用户名: 密码: 验证码:
电火花加工加工屑和气泡的运动及实现高效加工的控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电火花加工中,极间间隙内的加工屑浓度和气泡体积对加工稳定性和效率具有重要影响。研究极间间隙内加工屑和气泡的运动规律和机理,可以为控制电火花加工参数,使极间间隙内的加工屑浓度和气泡体积保持在合适的范围内,进而实现高效加工提供理论依据。然而,由于难以观察极间间隙内的现象,迄今为止,对加工屑和气泡的运动规律和机理的了解并不充分。
     针对这一问题,本论文通过对连续放电和抬刀过程极间间隙内流场进行三维的液-气-固三相流仿真计算,来研究极间间隙内加工屑和气泡的运动规律和机理。结果发现,连续放电过程中,剧烈扩展的气泡是排除底面间隙加工屑的主要因素,但当气泡扩展到侧面间隙出口后,其排除底面间隙加工屑的能力减弱;抬刀过程中,抬刀高度必须大于某一值,才能将足够体积的清澈电火花加工油吸入底面间隙,消除加工屑在底面间隙的聚集,并且使底面间隙内的电火花加工油维持较长时间的运动从而将气泡带出底面间隙;抬刀速度必须大于某一值,才能使吸入底面间隙的清澈电火花加工油与底面间隙中的加工屑充分混合,有效消除底面间隙中加工屑的聚集,并且使底面间隙中的气泡偏离底面间隙中心而排出底面间隙。同时论文通过仿真计算,研究了电极加工时间、抬刀高度和抬刀速度对底面间隙内加工屑浓度和气泡体积的影响规律。结果发现,底面间隙中加工屑浓度和气泡体积随电极加工时间的增加而增加;抬刀高度和速度较小时,抬刀过程很难排除底面间隙内的气泡,底面间隙内加工屑浓度随加工的进行而迅速增加,抬刀高度和速度大于某一值后,抬刀过程能够将大部分气泡排出底面间隙,底面间隙内加工屑浓度随加工的进行稳定在某一值附近。
     为验证仿真计算结果的正确性,论文利用透明材料搭建了实验装置,通过这些装置观察了连续放电和抬刀过程极间间隙内加工屑和气泡的运动情况。
     最后,论文根据抬刀速度对底面间隙加工屑浓度和气泡体积的影响规律,提出了大抬刀速度对加工有利的观点;以电极加工时间对底面间隙加工屑浓度和气泡体积的影响规律为依据,结合实验结果分析,提出了寻找某一深度和抬刀高度下的最优电极加工时间的算法,在此基础上,根据抬刀高度对底面间隙加工屑浓度和气泡体积的影响规律,结合实验结果分析,提出了寻找某一深度下抬刀高度和电极加工时间最优组合的算法;最终,提出了电火花加工过程中实时调整抬刀高度和电极加工时间,使这两个参数在各加工深度下保持最优组合,实现高效加工的控制方法。
Debris concentration and bubble volume in bottom gap has a significant influence on the stability and efficiency of electrical discharge machining (EDM). The work of analyzing the mechanism of debris and bubble movements will provide the theoretical basis for controlling the parameters of EDM to keep a proper value of the debris concentration and bubble volume in bottom gap and to realize high efficiency machining. However, to date, this mechanism has not been fully understood because of the difficulty in observing debris and bubble movements in gap.
     For solving the problem, the current study conducted three-dimension and gas-liquid-solid three-phase flow simulations for gap during consecutive pulse discharge process and electrode jump process of EDM respectively. The results showed that, during the consecutive discharge process, bubble expansion was the main factor of excluding debris from bottom gap, but the function became weak when there was bubble came out of the side gap; during the electrode jump process, the electrode jump height must be larger than a certain value to absorb enough clean oil into the bottom gap to effectively eliminate the aggregation of debris, and to keep the oil moving for a relative long time to push the bubble out of the bottom gap; the electrode jump speed must be larger than a certain value to make the absorbed clean oil mix well with the debris in bottom gap to effectively eliminate the concentration of debris, and to make the bubble departure from the bottom center and therefore move out of the bottom gap. The influence of electrode machining time, electrode jump height and electrode jump speed on the debris concentration and bubble volume in the bottom gap was analyzed through simulation. The results showed that the debris concentration and bubble volume increased along with the electrode machining time; when the electrode jump height and speed were low, the debris concentration increased quickly as the machining went on, and it was difficult to remove bubble out of the bottom gap; when the electrode jump height and speed were larger than a certain value, the debris concentration in bottom gap was almost constant, and most of the bubble was removed out of the bottom gap.
     In order to verify the correctness of the simulation results, debris and bubble movements in gap during EDM was observed through a series of experimental devices which contained transparent materials.
     According to the influence of electrode jump speed on the debris concentration and bubble volume in bottom gap, the opinion that the large electrode jump speed was beneficial for machining was suggested. On the basis of the influence of the electrode machining time on the debris concentration and bubble volume in bottom gap, combining with experiment, an algorithm of searching for optimal electrode machining time of a certain depth and electrode jump height was put forward. According to the influence of electrode jump height on the debris concentration and bubble volume in bottom gap, an algorithm of searching for the optimal combination of electrode jump speed and electrode machining time at a certain depth was provided. Finally, the strategy of timely adjusting the electrode jump height and electrode machining time to the optimal combination at each depth to realize high efficiency machining was proposed.
引文
[1]Lazarenko B R. To invert the effect of wear on electric power contacts [D]. Moscow: All-Union Institute for Electro Technique in Moscow/CCCP,1943.
    [2]Meek J M, Craggs, J D. Electrical breakdown of gases [M]. New York:John Wiley and Sons, Ld., New York, NY,1978.
    [3]Lee T H. T-F theory of electron emission in high-current arcs [J]. J. Appl. Phys. 1959,30 (2):166-171.
    [4]Eubank P T, Patel M R, Barrufet M A, et al. Theoretical models of the electrical discharge machining process III. The variable mass, cylindrical plasma model [J]. J. Appl. Phys.,1993,73 (11):7900-7909.
    [5]Dibitonto D D, Eubank P T, Patel M R, et al. Theoretical models of the electrical discharge machining process I. A simple cathode erosion model [J]. J. Appl. Phys. 1989,66 (9):4095-4103.
    [6]Patel M R, Barrufet M A, Eubank P T, et al. Theoretical models of the electrical discharge machining process II. The anode erosion model [J]. J. Appl. Phys.,1989, 66 (9):4104-4111.
    [7]Hayakawa S, Yuzawa M, Kunieda M, et al. Time variation and mechanism of determining power distribution in electrodes during EDM process [J]. IJEM,2001, (6):19-26.
    [8]Hayakawa S, Xia H, Kunieda M, et al. Analysis of time required to deionize an EDM gap during pulse interval [C]. Proc. of Symposium on Molecular and Microscale Heat Transfer in Materials Processing and other Applications,1996:368-377.
    [9]Hayakawa S, Xia H, Kunieda M, et al. Numerical analysis of arc plasma temperature in EDM process based on magnetohydrodynamics [J]. Trans. JSME (B),1996,62 (600):263-269.
    [10]Palatnik L S, Liulichev A N. Investigation of the temperature in the vapor phase occurring during the electrical spark treatrment [J]. Soviet Physics-Technical Physics,1958,1818-824.
    [11]Natsu W, Ojima S, Kobayashi T, et al. Temperature distribution measurement in EDM arc plasma using spectroscopy [J]. JSME international journal C,2004,47 (1):384-390.
    [12]Hashimoto H, Kunieda M. Spectroscopic analysis of temperature variation of EDM arc-plasma [J]. J. JSEME,1997,31 (68):32-40.
    [13]Albinski K, Musiol K, Miernikiewicz A, et al. Plasma temperature in electro discharge machining [C]. Proc. ISEM XI,1995:143-152.
    [14]Kojima A, Natsu W, Kunieda M. Spectroscopic measurement of arc plasma diameter in EDM [J]. Annals of the CIRP,2008, (57):203-207.
    [15]亓利伟,楼乐明,李明辉.放电通道的波动性与电火花加工机理[J].上海交通大学学报,2001,35(7):989-997.
    [16]Kunieda M, Xia H, Nishiwaki N, et al. Observation of arc column movement during monopulse discharge in EDM [J]. CIRP Annals-Manufacturing Technology,1992,41 (1):227-230.
    [17]Chen Y, Mahdivian S M. Analysis of electro-discharge machining process and I st comparison with experiments [J]. Journal of Materials Processing Technology,2000, 104 (1):150-157.
    [18]Xia H, Kinoshita N, Natsu M. Removal amount difference between anode and cathode in EDM process [J]. IJEM,1996, (1):45-52.
    [19]Motoki M, Hashiguchi K. Energy distribution at the gap in electric discharge machining [J]. Annals of the CIRP,1967, (14):485-489.
    [20]Van Dijck F. Physico-mathematical analysis of the electro discharge machining process [D]. Brussels:Katholieke Universiteit Leuven,1973.
    [21]Koenig W, Werthein R, Zvirin Y, et al. Material removal and energy distribution in electrical discharge machining [J]. Annals of the CIRP,1975,24 (1):95-100.
    [22]Xia H. Study on factors affecting electrode wear ratio and improvement of machining characteristics in EDM process [D]. Tokyo:Tokyo University of Agriculture and Technology,1995.
    [23]Xia H, Hashimoto H, Kunieda M, et al. Measurement of energy distribution in continuous EDM process [J]. J. JSPE,1996,62 (8):1141-1145.
    [24]Tohi M, Komatsu T, Kunieda M. Measurement of process reaction force in EDM using hopkinson bar method [J]. Journal of the Japan Society for Precision Engineering,2002, 68 (6):822-826.
    [25]Yoshida M, Kunieda M. Study on the distribution of scattered debris generated by a single pulse discharge in EDM process [J]. International Journal of Electrical Machining,1998, (3):39-46.
    [26]Watanabe A, Hayakawa S, Itoigawa F, et al. Machining stability of electrical discharge machining at gas-liquid interface using deionized water [C]. Proceedings of Autumn Meeting of the Japan Society for Precision Engineering, Japan,2009:731-732.
    [27]Hayakawa S, Kunieda M, Matsubara T. Numerical analysis of effect of gap distance on cross sectional shape of discharge crater [C]. Proceedings of 2006 Annual Meeting of the Japan Society of Electrical Machining Engineers,1998:71-74.
    [28]Toenshoff H K, Egger R, Klocke F. Environmental and safety aspects of electrophysical and electrochemical processes [J]. Annals of the CIRP,1996,45 (2):553-568.
    [29]Kusano T, Yoshida M, Kunieda M. Process monitoring of EDM by measuring volume of gas generated in discharge gap [C]. Proc.93 Annual Meeting of JSEME,1993:97-90.
    [30]Natsu W, Kunieda M, Nishiwaki N. Study on influence of inter-electrode atmosphere on carbon adhesion and removal amount [J]. IJEM,2004, (9):43-50.
    [31]Lauwers B, Kruth J P, Liu W, et al. Investigation of the material removal mechanisms in EDM of composite ceramic materials [J]. Journal of Materials Processing Technology, 2004,149 (1-3):347-352.
    [32]Lauwers B, Liu W, Kruth J P, et al. Wire EDM machining of Si3N4, ZrO2 and A12o3-based ceramics [J]. IJEM,2005, (10):33-38.
    [33]Masuzawa T, Tsukamoto J, Fujino M. Drilling of deep microholes by EDM [J]. Annals of the CIRP,1989,38 (1):195-198.
    [34]Yu Z, Kunieda M. Study of material removal rate of EDM in deionized water [J]. J. JSEME, 1999,33 (72):28-36.
    [35]Leao F N, Pashby I R. A review on the use of evironmentally-friendly dielectric fluids in electrical discahrge machining [J]. Journal of Materials Processing Technology, 2004,149 (1-3):341-346.
    [36]Kunieda M, Furuoya S. Improvement of EDM efficiency by supplying oxygen gas into gap [J]. Annals of the CIRP,1991,40 (1):215-218.
    [37]Kunieda M, Yoshida M. Electrical discharge machining in gas [J]. Annals of the CIRP, 1997,46 1143-1146.
    [38]Pecas P, Henriques E. Influence of silicon powder-mixed dielectric on conventional electrical discharge machining [J]. International Journal of Machine Tools and Manufacture,2003,43 (14):1465-1471.
    [39]王辉,赵福令,吕战竹等.混粉电火花加工中粉末对极间电容和放电间隙的影响[J].航空制造技术,2004,(6):100-102.
    [40]孟庆国,赵万生.混粉电火花镜面加工试验研究[J].机械工程学报,2002,38(3):64-68.
    [41]赵万生,孟庆国,刘维东等.混粉电火花镜面加工技术的研究进展[J].中国机械工程,2001,24(4):466-469.
    [42]高正一,王春生,阚绪平.超声混粉电火花复合镜面加工[C].中国机械工程学会年会暨第九届全国特种加工学术年会论文集,北京,2001:111-113.
    [43]迟恩田,任中根,张云鹏等.超声磨料混粉电火花复合加工的研究[J].电加工与模具,2003,(3):39-32.
    [44]赵福令,吕战竹,张宝荣.混粉电火花加工工艺特性的研究[J].科学技术与工程,2003,3(6):573-576.
    [45]Muttamara A, Fukuzawa Y, Mohri N, et al. Probability of precision micro-machining of insulating Si3N4 ceramics by EDM [J]. Journal of Materials Processing Technology,2003, 140 (1-3):243-247.
    [46]Fleischer J, Masuzawa T, Schmidt J, et al. New applications for micro-EDM [J]. Journal of Materials Processing Technology,2004,149 (1-3):246-249.
    [47]Yu Z Y, Rajurkar K P, Shen H. High Aspect Ratio and Complex Shaped Blind Micro Holes by Micro EDM [J]. CIRP Annals-Manufacturing Technology,2002,51 (1):359-362.
    [48]裴景玉,胡德全,高长水等.智能模糊控制技术在微细电火花加工中的应用[J].上海交通大学学报,2001,35(12):1830-1833.
    [49]Zuyuan Y U, Takahisa M, Masatoshi F.3D Micro-EDM with Simple Shape Electrode Part 1:Machining of cavities with sharp corners and electrode wear compensation [J]. I JEM, 1998, (3):7-12.
    [50]赵万生,李志勇,王振龙.微三维结构电火花铣削关键技术研究[J].微细加工技术,2003,(3):49-55.
    [51]Zhao W S, Gu L, LI L. Bunched electrode for electrical discharge machining [C]. ISEM XV, Pittsburgh,2007:41-44.
    [52]徐盛林.绝缘体的电火花加工技术[J].电加工与模具,2002,(2):41-43.
    [53]Tani T, Fukuzawa Y, Mohri N, et al. Machining phenomena in WEDM of insulating ceramics [J]. Journal of Materials Processing Technology,2004,149 (1-3):124-128.
    [54]Fukuzawa Y, Mohri N, Tani T. Machining characteristics of insulating ceramics [J]. Indust rual Ceramics,2001,21 (3):187-189.
    [55]徐小兵.绝缘性陶瓷电火花加工原理和辅助电极膜制备探讨[J].新技术新工艺,2003,(5):17-18.
    [56]郭永丰,黄荣和,李常伟等.非导电材料的电化学电火花复合加工工艺研究[J].电加工,1998,(6):23-25.
    [57]Suda T, Sata T. Movement of conductive particles in EDM gap [J]. J. JSEME,1974,7 (14):19-28.
    [58]Schumacher B M. About the Role of Debris in the Gap During Electrical Discharge Machining [J]. CIRP Annals-Manufacturing Technology,1990,39 (1):197-199.
    [59]Masuzawa T, Sata T, Kinoshita N. The role of the chips in Micro-EDM [J]. J. JSPE,1971, 37 (9):52-58.
    [60]Bommeli B, Frei C, Ratajski A. On the influence of mechanical perturbation on the breakdown of a liquid dielectric [J]. Journal of Electrostatics,1979,7 (0):123-144.
    [61]Kunieda M, Yanatori K. Study on debris movement in EDM gap [J]. IJEM,1997, (2):43-49.
    [62]Kunieda M, Kojima H, Kinoshita N.On-Line Detection of EDM Spark Locations by Multiple Connection of Branched Electric Wires [J]. CIRP Annals-Manufacturing Technology, 1990,39 (1):171-174.
    [63]Yoshida M, Kunieda M. Study on the distribution of scattered debris generated by a single pulse discharge in EDM process [J]. IJEM,1998, (3):39-47.
    [64]Hayakawa S, Doke T, Itoigawa F, et al. Observation of flying debris scattered from discahrge point in EDM process [C]. ISEM ⅩⅥ, Shang Hai Jiao Tong University Press, 2010:121-125.
    [65]Cetin S, Okada i, Uno Y. Electrode jump motion in linear motor equipped die-sinking EDM [J]. Journal of Manufacturing Science and Engineering 2003,125 (4):809-815.
    [66]CETIN S, OKADA A, UNO Y. Effect of debris distribution on wall concavity in deep-hole EDM [J]. JSME International Journal Series C,2004,47 (2):553-559.
    [67]Han F Z, Zhang J, Cheng G, et al. Modeling of wrkpiece removal rate on EDM [C]. ISEM ⅩⅥ, Shanghai,2010:101-104.
    [68]Yan H X, Zhao W S, Guo Y F. Numerical simulation of EDM gap flow field [J]. Journal of Harbin Institute of Technology,1999,6 (2):69-72.
    [69]闫换新,韩强,赵万生等.镜面电火花加工射流方式的研究[J].电加工,1999,(1):17-20.
    [70]闫换新,冉宇瑶,赵万生等.电火花加工间隙流场的演技及仿真[J].中国机械工程,2001,8(12):858-860.
    [71]闫换新,赵万生,郭永丰等.电火花加工射流方式的研究和改进[J].航空精密制造技术,1999,(35):18-20.
    [72]Eckman P K, Williams E M. Plasma dynamics in arc formed by low-voltage sparkover of a liquid dielectric [J]. Appl. Sci. Res., Section B,1960, (8):299-320.
    [73]Ikeda M. The movement of a bubble in the gap depending on the single electrical discharge [J]. J-JSEME,1972,6 (11):12-15.
    [74]Takeuchi H, Kunieda M. Effects of volume fraction of bubbles in discharge gap on machining phenomena of EDM [C]. ISEM XV, Shanghai,2007:39-47.
    [75]Morita A, Imai Y, Noda A, et al. Fuzzy controller for EDM [C]. Proceedings of 9th International Symposium for Electromachining, CIRP,1989:236-239.
    [76]Kobayashi K. The present and future developments of EDM and ECM [C]. Proceedings of 11th International Symposium for Electromachining, CIRP,1995:29-47.
    [77]Zhao W S, Masuzawa T. Adaptive control of EDM-JUMP with self-tuning approach [J]. Bulletin of the Japan Society of Precision Engineering,1990,24 (1):45-50.
    [78]Wang W M, Rajurkar K P, Akamatsu K. Digital gap monitor and adaptive integral control for auto-jumping in EDM [J]. ASME Journal of Engineering for Industry,1993, (117):253-258.
    [79]Zhou M, Han F. Adaptive control for EDM process with a self-tuning regulator [J]. International Journal of Machine Tools and Manufacture,2009,49 (6):462-469.
    [80]Wang W M, Rajurkar K P. New servo control interface and model reference adaptive control for EDM [J]. Transactions of the North American Manufacturing Research Institution of SME,1989,281-286.
    [81]Albert W J H, Chung C H. Effective pulses discriminator and direct-drive jump control for high efficiency electrical discharge machining (EDM) processes [C]. ISEM X VI, Shanghai,2010:175-180.
    [82]朱轩.电火花加工抬刀参数的控制方法研究[D].北京:Tsinghua University,2009.
    [83]李用光,林宗虎.气液两相涡衔稳定性的研究[J].力学学报,1998,30(2):140-144.
    [84]De B. Some aspects of the influence of gap flushing on the accuracy in finishing by spark erosion [J]. Annals of the CIRP,1970,18 (1):147-151.
    [85]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [86]江帆,黄鹏Fluent高级应用与实例分析[M].北京:清华大学出版社,2010.
    [87]Fluent 6.3 Documetnation [M].2006.
    [88]Morsi S A, Alexander A J. An investigation of particle trajectories in two-phase flow systems [J]. J. Fluid Mech.,1972,55 (2):193-208.
    [89]Zhou M, Han F, Wang Y, et al. Assessment of the dynamical properties in EDM process-detecting deterministic nonlinearity of EDM process [J]. The International Journal of Advanced Manufacturing Technology,2009,44 (1):91-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700