer coefficients.The coefficient increases with increase in the mass flowrate,and the effect of mass flowrate on the coefficient increase with increase in the quality.The experimental results show that the average condensation heat transfer coefficient for R134a in the horizontal helical pipe is larger than that in the straight tubes.
     In summary,some innovative research results have been achieved in the flow patterns,flow frictional factors,and heat transfer characteristics for flow boiling of R134a in the horizontal helical pipe.The research work can provide useful knowledge and design basis for retrofitting the present systems and developing new equipment and systems for refrigeration and air-conditioning applications.It also has potential application for the development of innovative helical pipe heat exchangers.
引文
[1]林宗虎,王栋,王树众,林益,多相流的近期工程应用趋向,西安交通大学学报,2001,35(9):886-890。
    [2]鲁钟琪,两相流与沸腾传热,清华大学出版社,2002。
    [3]陈学俊,两相流与传热—原理及应用,原子能出版社,1991。
    [4]林瑞泰,沸腾换热,第1版,科学出版社,1988。
    [5]周强泰,两相流动和热交换,水利电力出版社,1990。
    [6]林宗虎,王树众,王栋,气液两相流和沸腾传热,西安交通大学出版社,2003。
    [7]陈之航,曹柏林,赵在三,气液双相流动和传热,机械工业出版社,1983。
    [8]施明恒,甘永平,马重芳,沸腾和凝结,高等教育出版社,1995。
    [9]郭烈锦,两相与多相流动力学,西安交通大学出版社,2002。
    [10]L.J.Guo,Z.P.Feng,X.J.Chen,An experimental investigation of the frictional pressure drop of steam-water two-phase flow in helical coils,Int.J.Heat Mass Transfer,2001,44:2601-2610.
    [11]韩吉田,B.Yu,H.J.Kong,C.X.Lin,M.A.Ebadian,R-134在三种不同放置方式螺旋管内凝结换热的实验研究,制冷学报,2004,2:1-6。
    [12]B.Yu,J.T.Han,H.J.Kang,et al.,Condensation heat transfer of R-134a flow inside helical pipes at different orientations,Int.Comm.Heat and Mass Transfer,2003,30(6):745-754.
    [13]M.J.Molina and F.S.Rowland,Stratospheric sink of choloromethanes,chlorine atom catalyzed destruction of ozone,Nature,1974,249:810-812.
    [14]G.S.Williams,C.W.Hubbell,G.H.Fenkell,Experiments at Detroit,Mich.,on the effect of curvature upon the flow of water in pipes,Tran.ASCE,1902,47:1-309.
    [15]J.Eustice,Flow of water in curved pipes,Proc.Roy.Soc.Ser.A,1910,84:107-118.
    [16]J.Eustice,Experiments on stream-line motion in curved pipes,Proc.Roy.Soc.Ser.A,1911,85:119-131.
    [17]W.R.Dean,Note on the motion of fluid in a curved pipe,Phil.Mag.J.Science,1927,4:208-223.
    [18]W.R.Dean,The stream-line motion of fluid in a curved pipe,Phil.Mag.J.Science,1928,5: 673-695.
    [19] C.M. White, Streamline flow through cured pipes, Proc. Roy. Soc. Sen A, 1929, 123: 645-663.
    
    [20] H. Ito, Friction factors for turbulent flow in curved pipes, J. Basic Eng. Sen D., 1959, 81: 123-134.
    [21] Y. Mori, W. Nakayama, Study on forced convective heat transfer in curved pipes (2rd Report, Turbulent Region), Int. J. Heat Mass Transfer, 1967, 10(1): 37-59.
    [22] Y. Mori, W. Nakayama, Study on forced convective heat transfer in curved pipes (3rd Report, Theoretical Analysis Under The Condition of Uniform Wall Temperature and Practical Formula), Int. J. Heat Mass Transfer, 1967,10(5): 681-695.
    [23] I. Conté, X.F. Peng, Numerical investigation of laminar flow in coiled pipes, Appl. Therm. Eng. 2007, doi:10.1016/j.applthermaleng.2007.05.009.
    [24] V. Kumar, B. Faizee, M. Mridha, K.D.P. Nigam, Numerical studies of a tube-in-tube helically coiled heat exchanger, Chem. Eng. Process, 2008, doi.1016/j.cep.01.001.
    [25] T.J. Huttl, R. Friedrich, Direct numerical simulation of turbulent flows in curved and helically coiled pipes, Computers and Fluids, 2001, 30: 591-605.
    [26] M.A. Ebadian, C.X Lin, The effects of inlet turbulence on the flow development of fluid flow and heat transfer in a helically coiled pipe, Int. J. Heat Mass Transfer, 1999, 42:739-751.
    [27] G.Yang, F. Dong, M.A. Ebadian, Laminar forced convection in a helicoidal pipe with finite pitch, Int. J. Heat Mass Transfer, 1995,38: 853-862.
    [28] H. Chen, B. Zhang, Fluid flow and mixed convection heat transfer in a rotating curved pipe. Int. J. Therm. Sci., 2003,42:1047-1059.
    [29] G.I. Taylor, The criterion for turbulence in curved pipes, Proc. Roy. Soc. Sen A, 1929,124: 243-249.
    [30] G.H. Keulegan, K.H. Beij, Pressure losses for fluid flow in curved pipes, J. Research, 1937, 18:89-114.
    [31] G.W. Hogg, The effect of secondary flow on point heat transfer coefficient for turbulent flow inside curved tubes, Ph.D. Thesis, Univ. of Idaho, 1968.
    [32] P.S. Srinivsan, S.S. Nandapurkar, F.A. Holland, Pressure drop and heat transfer in coils, Chem. Eng., 1968,218: 113-119.
    [33] K. Yamamoto, T. Akita, H. Ikeuchi, et al, Experimental study of the flow in a helical circular tube, Fluid Dyn. Res., 1995,16: 237-249.
    [34] K. Yamamoto, A. Aribowo, Y. Hayamizu, et al, Visualization of the flow in a helical pipe, Fluid Dyn. Res., 2002, 30: 251-267.
    [35] D.R. Webster, J.A.C. Humphrey, Experimental observation of flow instability in a helical coil, ASME J. Fluids Eng., 1993, 115: 436-443.
    [36] Andrea Cioncolini, Lorenzo Santini, An experimental investigation regarding the laminar to turbulent flow transition in helically coiled pipes, Experimental Thermal and Fluid Science, 2006, 30: 367-380.
    [37] R.C. Xin, A. Awwad, Z.F. Dong, M.A. Ebadian, An experimental study of single-phase and two-phase flow pressure drop in annular helicoidal pipes. Int. J. Heat Fluid Flow, 1997, 18: 482-488.
    [38] R.A. Seban, E.F. Mclaughlin, Heat transfer in tube coils with laminar and turbulent flow, Int. J. Heat Mass Transfer, 1963, 6: 387-395.
    
    [39] D.G Prabhanjan, G. S. V Raghavan, T. J. Rennie, Comparison of heat transfer rates between a straight tube heat exchanger and a helically coiled heat exchanger. Int. Commun. Heat Mass Transfer, 2002,29: 185-91.
    [40] T.H. Ko, Thermodynamic analysis of optimal curvature ratio for fully developed laminar forced convection in a helical coiled tube with uniform heat flux, Int. J. Thermal Sciences, 2006,45: 729-737.
    [41] K. Akagawa, T. Sakaguchi, M.Ueda, Study on gad-liquid two-phase flow in helically coiled tubes, Bull. JSME, 1971,14(72): 564-571.
    [42] O. Watanabe, O. Tajima, O. Shimoya, Flow and heat transfer of gas and liquid two-phase flow in helical coils, Trans. JSME, 1986, 52(476B): 1857-1864.
    [43] L.A.M. Janssen, and C.J. Hogendoorn, Laminar convective heat transfer in helical coiled tubes, Int. J. Heat Mass Transfer, 1978,21:1197-1206.
    [44] A.N. Dravid, K.A. Smith, E.W. Merrill, Brain PLT. Effect of secondary fluid on laminar flow heat transfer in helically coiled tubes, AIChE J., 1971, 17: 1114-1122.
    [45] G.F.C. Rogers, and Y.R. Mayhew, Heat transfer and pressure loss in helically coiled tubes with turbulent flow, Int. J. Heat Mass Transfer, 1964, 7:1207-1216.
    [46] R.K. Shah, S.D. Joshi, Convective heat transfer in a curved duct, Handbook of single phase convective heat transer,1987.
    [47]郭烈锦,冯自平,螺旋管内单相液体紊流流动传热特性,化工学报,2000,51(2):159-164。
    [48]白博峰,郭烈锦,冯自平,陈学俊,卧式螺旋管内紊流传热实验研究,化工学报,1997,48(1):16-21。
    [49]L.J.Guo,X.J.Chen,Z.P.Feng,B.E Bai,Transient convective heat transfer in a helical coiled tube with pulsatile fully developed turbulent flow.Int.J.Heat Mass Transfer,1998,41:2867-2875.
    [50]冯自平,螺旋穦内气液两相流不稳定性研究,博士学位论文,西安交通大学,1996。
    [51]A.Owhadi,K.J.Bell,and B.Crain,Forced convection boiling inside helically coiled tubes,Int.J.Heat and Mass Transfer,1968,11:1779-1793.
    [52]J.C.Chen,A correlation for boiling heat transfer to saturated fluids in convective flow,6th Nat.Heat Transfer Conf.,1968,8:11-14.
    [53]M.Kozeki,H.Nariai,T.Furukawa,K.kurosu,A study of helically coiled tube oncethrough steam generator,Bull.JSME,1970,13:1485-1494.
    [54]R.W.Lockhart,R.C.Martinelli,Proposed correlation of data for isothermal two-phase two-component flow in pipes,Chem.Eng.Prog.,1949,45:39-48.
    [55]R.C.Martinelli,D.B.Nelson.Prediction of pressure drop during forded circulation of water,Trans.ASME,1948,70:659-702.
    [56]B.J.Crain,K.J.Bell,Forced convection heat transfer to a two-phase mixture of water and steam in coil,AIChE Symp.Ser.,1973,69(131):30-36.
    [57]V.G.Kubair,Heat transfer to multiphase flow in coiled pipes,heat transfer 1986,in C.L.Tien et al.(Ed.),Proc.8th Int.Heat Transfer Conf.,San Francisco,USA,1986,5:2355-2360.
    [58]F.Campolunghi et al.,Full scale tests and thermal design for coiled once-through heat exchangers,AIChE Symp.Ser.,1997,73:215-222.
    [59]X.J.Chen,ED.Zhou,Forced convective boiling and post-dryout heat transfer in helical coiled tubes,heat transfer 1986,in C.L.Tien et al.(Ed.),Proc.8th Int.Heat Transfer Conf.,San Francisco,USA,1986,5:2221-2226.
    [60]郭烈锦,陈学俊,张呜远,卧式螺旋管内气水两相流沸腾传热特性研究,西安交通大学学报,1994,28(5):120-124。
    [61]白博峰,郭烈锦,卧式螺旋管内流动沸腾传热研究,核科学与工程,1997,17(4):302-308。
    [62]郭烈锦,陈学俊,周芳德,卧式螺旋管内气液两相含气率的实验与理论研究,核科学与工程,1990,10(3):191-199。
    [63]黎耘,陈学俊,张鸣远,卧式螺旋管内气液两相流截面含气率的研究,动力工程,1990,10(3):28-32。
    [64]周云龙,孙斌,陈听宽,陈学俊,螺旋管中气-水两相强制对流沸腾传热研究,核科学与工程,2002,22(3):25-27。
    [65]李广军,郭烈锦,陈学俊,卧式螺旋管气液两相流摩擦阻力特性研究,动力工程,1997,17(4):28-32。
    [66]白博峰,螺旋管壁导热反问题及管内强制对流换热研究,硕士学位论文,西安交通大学,1995。
    [67]陈学俊,周芳德,螺旋管内两相强制对流沸腾和干涸后传热,西安交通大学学报,1990,24(Snppl.1):1-8。
    [68]郭烈锦,陈学俊,张鸣远,卧式螺旋管内气水两相流沸腾传热特性研究,西安交通大学学报,1994,28(5):120-124。
    [69]L.J.Guo,X.M.Zhang,Z.P.Feng,et al.,Forced convection boiling heat transfer and dry-out characteristics in helical coiled tubes with various axial angles,Journal of Basic Science and Engineering,1998,6(4):383-391.
    [70]Liang Zhao,Liejin Guo,Bofeng,Bai and et al,Convective boiling heat transfer and two-phase flow characteristics inside a small horizontal helically coiled tubing once -through steam generator,Int.J.Heat Mass Transfer,2003,46:4779-4788.
    [71]L.J.Guo,Z.P.Feng,X.J.Chen,Experimental investigation of forced convective boiling flow instabilities in horizontal helically coiled tubes,lnt.J.Thermal and Fluid Flow,1997,3:210-216.
    [72]周云龙,石惠娴,李泓源,宋景东,孙东红,螺旋管内气-液两相流截面含气率实验研究和理论模型,工程热物理学报,1999,20(1):86-89。
    [73]朱明善,韩礼钟,李立等,绿色环保制冷剂HFC-134a热物理性质,第1版,科学出版社,1995。
    [74]J.R Thome,Update on advances in flow pattern based two-phase heat transfer models,Experimental Thermal and Fluid Science,2005,29:341-349.
    [75]N.Kattan,J.R.Thome,D.Favrat,Flow boiling in horizontal tubes:Part Ⅰ:development of adiabatic two phase flow pattern map,Transactions of ASME,1998,120:140-147.
    [76]O.Z(u|¨)cber,D.Favrat,J.R.Thome,Development of adiabatic two-phase flow patter map for horizontal flow boiling,Int.J.Heat Mass transfer,2002,45(2):291-301.
    [77]J.Moreno Quiben,J.R.Thome,Flow pattern based two-phase frictional pressure drop model for horizontal tubes,Part Ⅱ:new phenomenological model,Int.J.Heat Fluid Flow,2007,28(5):1060-1072.
    [78]K.Hambraeus,Heat transfer coefficient during two-phase flow boiling of HFC-134a,Int.J.Refrigeration,1991,14(6):357-362.
    [79]胡海涛,丁国良,王凯建,R410-A油混合物在7mm强化管内流动沸腾的换热特性,化工学报,2008,59(1):32-36。
    [80]魏文建,丁国良,胡海涛,王凯建,制冷剂一润滑油混合物系管内流动沸腾阻力特性,上海交通大学学报,2006,40(8):1333-1338。
    [81]魏文建,丁国良,王凯建,含油制冷剂在小管径换热管内流动沸腾换热关联式,上海交通大学学报,2007,41(3):404-410。
    [82]D.Jung,R.Radermacher,Prediction of evaporation heat transfer coefficient and pressure drop ofrefrigerant mixtures,Int.J.Refrigeration,1993,16(5):330-338.
    [83]D.Jung,K.H.Song,Y.Cho,S.Kim,Flow condensation heat transfer coefficients of pure refrigerants,Int.J.Refrigeration,2003,26(1):4-11.
    [84]D.Jung,Y.Cho,K.Park,Flow condensation heat transfer coefficients of R22,R134a,R407C,and R410A inside plain and micro-fin tubes,Int.J.Refrigeration,2004,27(1):25-32.
    [85]S.J.Eckels,M.Pate,Evaporation and condensation of R134a and CFC-12 in a smooth tube and a micro-fin tube,Transactions ASHRAE,1991,97(2):71-81.
    [86]E.P.Bandarra Filho,J.M.Saiz Jabardo,Convective boiling performance of refrigerant R-134a in herringbone and micro-fin copper tubes,Int.J.Refrigeration,2006,29(1):81-91.
    [87]A.G.Cavallini,D.Censi,D.Del Col,Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants(R134a,R125,R32,R410A,R236ea)in a horizontal smooth tube,Int.J.Refrigeration,2001,24(1):73-87.
    [88]J.Y.Shin,M.S.Kim and S.T.Ro,Experimental study on forced convective boiling heat transfer of pure refrigerants and refrigerant mixtures in a horizontal tube,Int.J.Refrigeration,1997,20(4):267-275.
    [89]T.Y.Choi,Y.J.Kim,M.S.Kim,and S.T.Ro,Evaporation heat transfer of R-32,R-134a,and R-32/125/134a inside a horizontal smooth tube,Int.J.Heat Mass transfer,2000,43(19):3651-3660.
    [90]C.C.Wang,C.S.Chiang,and D.C.Lu,Visual observation of two-phase flow pattern of R-22,R-134a,and R-407C in a 6.5mm smooth tube,Experimental Thermal and Fluid Science,1997,15(4):395-405.
    [91]A.S.Dalkilic,S.Laohalertdecha,S.Wongwises,Two-phase friction factor in vertical downward flow in high mass flux region of refrigerant HFC-134a during condensation,Int.Comm.Heat Mass Transfer,2008,35(9):1147-1152.
    [92]Y.M.Lie,F.Q.Su,R.L.Lai,T.F.Lin,Experimental study of evaporation heat transfer characteristics of refrigerants R-134a and R-407C in horizontal small tubes,Int.J.Heat Mass Transfer,2006,49(2):207-218.
    [93]甘承军,王维城,张立宁,HFC-134a含油时管内蒸发换热特性,制冷学报,1996,1:9-16。
    [94]吴志光,马虎根,蔡祖恢,R32/R134a在水平内螺纹管内流动沸腾强化特性的分析与研究,化工学报,2005,56(2):239-242。
    [95]秦蔚,吴磊,李美玲,蔡祖恢,非共沸混合制冷剂HFC-32/HFC-134a水平管内蒸发换热的实验研究,制冷学报,1996,4:7-11。
    [96]吴晓敏,王晓亮,王维城,水平微肋管内流动蒸发换热特性的实验研究,化工学报,2003,54(9):1215-1219。
    [97]吴晓敏,李辉,龚鹏,王维城,李瑞霞,水平微肋管内蒸发及冷凝换热性能研究,工程热物理学报,2006,27(3):42-46。
    [98]李沛文,陈民,陶文铨,R-134a水平管内流动凝结换热的实验研究,工程热物理学报,1997,18(1):73-76。
    [99]L.D.Boyko,G.N.Kruzhilin,Heat transfer and hydraulic resistance during condensation of steam in a horizontal tube and in a bundle of tubes,Int.J.Heat Mass Transfer,1967,10(3):361-373.
    [100]M.B.Ould Didi,N.Kattan,J.R.Thome,Prediction of two-phase pressure gradients of refrigerants in horizontal tubes,Int.J.Refrigeration,2002,25(7):935-947.
    [101]辛明道,周杰,张罡,陈清华,崔文智,R134a在水平三维内微肋管内的沸腾换热,工程热物理学报,2001,22(1):95-97。
    [102]陈清华,崔文智,辛明道等,R134a过热蒸气在三维内微肋管内的凝结换热特性,工程热物理学报,2000,21(2):483-486。
    [103]J.R.Thome,Boiling of new refrigerants:a state-of-the-art review,Int.J.Refrig.,1996,19(7):435-457.
    [104]H.J.Kang,C.X.Lin,M.A.Ebadian,Condensation of R134a flowing inside helicoidal pipe,Int.J.Heat Mass Transfer,2000,43(14):2553-2564.
    [105]M.Uddin,J.Patrick,A.Newlin,Variation of local condensation heat transfer coefficient for R134a in helically coiled tubes,ASME Journal 94-WA/HT-4,1994.
    [106]M.Zaki,Y.Z.Liu,Z.F..Dong et al,Condensation heat transfer of R-134a in helicoidal pipe,Proceedings of The ASME Heat Transfer Division,Baltimore,MD,USA,1997,HTD-351:141-148.
    [107]S.Wongwises,M.Polsongkram,Condensation heat transfer and pressure drop of HFC-134a in helically coiled concentric tube-in-tube heat exchanger,Int.J.Heat Mass Transfer,2006,49(23):4386-4398.
    [108]J.T.Hart,C.X.Lin,M.A.Ebadian,Condensation heat transfer of R-134a in a helical pipe,J.of Hydrodynamics,2004,16(2):144-150.
    [109]J.T.Han,C.X.Lin,M.A.Ebadian,Condensation heat transfer and pressure drop characteristics of R-134a in an annular helical pipe,Int.Comm.Heat and Mass Transfer 2005,32(10):1307-1316.
    [110]韩吉田,C.X.Lin,M.A.Ebadian,具有蒸气过热的R134-a在螺旋管内凝结换热的实验研究,制冷学报,2005,26(3):6-11。
    [111]韩吉田,苏国萍,制冷剂R-134a在螺旋管环形通道内凝结换热的实验研究,热能动力工程,2005,20(2):134-141。
    [112]Shao Li,Han Ji-tian,Pan Ji-hong,Condensation heat transfer of R-134a in horizontal straight and helically coiled tube-in-tube heat exchangers,Journal of Hydrodynamics,Ser.B,2007,19(6):677-682.
    [113]邵莉,韩吉田,潘继红,R-134a在水平直管和螺旋管内凝结换热特性实验研究,制冷学报,2007,2(28):23-26。
    [114]P.Naphon,S.wongwises,A review of flow and heat transfer characteristics in curved tubes,Renew.Sust.Energy.Rev.,2006,10(5):463-490.
    [115]李隆键,崔文智,辛明道,螺旋管内单相及沸腾的强化换热与阻力特性实验,核动力工程,2005,26(1):6-10。
    [116]崔文智,廖全,辛明道,R134a在螺旋管内的流动沸腾传热,重庆大学学报,2001,24(4):118-121。
    [117]崔文智,辛明道,廖全,三维微肋螺旋管内流动沸腾流型与传热性能,工程热物理学报,2003,24(3):451-454。
    [118]崔文智,三维微肋螺旋管内流动沸腾传热与流型,博士学位论文,重庆大学,2003。
    [119]W.Z.Cui,L.J.Li,M.D.Xin et al,A heat transfer correlation of flow boiling in micro-fin helically coiled tube,Int.J.Heat Mass Transfer,2006,49(17):2851-2858.
    [120]W.Z.Cui,L.J.Li,M.D.Xin et al,An experimental study of flow pattern and pressure drop for flow boiling inside microfinned helically coiled tube,Int.J.Heat Mass Transfer,2008,51(1):169-175.
    [121]S.Wongwises,M.Polsongkram,Evaporation heat transfer and pressure drop of HFC-134a in a helically coiled concentric tube-in-tube heat exchanger,Int.J.Heat Mass Transfer,2006,49(2):658-670.
    [122]来逢逢,R134a螺旋管内沸腾传热模拟研究,硕士学位论文,山东大学,2006。
    [123]孙宗保,R134a螺旋管内流动沸腾换热特性研究,硕士学位论文,山东大学,2007。
    [124]施明恒,甘永平,马重芳,沸腾和凝结,高等教育出版社,1995年。
    [125]黄素逸,魏保太,气液两相流动和传热,华中理工大学出版社,1989。
    [126]徐济鋆等,沸腾传热和气液两相流,原子能出版社,2001。
    [127]俞平,王维城,微重力下气液两相流流型转换的通用关系式,清华大学学报(自然科学版),1998,38(10):42-46。
    [128]李海青等,两相流参数检测及应用,浙江大学出版社,1991。
    [129]周云龙,周云龙,张学清,孙斌,应用电导探针技术识别气液两相流流型方法及电导波动信号噪声的辨识,传感器技术学报,2008,21(10):1709-1712。
    [130]孙涛,基于数据融合技术的两相流流型辨识与流量测量方法研究,博士学位论文,浙江大学,2002。
    [131]O.Baker,Design of pipe lines for simultaneous flow ofoil and gas,Oil and Gas Journal,1954,53:185-190.
    [132]J.M.Mandhane et al,A flow pattern map for gas-liquid flow in horizontal pipes.Int.J. Multiphase Flow,1974,1(4):537-553.
    [133]Y.Taitel and A.E.Dukler,A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow,AIChE J.,1976,22(1):47-55.
    [134]N.Kattan,J.R.Thome,D.Favrat,Measurement and prediction of two-phase flow patterns for new refrigerant inside horizontal tubes,ASHRAE Trans.,1995,101:SD-95-17-4.
    [135]沙定国,误差分析与测量不确定度评定,中国计量出版社,2003。
    [136]D.Chisholm,A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow.Int.J.Heat Mass Transfer,1967,10(12):1767-1787.
    [137]陈学俊,陈立勋,朱才广,气液两相流与传热基础,科学出版社,1995。
    [138]B.E.Boyce,Co-current Gas Liquid Flow,Plenum Press,1969.
    [139]Z.Rouhani,E.Axelsson,Calculation of void volume fraction in the subcooled and quality boiling regions.Int.J.Heat Mass transfer,1970(2),13:383-393.
    [140]D.Steiner,J.Taborek,Flow boiling heat transfer in vertical tubes correlated by an asymptotic model,Heat Transfer Engng.,1992,13(1):43-69.
    [141]R.Gr(o|¨)nnerud,Investigation of of liquid hold-up,flow-resistance and heat transfer in circulation type evaporators,part Ⅳ:two-phase flow resistance in boiling refrigerants,Annexe 1972-1,Bull.De l'Inst.Du Froid,1979.
    [142]H.K.Forster,N.Zuber,Bubble dynamics and boiling heat transfer,AIChE J.,1955,1:532.
    [143]A.W.Bennett et al.,Flow visualization studies of boiling at high pressure,Proc.Inst.Mech.Engr.Part 3c,1965-1966.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700