基于多传感器融合的两相流参数测量方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两相流是自然界与工业过程中十分常见的流动形态,由于流态的复杂性,对其过程参数的准确测量一直是科学研究与工业过程应用中亟待解决的重要课题。多传感器融合技术利用不同时间与空间的多传感器数据资源,通过对各局部测量信息的综合,消除多传感器信息之间可能存在的冗余和矛盾,并加以互补,降低其不确定性,实现比单一信息源对被测过程更完全、准确、可靠的测量和描述。
     本论文从两相流参数测量方法与流动机理出发,利用数值仿真技术,在研究V型内锥流量计与基于电学敏感原理的传感器用于两相流参数测量方法的基础上,建立各传感器两相流测量模型;结合数据级与特征级信息融合方法实现两相流流型的准确识别,以及质量流量、流速、分相含率和分相表观流速的测量。本研究主要完成的工作:
     1.从两相流参数测量方法与流动机理出发,开展水平管道油水与气水两相流的三维CFD(Computational Fluid Dynamics)非稳态仿真,分析两相流典型流动状态下,V型内锥流量计的测量特性,以及流动参数在预设测量截面处的变化。仿真结果表明,V型内锥对两相流流态有一定的干扰,但能在较短距离内恢复;实际取压位置与理想位置处的差别可以通过一个定值来补偿;锥体尾部出现回流区域形成较强烈的湍流,但尾部取压方式不受回流影响;气水两相流间歇流动结构有一定的速度和差压波动,因此在测量气水两相流时应考虑这种波动带来的影响;气水两相流的流速差别较大,在流动分析中应考虑滑动比或滑脱速度的影响。该仿真工作为V内锥测量模型与互相关测速提供了理论分析基础,并在此基础上设计并实现了基于电学敏感原理传感器的两相流流动参数测量系统。
     2.在对已有两相流差压测量关系式分析的基础上,引入Blasius系数,推导出油水两相流粘度对差压测量关系式的影响,提出一种考虑油水粘度影响的油水两相流质量流量关系式;实现了利用环形电导式传感器测量气水两相流的滑动比,并提出一种适用于研究工作实验范围的气水两相流质量流量测量关系式。测量结果表明:引入粘度的油水两相流质量流量关系式能够获得更准确的测量结果,而引入滑动比后的均相流模型测量结果较未考虑滑动比的均相流模型稳定,利用滑动比修正的Chisholm模型结合de Leeuw的分析结果选取相应的Blasius系数能获得更高的测量精度。从理论分析角度为差压流量计在两相流中的测量提供了一种理论与经验相结合的模型。
     3.结合两相流流动特性分析,提出一种能够在两相流流动特征信号中动态寻找信号段适用于互相关计算的方法,并建立了基于电学敏感原理的两相流混合流速测量以及分相含率的预测模型,实现了两相流双参数的同时测量。互相关结果表明,互相关方法测量到的油水与气水两相流结构性脉动传输与混合速度在不同的混合流动Froude数范围内存在分段线性关系,且参数拟合结果与数值仿真结果计算的参数值一致。相含率测量结果表明,油水两相流的混状流态满足Maxwell方程的假设条件,应用该方程测量油水两相流含水率的平均相对误差为8.1%。气水两相流离散流型可当作层流与满管流的交替处理,含水率测量结果的平均相对误差为10%。
     4.在各传感器测量模型与方法研究的基础上,实现了基于双截面电阻层析成像系统截面电极阵列间的数据级融合、特征级串行融合与并行融合;研究了基于V型内锥流量计与电阻层析成像系统测量数据特征级融合的水平管气水两相流流型识别方法;实现了基于V型内锥流量计与电学敏感原理传感器融合的两相流流速、相含率与滑动比的预测,以及两相流流量和各分相表观流速的准确测量。测量结果表明:利用同质传感器间自适应加权估计方法的数据级融合能够实现测量信息的最优化,达到单传感器的最优测量状态,而特征级融合能够提供额外的流动信息;利用融合方法计算的过程参数可比融合前更低的平均相对误差。
Two-phase flow is commonly encountered and of paramount significance in both natural and industrial processes, and yet its rheological complexity makes the accurate measurement on its process parameters difficult to achieve and hence presents an urgent issue to scientific researchers and industrial engineers. Multi-sensor fusion techniques combine data and related information from spatially and temporally distributed sensors to achieve more complete, specific and reliable inferences than could be achieved by using a single, independent sensor. The integration or fusion of data from each local sensor eliminates possible redundancy and contradictions and consequently improves accuracy and uncertainty of the measurement.
     In light of the parametric measuring techniques and flow mechanism of two-phase flow, the measuring models of V-cone meters and electrically sensitive sensors are established through numerical simulations; the process parameters of two-phase flow, such as flow regime, mass flowrate, and flow velocity as well as the phase concentration are jointly determined with data fusion and feature fusion methods. The main works accomplished are as follows:
     1. Based on the parametric measuring techniques and flow mechanism of two-phase flow, typical flow conditions of oil-water and gas-water two-phase flow were studied through CFD unstable simulations. The simulation results show that the flow condition is disturbed by the V-cone meter but will recover in a short distance; the pressure difference due to tapping position can be compensated with a constant ratio; the turbulence occurred at the cone tail has no influence upon the pressure tapping means; the segregated flow condition of gas-water two-phase flow involves fluctuations of velocity and differential pressure, which must be taken into consideration in velocity measurement; the velocity ratio between gas and water unavoidably influences the flow model development. The simulation work lays a theoretical foundation for the development of V-cone measuring correlation and cross-correlation model, and the measuring systems of electrically sensitive sensors were built on simulation basis.
     2. The influence of viscosity of oil-water two-phase flow upon the differential pressure model is derived in view of the existing models for two-phase flow, from which a correlation of measuring the mass flowrate of oil-water two-phase flow is presented in consideration of the viscosity character. Besides, a slip ratio based measuring correlation for gas-water two-phase flow mass flowrate measurement is presented by introducing the slip ratio with conductivity rings. The results indicate that a better accuracy is achieved by introducing viscosity character of oil phase into the measuring model, and the velocity ratio based homogeneous model is more stable in parametric measurement than the normal model, in addition, the velocity ratio based Chisholm correlation in conjunction with de Leeuw’s selection on Blasius parameter evidently improves the measuring accuracy. This work provides a theory and experience integrated model for the differential pressure meters in two-phase flow measurement.
     3. With the analysis on flowing properties of two-phase fluids, a method of dynamically seeking suitable signal segment for cross-correlating measured signals from two-phase flow is proposed, in addition the prediction models of mixture velocity and phase concentration by using electrically sensitive sensors were established to achieve the simultaneous measurement on these two parameters. Cross-correlation results show that the cross-correlated velocity is a kind of structural velocity within two-phase flow, and can be piecewisely fitted into the mixture velocity within different range of Froude number. The prediction of phase concentration indicates that the flow condition of oil-water mixture meets the assumption of Maxwell equation and hence by using this equation achieves 8.1% average relative error in water holdup measurement of oil-water two-phase flow; the gas-water two-phase flow can be treated as the alternatively flow of full pipe and stratified flow and the average relative error is 10%.
     4. Based on the independent measuring model and methodology of above measuring systems, the information from each sensing plane of a Dual-plane ERT system is fused at data level and feature level respectively, moreover, the measurement data from a V-cone meter and an ERT system is also fused at feature level. And the performance of each fusion method is analyzed and discussed with the flow regime identification on gas-water two-phase flow in a horizontal pipe. At last, the flow velocity, phase concentration and slip ratio as well as the flow rate and superficial velocity of each phase are measured in acceptable accuracy by fusing the information from a V-cone meter and the electrically sensitive sensors. The results show that the data fusion with adaptive weighted estimation optimizes the measuring performance and feature fusion achieves higher accuracy by introducing additional information, and that the fusion based results have more accurate measurement than each independent sensor.
引文
[1]陈学俊,多相流热物理研究的进展,西安交通大学学报, 1994, 28 (5) : 1-8.
    [2] Wallis G B, Dobson J E, The onset of Slugging in Horizontal Stratified Air-Water Flow, International Journal of Multiphase Flow, 1973, 1: 173-193.
    [3] Thorn R, Johansen G A, Hammer E A, Three-Phase Flow Measurement in the Offshore Oil Industry is there a Place for Process Tomography?, 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester, 1999, 167-172.
    [4]林宗虎,王栋,王树众等,多相流的近期工程应用趋向,西安交通大学学报, 2001, 35 (9) : 886-890.
    [5]钟兴福,吴应湘,郑之初等,海上油田油井多相流测量面临的困难及对策,中国海上油气(工程), 2002, 14 (4) : 35-49.
    [6] Theuveny B C, Mehdizadeh P, Multiphase Flowmeter Applicaton for Well and Fiscal Allocation, SPE, 2002, 76766.
    [7]肖伟,胥元刚,国外多相流研究的最新进展,内蒙古石油化工, 2005, (4): 5-9.
    [8] Bergles A E, Coolier J G, Delhaye J M, et al., Two-Phase Flow and Heat Transfer in the Power and Process Industries, New York: McGraw-Hill Book Company, 1981, 1-707.
    [9] Wendt J F, Computational Fluid Dynamics: An Introduction,: Springer-Verlag, 1992, 1-291.
    [10]郭殿杰,多相流测量在石油工业中的应用前景,电子仪器仪表用户, 1997, (2) : 5-9.
    [11] Rajan V S V, Ridley R K, Multiphase Flow Measurement Techniques - A Review, Journal of Energy Resources Technology, 1993, 115: 151-161.
    [12] N S F O, Handbook of Multiphase Flow Metering, 2005, 113.
    [13] Ismail I, Gamio J C, Bukhari S F, et al., Tomography for Multi-Phase Flow Measurement in the Oil Industry, Flow Measurement and Instrumentation, Tomographic Techniques for Multiphase Flow Measurements, 2005, 16 (2-3) : 145-155.
    [14] Wallis G B, One-Dimensional Two-Phase Flow,: McGraw-Hill, 1969, 408.
    [15] Plaskowski A, Beck M S, Thorn P R, et al., Imaging Industrial Flow, Bristol and Philadelphia: IOP Publishing Ltd, 1995, 214.
    [16] Taitel Y, Dukler A E, A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow, AIChe Journal, 1976, 22 (1) : 47-55.
    [17] Trallero J L, Sarica C, Brill J P, A Study of Oil/Water Flow Patterns in Horizontal Pipes, SPE Production & Facilities, 1997, 12 (3) : 165-172.
    [18] Xu X X, Study On Oil-Water Two-Phase Flow in Horizontal Pipelines, Journal of Petroleum Science and Engineering, 2007, 59 (1-2) : 43-58.
    [19] Hewitt G F, Hail-Taylor N S, Annular Two-Phase Flow, Oxford: Pergamon Press, 1970, 310.
    [20] Wallis G B, One-Dimensional Two-Phase Flow, 1969, 408.
    [21] Julia J E, Liu Y, Paranjape S, et al., Upward Vertical Two-Phase Flow Local Flow Regime Identification Using Neural Network Techniques, Nuclear Engineering and Design, 2008, 238 (1) : 156-169.
    [22] Flores J G, Oil-Water Flow in Vertical and Deviated Wells, Doctor of Philosophy, The University of Tulsa, 1997.
    [23] Salim A, Fourar M, Pironon J, et al., Oil-Water Two-Phase Flow in Microchannels: Flow Patterns and Pressure Drop Measurements, The Canadian Journal of Chemical Engineering, 2008, 86 (6) : 978-988.
    [24] Skea A F, Hall A R, Effects of Gas Leaks in Oil Flow on Single-Phase Flowmeters, Flow Measurement and Instrumentation, 1999, 10 (3) : 145-150.
    [25] Skea A F, Hall A W, Effects of Water in Oil and Oil in Water on Single-Phase Flowmeters, Flow Measurement and Instrumentation, 1999, 10 (3) : 151-157.
    [26] Wu Y X, Li Q P, Li H, et al., Multiphase Flow Measurement in the Offshore Oil Industry, The 4th International Symposium on Measurement Techniques for Multiphase Flows, Hangzhou, China, 2004.
    [27] Falcone G, Hewitt G F, Alimonti C, et al., Multiphase Flow Metering: Current Trends and Future Developments, 2001 SPE Annual Technical Conference and Exhibition, 2001, (71474) : 1-13.
    [28] Thorn R, Johansen G A, Hammer E A, Recent Developments in Three-Phase Flow Measurement, Measurement Science and Technology, 1997, 8: 691-701.
    [29] Yamada M, Sakakibara K, Miyamoto Y, et al., Development of High Speed PIV Using Dual-Camera System, 5th World Congress on Industrial Process Tomography, Bergen, Norway, 2006, 699-706.
    [30] Dyakowski T, Jeanmeure L F C, Jaworski A J, Applications of Electrical Tomography for Gas–Solids and Liquid–Solids Flows—a Review, Powder Technology, 2000, 112: 174-192.
    [31] Tan C, Dong F, Wu M, Identification of Gas/Liquid Two-Phase Flow Regime through ERT-Based Measurement and Feature Extraction, Flow Measurement And Instrumentation, 2007, 18 (5-6) : 255-261.
    [32]周云龙,孙斌,李雅侠,气液两相流流型差压波动的PDF特征,仪器仪表学报, 2003, 24 (4) : 432-433.
    [33] Jin N D, Nie X B, Ren Y Yet al., Characterization of Oil/Water Two-Phase Flow Patterns Based on Nonlinear Time Series Analysis, Flow Measurement and Instrumentation, 2003, 14 (4-5) : 169-175.
    [34] Trafalis T B, Oladunni O, Papavassiliou D V, Two-Phase Flow Regime Identification with a Multiclassification Support Vector Machine (SVM) Model, Industrial & Engineering Chemistry Research, 2005, 44 (12) : 4414-4426.
    [35] Mi Y, Ishii M, Tsoukalas L H, Flow Regime Identification Methodology with Neural Networks and Two-Phase Flow Models, Nuclear Engineering and Design, 2001, 204 (1-3) : 87-100.
    [36]贾志海,牛刚,王经,基于动态聚类算法的两相流流型识别方法研究,热能动力工程, 2004, 19 (2) : 182-185.
    [37] Ma Y, Zheng Z, Xu L, et al., Application of Electrical Resistance Tomography System to Monitor Gas/Liquid Two-Phase Flow in a Horizontal Pipe, Flow Measurement and Instrumentation, 2001, 12 (4) : 259-265.
    [38] Lin Z H, Two-Phase Flow Measurements with Sharp-Edged Orifices, International Journal of Multiphase Flow, 1982, 8 (6) : 683-693.
    [39] Lupeau A, Platet B, Gajan P, et al., Influence of the Presence of an Upstream Annular Liquid Film on the Wet Gas Flow Measured by a Venturi in a Downward Vertical Configuration, Flow Measurement and Instrumentation, 2007, 18 (1) : 1-11.
    [40] Zhang H, Yue W, Huang Z, Investigation of Oil-Air Two-Phase Mass Flow Rate Measurement Using Venturi and Void Fraction Sensor, Journal of Zhejiang University SCIENCE, 2005, 6A (6) : 601-606.
    [41] Steven R, Horizontally Installed Cone Differential Pressure Meter Wet Gas Flow Performance, Flow Measurement and Instrumentation, 2008, In Press, Corrected Proof.
    [42]胡俊,董峰,基于V型内锥流量计测量气/水两相流的研究,工程热物理学报, 2007, 28 (z1) : 205-208.
    [43] Baker R C, Flow Measurement Handbook, New Youk: Cambridge University Press, 2000, 524.
    [44] Beck M S, Plaskowski A, Cross Correlation Flowmeters: Their Design and Application, Bristol England: IOP Publiishing Ltd., 1987, 240.
    [45]徐苓安,相关流量测量技术,天津:天津大学出版社, 1988.
    [46] Liu K T, Canfield D R, Conley J T, Application of a Mass Flowmeter for Allocation Measurement of Crude Oil Production, SPE, 1988, 15394.
    [47] Baker R C, Coriolis Flowmeters: Industrial Practice and Published Information, Flow Measurement and Instrumentation, 1994, 5 (4) : 229-246.
    [48] Henry M, Tombs M, Duta M, et al., Two-Phase Flow Metering of Heavy Oil Using a Coriolis Mass Flow Meter: A Case Study, Flow Measurement and Instrumentation, 2006, 17 (6) : 399-413.
    [49]吕余玲,陈振瑜,崔彬澎等,多相流相分率测量技术研究进展,管道技术与设备, 2002, (5) : 10-12.
    [50] Li Z, Wu Y, Li D, Gamma-Ray Attenuation Technique for Measuring Void Fraction in Horizontal Gas-Liquid Two-Phase Flow, Nuclear Science and Techniques, 2007, 18 (2) : 73-76.
    [51] Stahl P, Von R P, On the Accuracy of Void Fraction Measurements by Single-Beam Gamma-Densitometry for Gas-Liquid Two-Phase Flows in Pipes, Experimental Thermal And Fluid Science, 2004, 28 (6) : 533-544.
    [52] Hjertaker B T, Static Characterization of a Dual Sensor Flow Imaging System, Flow Measurement and Instrumentation, 1998, 9 (3) : 183-191.
    [53] Abouelwafa M S A, Kendall E J M, The Measurement of Component Ratios in Multiphase Systems Using Alpha -Ray Attenuation, Journal of Physics E: Scientific Instruments, 1980, (3) : 341-345.
    [54] Fr?ystein T, Kvandal H, Aakre H, Dual Energy Gamma Tomography System for High Pressure Multiphase Flow, Flow Measurement and Instrumentation, 2005, 16 (2-3) : 99-112.
    [55] Jiang Y, Rezkallah K S, An Experimental Study of the Suitability of Using a Gamma Densitometer for Void Fraction Measurements in Gas-Liquid Flow in a Small Diameter Tube, Measurement Science and Technology, 1993, 4: 496-505.
    [56] Abro E, Johansen G A, Improved Void Fraction Determination by Means of Multibeam Gamma-Ray Attenuation Measurements, Flow Measurement and Instrumentation, 1999, 10 (2) : 99-108.
    [57] Fossa M, Design and Performance of a Conductance Probe for Measuring the Liquid Fraction in Two-Phase Gas-Liquid Flows, Flow Measurement and Instrumentation, 1998, 9: 103-109.
    [58] Strizzolo C N, Converti J, Capacitance Sensors for Measurement of Phase Volume Fraction in Two-Phase Pipelines, IEEE Transactions on Instrumentation and Measurement, 1993, 42 (3) : 726-729.
    [59] Hammer E A, Tollefsen J, Olsvik K, Capacitance Transducers for Non-Intrusive Measurement of Water in Crude Oil, Flow Measurement and Instrumentation, 1989, 1 (1) : 51-58.
    [60] Hewitt G F, Measurement of Two Phase Flow Parameter, 1978.
    [61] Huang S M, Plaskowski A B, Xie C G, et al., Capacitance-Based Tomographic Flow Imaging System, Electronics Letters, 1988, 24 (7) : 418-419.
    [62] Nyfors E, Industrial Microwave Sensors-a Review, Subsurface Sensing Technologies and Applications, 2000, 1 (1) : 23-43.
    [63] Yang Y S, Scott B N, Cregger B B, The Design, Development, and Field Testing of a Water-Cut Meter Based On a Microwave Technique, SPE, 1990, 20697.
    [64] Guo H, Wu X, Jin Z, et al., The Design and Development of Microwave Holdup Meter and Application in Production Logging Interpretation of Multiphase Flows, SPE, 1993, 26451.
    [65] Asher R C, Ultrasonic Sensors in the Chemical and Process, Journal of Physics E: Scientific Instruments, 1983, 16: 959-963.
    [66] Crecraft D I, Ultrasonic Instrumentation: Principles, Methods and Applications, Journal of Physics E: Scientific Instruments, 1983, 16 (3) : 181-189.
    [67] Zheng Y, Zhang Q, Simultaneous Measurement of Gas and Solid Holdups in Multiphase Systems Using Ultrasonic Technique, Chemical Engineering Science, 2004, 59 (17) : 3505-3514.
    [68] Roscoe B A, Three-Phase Holdup Determination in Horizontal Wells Using a Pulsed-Neutron Source, SPE, 1998, 37147.
    [69] Boyer C, Duquenne A M, Wild G, Measuring Techniques in Gas-Liquid and Gas-Liquid-Solid Reactors, Chemical Engineering Science, 2002, 57 (16) : 3185-3215.
    [70] Murzyn F, Mouaze D, Chaplin J R, Optical Fibre Probe Measurements of Bubbly Flow in Hydraulic Jumps, International Journal of Multiphase Flow, 2005, 31 (1) : 141-154.
    [71] Kruger G J, Birke A, Weiss R, Nuclear Magnetic Resonance (NMR) Two-Phase Mass Flow Measurements, Flow Measurement and Instrumentation, 1996, 7 (1) : 25-37.
    [72] Chien K H, Chen T T, Pei B S, et al., Void Fraction Measurement by Using the Side-Tube Method, Flow Measurement and Instrumentation, 1998, 8 (2) : 103-112.
    [73] Pinguet B G, Roux G, Hopman N, Field Experience in Multiphase Gas-Well Testing: The Benefit of the Combination of Venturi and Multienergy Gamma Ray, SPE, 2006, 103223.
    [74] Ismail I, Gamio J C, Zhang Z, et al., Review of Multi-Phase Flow Meters for Oil Industry, The 4th International Symposium on Measurement Techniques for Multiphase Flows, Hangzhou, China, 2004, 596-601.
    [75]苏欣,袁宗明,范小霞,多相流量计的研究与应用,石油化工自动化, 2006, : 93-98.
    [76] Accuflow I, Accuflow Multiphase Metering System, 2007.
    [77]方立德,姜庆勇,张涛等,基于简单分离法的油气水三相流量计,计量学报, 2008, 29 (5) : 445-448.
    [78] Jiskoot Limited, Mixmeter- Multiphase Meter,.
    [79] Framo Engineering AS Corporation, Multiphase Flow Meters Phase Watcher Vx, 2003.
    [80] Agar Corporation, Multiphase Flow Meter (Oil/Water/Gas), 2001.
    [81] Roxar Corporation, Roxar Multiphase Meter,.
    [82]董峰,胡俊,基于截面测量的气液两相流测量方法及装置, 200610129787.7, 2006-11-30.
    [83] Beck M S, Williams R A, Process Tomography: A European Innovation and its Applications, Measurement Science and Technology, 1996, 7 (3) : 215-224.
    [84] Williams R A, Beck M S, Process Tomography: Principles, Techniques and Applications, Oxford: Butterworth-Heinemann Ltd, 1995, 581.
    [85]张修刚,王栋,林宗虎,近期多相流过程层析成像技术的发展,热能动力工程, 2004, 19 (3) : 221-227.
    [86]董峰,邓湘,徐立军等,过程层析成像技术综述,仪器仪表用户, 2001, 8 (1) : 6-11.
    [87]黄志尧,晏颖,王保良等,电阻层析成像传感器软场特性分析,仪器仪表学报, 2001, 22 (6) : 573-576.
    [88]杨莉松,王桂英,徐至展,光学层析成像技术的发展现状,激光与光电子学进展, 1997, (8) : 5-7.
    [89] Uchiyama H, Nakajima M, Yuta S, Measurement of Flame Temperature Distribution by IR Emission Computed Tomography, Applied Optics, 1985, 24 (23) : 4111-4116.
    [90] Hertz H M, Faris G W, Emission Tomography of Flame Radicals, Optics Letters, 1988, 13 (5) : 351-353.
    [91]阎春生,曾楠,光学层析成像技术的研究动态,激光杂志, 2001, 22 (5) : 5-7.
    [92] York T, Status of Electrical Tomography in Industrial Applications, Journal of Electronic Imaging, 2001, 10 (3) : 608-619.
    [93] Holder D, Techniques in Electrical Impedance Tomography (Series in Medical Physics and Biomedical Engineering), 2004, 456.
    [94] Dickin F, Wang M, Electrical Resistance Tomography for Process Applications, Measurement Science and Technology, 1996, 7: 247-260.
    [95]吕宗伟,熊汉亮,徐苓安,电磁层析成像技术的研究,自动化仪表, 1999, 14 (3) : 1-5.
    [96] Green R G, Rahmat M F, Evans K, et al., Concentration Profiles of Dry Powders in a Gravity Conveyor Using an Electrodynamic Tomography System, Measurement Science and Technology, 1997, 8: 192-197.
    [97] Schueler C F, Lee H, Wade G, Fundamentals of Digital Ultrasonic Imaging, Ieee Transactions On Sonic and Ultrasonics, 1984, SU-31 (4) : 195-217.
    [98] Asher R C, Ultrasonic Sensors in the Chemical and Process, Journal of Physics E: Scientific Instruments, 1983, 16: 959-963.
    [99] Brown G J, Reilly D, Mills D, Development of an Ultrasonic Tomgoraphy System for Application in Pneumatic Conveying, Measurement Science & Technology, 1996, 7.
    [100] Hoyle B S, Process Tomography Using Ultrasonic Sensors, Measurement Science & Technology, 1996, 7: 272-280.
    [101] Bolomey J -, Recent European Developments in Active Microwave Imaging for Industrial, Scientific, and Medical Applications, Microwave Theory and Techniques, IEEE Transactions on, 1989, 37 (12) : 2109-2117.
    [102] Semenov S Y, Svenson R H, Boulyshev A E, et al., Microwave Tomography: Two-Dimensional System for Biological Imaging, Biomedical Engineering, IEEE Transactions on, 1996, 43 (9) : 869-877.
    [103] Chommeloux L, Pichot C, Bolomey J, Electromagnetic Modeling for Microwave Imaging of Cylindrical Buried Inhomogeneities, IEEE Transactions On Microwave Theory And Techniques, 1986, MTT-34 (10) : 1064-1076.
    [104] Luggar R D, Morton E J, Jenneson P M, et al., X-Ray Tomographic Imaging in Industrial Process Control, Radiation Physics And Chemistry, 2001, 61: 785-787.
    [105] Vinegar H J, Wellington S L, Tomographic Imaging of Three-Phase Flow Experiments, Review of Scientific Instruments, 1987, 58 (1) : 96-107.
    [106] Smith M E, Strange J H, NMR Techniques in Materials Physics: A Review, Measurement Science and Technology, 1996, 7: 449-475.
    [107] Hennig J, Speck O, Koch A M, et al., Functional Magnetic Resonance Imaging: A Review of Methodological Aspects and Clinical Applications, Journal of Magnetic Resonance Imaging, 2003, 18 (1) : 1-15.
    [108] Liu F, Beck B L, Fitzsimmons J R, et al., A Theoretical Comparison of Two Optimization Methods for Radiofrequency Drive Schemes in High Frequency MRI Resonators, Physics in Medicine And Biology, 2005, (22) : 5281-5291.
    [109] Okamoto I, Hirai S, Ogawa K, MRI Velocity Measurements of Water Flow in Porous Media Containing a Stagnant Immiscible Liquid, Measurement Science and Technology, 2001, (9) : 1465-1472.
    [110] West R M, Williams R A, Opportunities for Data Fusion in Multi-Modality Tomography, 1st World Congress on Industrial Process Tomography, Buxton, Great Manchester, 1999, 195-200.
    [111] Mccallum S J, Nicholson I, Lurie D J, Multimodality Magnetic Resonance Systems for Studying Free Radicals in Vivo, Physics in Medicine And Biology, 1998, (7) : 1857-1861.
    [112] Raylman R R, Majewski S, Lemieux S K, et al., Simultaneous MRI and PET Imaging of a Rat Brain, Physics in Medicine And Biology, 2006, (24) : 6371-6379.
    [113] Hallett M, Multimodality Brain Imaging, International Congress Series, 2002, 1226: 17-26.
    [114] Pfau P R, Perlman S B, Stanko P, et al., The Role and Clinical Value of EUS in a Multimodality Esophageal Carcinoma Staging Program with CT and Positron Emission Tomography, Gastrointestinal Endoscopy, 2007, 65 (3) : 377-384.
    [115] Dyakowski T, Johansen G A, Hjertaker B T, et al., A Dual Modality Tomography System for Imaging Gas/Solids Flows, 4th World Congress on Industrial Process Tomography, Aize, Japan, 2004, 669-674.
    [116] Jiang P, Peng L, Lu G, et al., Modelling of an ECT/ERT Dual-Modality Tomography Sensor for Oil/Gas/Water Three-Component Flow Measuring, 5th World Congress on Industrial Process Tomography, Bergen, Norway, 2006, 592-598.
    [117]张兆田,熊小芸,杨五强,过程层析成像概述,中国体视学与图像分析, 2005, 10 (3) : 145-148.
    [118] Peng L, Mou C, Yao D, et al., Determination of the Optimal Axial Length of the Electrode in an Electrical Capacitance Tomography Sensor, Flow Measurement and Instrumentation, 2005, 16 (2-3) : 169-175.
    [119] Yan-Bin X, Fu-Lai Z, Shuang H, et al., A Novel Ert System Based on DSP and CPLD, Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on, , 2005, 1042-1046.
    [120] Isaksen ?, A Review of Reconstruction Techniques for Capacitance Tomography, Measurement Science and Technology, 1996, 7 (3) : 325-337.
    [121] Xie C G, Huang S M, Hoyle B S, et al., Electrical Capacitance Tomography for Flow Imaging: System Model for Development of Image Reconstruction Algorithms and Design of Primary Sensors, Circuits, Devices and Systems, IEE Proceedings G, 1992, 139 (1) : 89-98.
    [122] Zeng G L, Image Reconstruction - A Tutorial, Computerized Medical Imaging and Graphics, 2001, 5: 97-103.
    [123] Zhu N, Jiang Y, Kato S, Ultrasonic Computerized Tomography (CT) for Temperature Measurements with Limited Projection Data Based on Extrapolated Filtered Back Projection (FBP) Method, Energy, 2005, 30 (2-4) : 509-522.
    [124] Rwajman, Banasiak R, Mazurkiewicz L, et al., Spatial Imaging with 3D Capacitance Measurements, Measurement Science and Technology, 2006, 17: 2113-2118.
    [125]赵进创,陆建波,傅文利等,电容层析成像系统三维图像重建及其在两相流体积测量中的应用研究,仪器仪表学报, 2005, 26 (2) : 202-205.
    [126]王海刚,刘石,杨五强等,电容层析成像三维成像算法研究与软件设计,仪器仪表学报, 2004, 25 (6) : 701-704.
    [127] Dyakowski T, Process Tomography Applied to Multi-Phase Flow Measurement, Measurement Science and Technology, 1996, 7 (3) : 343-353.
    [128]黄志尧,金宁德,李海青,层析成像技术在多相流检测中的应用,化学反应工程与工艺, 1996, 12 (4) : 395-405.
    [129] Reinecke N, Petritsch G, Boddem M, et al., Tomographic Imaging of the Phase Distribution in Two-Phase Slug Flow, International Journal of Multiphase Flow, 1998, 24 (4) : 617-634.
    [130] Dong F, Qiao X T, Jiang Z X, et al., Application of Electrical Resistance Tomography to Two-Phase Flow and Void Fraction Measurement, 3rd World Congress on Industrial Process Tomography, Banff, Canada, 2003, 299-304.
    [131] Suzuki M, Tsuchitani T, Iimura K, et al., Measurement of Voidage Distribution in Particle Packed Bed Using X-Ray Micro Computed Tomography, 4th World Congress on Industrial Process Tomography, Aizu, Japan, 2004, 930-935.
    [132] Huang Z, Wang B, Li H, Application of Electrical Capacitance Tomography to the Void Fraction Measurement of Two-Phase Flow, IEEE Trasactions on Instrumentation and Measurement, 2003, 52 (1) : 7-12.
    [133] Xu L J, Xu L A, Gas/Liquid Two-Phase Flow Regime Identification by Ultrasonic Tomography, Flow Measurement And Instrumentation, 1998, 8 (3-4) : 145-155.
    [134] Dai Y, Wang M, Panayotopoulos N, et al., 3-D Visualisation of a Swirling Flow Using Electrical Resistance Tomography, 4th World Congress on Industrial Process Tomography, 2005, : 362-367.
    [135] Dong F, Xu Y B, Xu L J, et al., Application of Dual-Plane ERT System and Cross-Correlation Technique to Measure Gas-Liquid Flows in Vertical Upward Pipe, Flow Measurement and Instrumentation, 2005, 16 (2-3) : 191-197.
    [136] Wang M, Dorward A, Vlaev D, et al., Measurements of Gas–Liquid Mixing in a Stirred Vessel Using Electrical Resistance Tomography (ERT), Chemical Engineering Journal, 2000, 77: 93-98.
    [137] Deng X, Dong F, Xu L J, et al., The Design of a Dual-Plane ERT System for Cross Correlation Measurement of Bubbly Gas/Liquid Pipe Flow, Measurement Science and Technology, 2001, 12 (8) : 1024-1031.
    [138] Tan C, Dong F, Two-Phase Flow Measurement by Dual-Plane ERT System with Drift-Flux Model and Cross Correlation Thechnique, 5th International Conference on Machine Learning and Cybernetics, Dalian, China, 2006.
    [139]王慧斌,王建颖,信息系统集成与融合技术及其应用,北京:国防工业出版社, 15-20.
    [140]李兆杰,郭呈贺,钱文瀚,多传感器集成融合技术,传感器技术, 1996, (6) : 1-4.
    [141]程志民,多传感器融合技术及其应用,机电信息·中国电力发展与设备供应, 2003, (2) : 26-28.
    [142] Steinberg A N, Bowman C L, White F E, Revisions to the JDL Data Fusion Model, SPIE, 1999, 430-441.
    [143] Ahlers H,多传感器技术及其应用(王磊,马常霞,周庆) ,北京:国防工业出版社, 3-95.
    [144]潘震中,多传感器信息融合结构的探讨,无线电工程, 1994, 24 (1) : 63-67.
    [145]王军,苏剑波,席裕庚,多传感器集成与融合概述,机器人, 2001, 23 (2) : 183-192.
    [146]权太范,信息融合(神经网络--模糊推理理论与应用),北京:国防工业大学出版社, 4-15.
    [147]袁南儿,杨东南,林毅,多传感器信息融合及其在工业控制中的应用,浙江工业大学学报, 1999, 27 (4) : 281-286.
    [148]闵荣宝,多传感器数据融合展望,现代电子工程, 1994, 4: 41-50.
    [149]王耀南,李树涛,多传感器信息融合及其应用综述,控制与决策, 2001, 16 (5) : 518-522.
    [150]张晓明,孙宝元,多传感器信息融合技术及其应用,北京石油化工学院学报, 1997, 5 (1) : 69-74.
    [151]潘震中,多传感器信息融合技术应用的研究,无线电通信技术, 1994, 20 (2) : 67-74.
    [152] Hellwich O, An Alternative Paradigm for Data Evaluation in Remote Sensing Using Multisensor Data Fusion, in Proc, Geoscience and Remote Sensing Symposium, 1999, 299-301.
    [153]张明路,戈新良,唐智强等,多传感器信息融合技术研究现状和发展趋势, 2003, 30-35.
    [154]应济,陈昆昌,陈子辰,多传感器集成与信息融合及其应用研究, 1997, 151-152.
    [155] Luo R C, Kay M G, Multisensor Integration and Fusion in Intelligent Systems, IEEE Transactions on Systems, Man, and Cybernetics, 1989, 901-931.
    [156] Town C, Fusion of Visual and Ultrasonic Information for Environmental Modelling, IEEE Computer Society Conference on Computer Vision and Pqttern Recognition Workshops, 2004.
    [157] Steinhaus P, Walther M, Giesler B, et al., 3D Global and Mobile Sensor Data Fusion for Mobile Platform Navigation, 2004, 3325-3330.
    [158] Yeung S K, Mcmath W S, Petriu E M, et al., Teleoperator-Aided Multi-Sensor Data Fusion for Mobile Robot Navigation, 2004 IEEE International Conference on Robotics & Automation, 1994, 470-476.
    [159] Beauvais M, Kreucher C, Lakshmanan S, Building World Models for Mobile Platforms Using Heterogeneous Sensors Fusion and Temporal Analysis, IEEE Conference on Intelligent Transportation System, 1997, 230-235.
    [160] Walther M, Steinhaus P, Dillmann R, A Robot Navigation Approach Based On 3D Data Fusion and Real Time Path Planning, Multisensor Fusion and Integration for Intelligent Systems, MFI2003. in Proc, IEEE International Conference on, , 2003, 45-50.
    [161] Gorodnichy D O, On Using Regression for Range Data Fusion, Electrical and Computer Engineering, 1999 IEEE Canadian Conference on, Edmonton, Alta, Canada, 1999, 1345-1350.
    [162]潘泉,于昕,程咏梅等,信息融合理论的基本方法与进展,自动化学报, 2003, 29 (7) : 599-615.
    [163]何友,彭应宁,陆大,多传感器数据融合模型综述,清华大学学报(自然科学版), 1996, 25 (9) : 14-20.
    [164]龚元明萧德云王俊杰,多传感器数据融合技术(下), 2002, 5: 1-4.
    [165]王建海,方振和,李英等,多传感器数据融合浅析,上海大学学报(自然科学版), 1997, 3 (4) : 454-461.
    [166]涂小强,信息融合的原理与方法概述, 1999, 3: 1-6.
    [167]胡丹丹,肖书明,王燕清等,基于多传感器的数据融合技术,东北电力学院学报, 2004, 21 (1) : 62-67.
    [168] Perez V H, Gas-Liquid Two-Phase Flow in Inclined Pipes, Doctor of Philosophy, The University of Nottingham, 2007.
    [169]于中伟,内锥流量计的仿真与实验研究,硕士,天津大学, 2005.
    [170] Angeli P, Hewitt G F, Flow Structure in Horizontal Oil-Water Flow, International Journal of Multiphase Flow, 2000, 26 (7) : 1117-1140.
    [171] Shi H, Cai J, Jepson W P, Oil-Water Two-Phase Flows in Large-Diameter Pipelines, Journal of Energy Resources Technology, 2001, 123 (4) : 270-276.
    [172] Hirt C W, Nichols B D, Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, Journal of Computational Physics, 1981, 39: 201-225.
    [173] Ramos-Banderas A, Morales R D, Sánchez-Pérez R, et al., Dynamics of Two-Phase Downwards Flows in Submerged Entry Nozzles and Its Influence on the Two-Phase Flow in the Mold, International Journal of Multiphase Flow, 2005, 31 (5) : 643-665.
    [174] Launder B E, Spalding D B, The Numerical Computation of Turbulent Flows, Computer Methods in Applied Mechanics And Engineering, 1974, 3: 269-289.
    [175] Erdal A, Andersson H I, Numerical Aspects of Flow Computation through Orifices, Flow Measurement and Instrumentation, 1997, 8 (1) : 27-37.
    [176] Hilgenstock A, Ernst R, Analysis of Installation Effects by Means of Computational Fluid Dynamics--CFD Vs Experiments?, Flow Measurement and Instrumentation, Optical Methods in Flow Measurement, 1996, 7 (3-4) : 161-171.
    [177]王福军,计算流体动力学分析-CFD软件原理与应用,北京:清华大学出版社, 2004, 272.
    [178] Dukler A E, Hubbard M G, A Model for Gas-Liquid Slug Flow in Horizontal and Near Horizontal Tubes, Industrial and Engineering Chemistry Fundamentals, 1975, 14 (4) : 337-347.
    [179]王俊,电导式纵向多极阵列油/水两相流测量方法研究,硕士,天津大学, 2004.
    [180] Andreussi P, Di Donfrancesco A, Messia M, An Impedance Method for the Measurement of Liquid Hold-Up in Two-Phase Flow, International Journal of Multiphase Flow, 1988, 14 (6) : 777-785.
    [181] Tsochatzidis N A, Karapantsios T D, Kostoglou M V, et al., A Conductance Probe for Measuring Liquid Fraction in Pipes and Packed Beds, International Journal of Multiphase Flow, 1992, 18 (5) : 653-667.
    [182] Coney M W E, The Theory and Application of Conductance Probes for the Measurement of Liquid Film Thickness in Two-Phase Flow, Journal of Physics E: Scientific Instruments, 1973, 6 (9) : 903.
    [183]胡俊,基于V形内锥流量计的气/液两相流流量测量的研究,硕士,天津大学, 2007.
    [184] Chisholm D, Two-Phase Flow in Pipelines and Heat Exchangers, New York, U.S.A.: Longman Inc., 1983, 303.
    [185] Brauner N, Moalem M D, Flow Pattern Transitions in Two-Phase Liquid-Liquid Flow in Horizontal Tubes, International Journal of Multiphase Flow, 1992, 18 (1) : 123-140.
    [186] Tan C, Dong F, Zhang F S, et al., Oil-Water Two-Phase Flow Measurement with a V-Cone Meter in a Horizontal Pipe, I2MTC 2009 - International Instrumentation and Measurement Technology Conference, Singapore, 2009, 62-67.
    [187] Angeli P, Hewitt G F, Pressure Gradient in Horizontal Liquid-Liquid Flows, International Journal of Multiphase Flow, 1999, 24 (7) : 1183-1203.
    [188] Grassi B, Strazza D, Poesio P, Experimental Validation of Theoretical Models in Two-Phase High-Viscosity Ratio Liquid-Liquid Flows in Horizontal and Slightly Inclined Pipes, International Journal of Multiphase Flow, 2008, 34 (10) : 950-965.
    [189] Stanislav J F, Kokal S, Nicholson M K, Intermittent Gas-Liquid Flow in Upward Inclined Pipes, International Journal of Multiphase Flow, 1986, 12 (3) : 325-335.
    [190] Bendiksen K H, An Experimental Investigation of the Motion of Long Bubbles in Inclined Tubes, International Journal Of Multiphase Flow, 1984, 10 (4) : 467-483.
    [191] Xu J, Wu Y, Feng F, et al., Experimental Investigation On the Slip Between Oil and Water in Horizontal Pipes, Experimental Thermal and Fluid Science, 2008, 33 (1) : 178-183.
    [192] Smith S L, Void Fractions in Two‐ Phase Flow: A Correlation Based upon an Equal Velocity Head Model, Proceedings of the Institution of Mechanical Engineers, 1969, 184 (1969) : 647-664.
    [193] Beck M S, Correlation in Instruments: Cross Correlation Flowmeters, Journal of Physics E:Scientific Instruments, 1981, 14 (1) : 7-19.
    [194] Jambunathan K, Ju X Y, Dobbins B N, et al., An Improved Cross Correlation Technique for Particle Image Velocimetry, Measurement Science and Technology, 1995, 6 (5) : 507-514.
    [195] Knapp C H, Carter G C, The Generalized Correlation Method for Estimation of Time Delay, IEEE Transactions on Acoustics, Speech, and Signal Processing, 1976, ASSP-24 (4) : 320-327.
    [196] Lucas G P, Jin N D, Measurement of the Homogeneous Velocity of Inclined Oil-in-Water Flows Using a Resistance Cross Correlation Flow Meter, Measurement Science and Technology, 2001, 12: 1529-1537.
    [197] Lucas G P, Jin N D, Investigation of a Drift Velocity Model for Predicting Superficial Velocities of Oil and Water in Inclined Oil-in-Water Pipe Flows with a Centre Body, Measurement Science and Technology, 2001, 12 (8) : 1546-1554.
    [198] Coddington P, Macian R, A Study of the Performance of Void Fraction Correlations Used in the Context of Drift-Flux Two-Phase Flow Models, Nuclear Engineering and Design, 2002, 215: 199-216.
    [199] Al-Lababidi S, Multiphase Flow Measurement in the Slug Regime Using Ultrasonic Measurements Techniques and Slug Closure Model, Doctor of Philosophy, Cranfield University, 2006.
    [200] Woods B D, Hanratty T J, Relation of Slug Stability to Shedding Rate, International Journal of Multiphase Flow, 1996, 22 (5) : 809-828.
    [201]曲晓慧,安钢,数据融合方法综述及展望,舰船电子工程, 2003, 2: 2-9.
    [202]王军,苏剑波,席裕庚,多传感器融合综述,数据采集与处理, 2002, 19 (1) : 72-77.
    [203]李战明,陈若珠,张保梅,同类多传感器自适应加权估计的数据级融合算法研究,兰州理工大学学报, 2006, 32 (4) : 78-82.
    [204]马骞,杨以涵,刘文颖等,多输入特征融合的组合支持向量机电力系统暂态稳定评估,中国电机工程学报, 2005, 25 (6) : 17-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700