宽筛分流化床的多相流模拟及有机硅单体合成的传热过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕宽筛分细硅粉颗粒的流化特性及传热过程,从理论、实验和数值模拟三个方面对有机硅单体合成流化床反应器开展系统研究。
     采用CFD模拟软件FLUENT,运用基于颗粒动力学理论的欧拉气固多相流模型和PC-SIMPLE算法,在考虑气体与颗粒、颗粒组分以及组分内颗粒间的相互作用的情况下,建立了流化床内气固多相流动的数学模型,并确定了初始条件与边界条件。在此基础上,评判了流化床外型对流化特性的影响,结果表明:对于宽筛分细颗粒流化床,静床床面位于扩大段下端的异径流化床内部气泡尺寸较小、颗粒的扬析少、流场稳定。
     模拟比较了自由床、垂直沉浸床、水平三角形排列沉浸床、水平正方形排列沉浸床的流化特性。模拟结果表明:对宽筛分硅粉颗粒,整个系统的最小流化速度大为降低,粒径较大的颗粒不容易流化,粒径较小的颗粒容易流化;垂直沉浸管式流化床内的大气泡被指管破碎、气泡上升速度减缓、聚并现象减弱,床内径向返混程度减弱,增大垂直管管间距可降低壁面处的固含率和密相床层高度;水平沉浸管式流化床内有一定数量的管道被“气穴”包围,管间距缩小后“气穴”增多;水平三角形排列沉浸管比水平正方形排列沉浸管床层高度低,“气穴”少。
     采用压力脉动法研究了宽筛分细硅粉颗粒的流化特性,拟合出了压力脉动标准方差与气速的关系式,通过拟合公式计算和分析得到的最小流化速度与理论值吻合较好。
     针对有机硅单体合成流化床进气分布不均、取热不均、能耗和物耗高等弊端,以模拟和实验结果为依据,提出了开发均热直流型流化床反应器的新思路:采用均布的单管程指管取热、双锥进导流式气分布器和硅粉直接回床技术。经工业应用表明:均热直流型流化床反应器密相段床层温度相同,真正实现了均匀取热、进气分布均匀和直接回床顺利畅通。
     对有机硅单体合成反应的传热过程进行了对流传热系数的计算和校核,提出了适合于流化床强传热过程的有内热源的传热膜模型,推导出了气膜厚度的计算式。气膜厚度计算值与文献实验值基本吻合,说明本文建立的公式和模型可用于反应器内浓相段气膜厚度的计算。由推导出的气膜厚度表达式可知:气膜厚度δ主要与单位体积反应热q.和气体导热系数k的比值有关。该结论对强放热反应传热过程理论研究十分有益,对类似工业反应器的设计有重要指导意义。
A fluidized bed, which is applied in the synthesis of organosilicon monomer, is studied in theory, experiment and numerical simulation to investigate the fluidization characteristics and heat transfer of Wide Particle Size Distribution (abbr: WPSD) of fine silicon powders.
     This paper adopts CFD, Eulerian model of particle dynamics theory and PC-SIMPLE numerical method to set a model of gas-solid multiphase flow under considering the interaction between gas and particles, one particle component and another component, and particle and particle in one component, to ascertain the initial condition and boundary condition and evaluate the influence of the configuration of fluidized bed on efficiency. The results show that, for the fluidized bed with WPSD of fine particles, there are small bubbles size, little particle raising phenomenon and steady flow fields in the static bed layer located at the bottom of the enlargement section of the fluidized bed.
     Compared the fluidization characteristics of the free bed, the vertical immersion bed, the immersion bed with triangular level arrangement (abbr: IBTLA) and the immersion bed with square level arrangement (abbr: IBSLA) respectively, the results of the numerical simulation indicate that the minimum fluidization velocity substantially decreased for WPSD, and the smaller particles are easier to fluidize than the larger ones; that the bubbles are broken in bed because of the figure-pipes and raise slower, and the phenomenon of the bubble coalescence is weakened as well as the degree of radial back mixing. And the results also show that the solid fraction closed to the wall decrease with the increase of the space between the vertical pipes, the height of the dense phase section of the bed has the same trend. In addition, some pipes are surrounded by the cavitations in the level of immersion tube fluidized bed. While, the cavitations increase with the decrease of the distance between pipes. The height of the bed layer of IBTLA is lower than the one of IBSLA and the cavitations in IBTLA is also less than in IBSLA.
     The pressure pulsation method is applied to study the fluidization characteristic of WPSD of silicon powders, and to draw out the relationship function between the pressure pulsation Standard Deviation and the gas velocity. The results show that the value of the minimum fluidization velocity is in agreement with the theoretical value.
     In order to overcome the following disadvantages, such as, uneven heat absorption and uneven air distribution of inlet in the fluidized bed reactors which applied in synthesis of organosilicon monomer. A new thought, developing a new type of the fluidized bed with once-through flow and uniform heat absorption, is proposed based on the simulation and experiment results. In this reactor, the following technologies are applied: heat absorption through symmetrical once-through figure pipe; the air diversion distributor with double cones; silicon powders directly back to bed. The industrial application of the new type of reactor show that there exist the same temperature of dense phase section in the new type of fluidized bed, and this reactor realize the uniform heat absorption.
     The convective heat transfer coefficient of the synthesis of organosilicon monomer is calculated and verified. In addition, the model of the fluidized bed with inner heat source, which is suitable for strong heat transfer process, is set up and the calculation function about the thickness of gas film is also proposed. And the calculated value of gas film thickness is in good agreement with the experimental values in the relative literature, which shows that the function and model set up in this paper could be applied in the calculation of gas film thickness in dense phase section. It could be speculated from the function that Gas film thicknessδmainly is relevant with the ratio of the unit volume reaction heat q. to the thermal conductivityk . The conclusion should be beneficial to the research of heat transfer process in the strongly exothermic reaction and be significant for designing related industrial reactors.
引文
[1]金涌,祝京旭,汪展文等,流态化工程原理[M],北京:清华大学出版社, 2001.
    [2] Gidaspow D, Multiphase Flow and Fluidization[M], Beijing: Academic Press, 1994.
    [3]陈甘棠,化学反应工程[M],北京:化学工业出版社, 1990.
    [4] Voothoeve R J H, Lips J A, Vlugter J C, Mechanism and kinetice of the Metal Catalyzed Synthesis of Methylehlorosilanes: The Kinetice of the Copper Catalyzed Reaction of Methyl Chloride and Silicon, Journal of Catalysis, 1965(4): 43-55.
    [5]杨富军,气固流化床的实验与模拟研究[D],浙江:浙江大学, 2005.
    [6] Fan L T, Sutherland W K, Osberg G L, Pressure Fluctuations in a Fluidizde Bed with and without Screeen Cylindrical Packing[J], In Ec funmental, 1967, 6: 449-456.
    [7]陈伯川,范镇,阮慧等,流化床内压力脉动信号的检测与分析[J],化学反应工程与工艺, 1987, 3(3): 82-86.
    [8]陈国南,有机硅单体合成流化床反应器冷态研究[D],浙江:浙江大学, 2004.
    [9]周章玉,石炎福,余华瑞,由压力波动判断气-固流化床中的流化类型[J],化学反应工程与工艺, 1999, 15(3): 262-267.
    [10]王晓萍,气固流化床压力脉动信号的Hilber-Huang变换与流型识别[J],高校化学工程学报, 2005, 19(4): 474-479.
    [11]阳永荣,戎顺熙,陈伯川等,湍动流化床的流型与流型边渡[J],化学反应工程与工艺, 1990, 16(2): 8-16.
    [12] Josep Arnaldos, Joaquim Casal, Predication of Transaition Velocities and Hydrodynamical Regimes in Fluldized Beds[J], Powder Technology, 1996, 86: 285-298.
    [13] Trnka O, Vesely V, Hartman M, Identification of the State of a Fluidized Bed by Pressure Fluctuations[J], AIChE J, 2000, 46(3): 509-514.
    [14] Saxena S C, Rao N S, Pressure Fluctuation in a Fluidized Bed and Fluidization Quality[J], Energy, 1989, 15(6): 489-497.
    [15] Saxena S C, Rao N S, Determination of Fluidization Quality of Beds of Spherical Particle[J], Energy, 1990, 16(9): 1199-1206.
    [16]陈伯川,张宏建,李海青,第三届全国多相流检测技术会议论文集[C],上海, 1990.
    [17] Hung Y W, Fan T S, Song J C et al., Pressure Fluctuation in a Gas-Solid Fluidized Bed with a Screen[J], Ind Eng Chem Poreess Des Dev, 1986, 25(1): 189-194.
    [18]幸松民,王一璐,有机硅合成工艺及产品应用[M],北京:化学工业出版社, 2000.
    [19]戴维森,哈里森,流态化[M],北京:科技出版社, 1981.
    [20]时钧,汪家鼎,余国琮等,化学工程手册(第二版)下卷[M],化学工业出版社, 1996.
    [21]张世红,倪学梓,王立等,流化床内浸入单管及管束沿周向气泡的分布特性及其对局部换热系数的影响[J],冶金能源, 1992, 11(3): 27-31.
    [22]周雪漪,计算水力学[M],北京:清华大学出版社, 1995.
    [23]陶文铨,数值传热学(第二版)[M],西安:西安交通大学出版社, 2001.
    [24]郭鸿志,传输过程数值模拟[M],北京:冶金工业出版社, 1998.
    [25] Boemer A, Qi H, Renz U, Eulerian Simulation of Bubble Formation at a Jet in a Two-dimensional Fluidized Bed[J], Int J Numer Methods ENG, 1997, 23: 927-944.
    [26] Cao C Q, Dong S Q, Guo Q J, Experimental and Numerical Simulation for Gas-Liquid Phases Flow Structure in an External-Loop Airlift Reactor[J], Ind Eng Chem Res, 2007, 46(22): 7317-7327.
    [27] Sharma S D, Pugs T, Three-Dimensional CFD Model of the Deaeration Rate of FCC Particles[J], AIChE J, 2006, 52(7): 2391-2400.
    [28]王嘉骏,顾雪萍,杨富军等,双流体模型中曳力及恢复系数对气固流动的影响[J],高校化学工程学报, 2006, 20(2): 164-168.
    [29]王福军,计算流体动力学分析[M],北京:清华大学出版社, 2004.
    [30] Lettieri P, Cammarata L, Micale G, et al., CFD Simulation of Gas Fluidized Beds Using Alternative Eulerian-Eulerian Modelling Approaches[J], Int J Chem Reactor Eng , 2003, 1.
    [31] Schmidt A, Renz U, Numerical Prediction of Heat Transfer Between a Bubbling Fluidized Bed and an Immersed Tube Bundle[J], Heat Mass Transfer, 2005, 41: 257-270.
    [32]杨太阳,王安仁,张锁江等,气固鼓泡流化床的流动特性数值模拟[J],计算机与应用化学, 2005, 22(3): 206-210.
    [33]徐祥,向文国,秦成虎,流化床密相区流动特性的数值模拟[J],热能动力工程, 2004, 19(2): 131-133.
    [34] Wachem B G M van, Almstedt A E, Methods for Multiphase Computational Fluid Dynamics[J], Chem. Eng., 2003, 96: 81-98.
    [35] Chiesa M, Mathiesen V, Melheim J A, et al., Numerical Simulation of Particulate Flow by the Eulerian-Lagrangian and the Eulerian-Eulerian Approach with Application to a Fluidized Bed[J], Compt. Chem. Eng., 2005, 29: 291-304.
    [36] Van der Hoef M A, Van Sint Annaland M, Kuipers J A M, Computational Fluid Dynamics for Dense Gas-Solid Fluidized Beds: a Multi-Scale Modeling Strategy[J], Chem. Eng. Sci., 2004, 59: 5157-5165.
    [37]张锴,毕继诚, Brandani Stefano,气固密相流化床的多相流CFD模拟进展[C],中国颗粒学会2006年年会海峡两岸颗粒技术研讨会, 2006.
    [38] Goldschmidt M J V, Beetstra R, Kuipers J A M, Hydrodynamic Modeling of Dense Gas-Fluidised Beds: Comparison and Validation of 3D Discrete Particle and Continuum Models[J], Powder Technology, 2004, 142: 23-47.
    [39] Tsuji Y, Activities in Discrete Particle Simulation[J], Powder Technology, 2000, 113: 278-286.
    [40] Rong D, Horio M, Behavior of Particle and Bubbles Around Immersed Tubes in a Fluidized Bed at High Temperature and Pressure: a DEM Aimulation[J], Multiph Flow, 2001, 27: 89-105.
    [41] Xiong Y, Zhang M, Yuan Z, Three-Dimensional Numerical Simulation Method for Gas-Solid Injector[J], Powder Technology, 2005, 160:180-189.
    [42] Zhong W, Xiong Y, Yuan Z, et al., DEM Simulation of Gas-Solid Flow Behaviors in Spout-Fluid Bed[J], Chem. Eng. Sci., 2006, 61: 1571-1584.
    [43]张勇,金保升,钟文琪等,喷动流化床颗粒混合特性的三维直接数值模拟[J],中国电机工程学报, 2008, 28(2): 33-38.
    [44] Hoomans B P B, Kuipers J A M, Swaaij W P M van, Granular Dynamics Simulation of Segregation Phenomena in Bubbling Gas-Fluidized Beds[J], Powder Technolgy, 2000, 109: 41-48.
    [45]周浩生,陆继东,钱诗智等,流化床气固两相流动颗粒刚性碰撞模型[C],中国工程热物理学会燃烧学学术会议, 1998.
    [46] Zhong Wenqi, Zhang Mingyao, Jin Baosheng, et al.,Three-Dimensional Ssimulation of Gas/Solid Flow in Spout Fluid Beds with Kinetic Theory of Granular Flow[J], Chinese Journal of Chemical Engineering, 2006, 14(5): 611-617.
    [47] Tsuji Y, Tana Ka T, Yonemura S, Clusters Patters in Fluidized Bed by Numerical Simulation (Discrete Particle Model Versus Two-Fluid Model) [J], Powder Technology, 1998, 95: 254-264.
    [48] Ding J, Gidaspow D, A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow[J], AIChE, 1990, 36: 523-538.
    [49] Mathiesen V, Solberg T, Hjertager B H, An Experimental and Computational Study of Multiphase Flow Behavior in a Circulating Fluidized Bed[J], International Journal of Multiphase Flow, 2000, 26(3): 387-419.
    [50] Lathouwers D, Bellan J,Modeling of Dense Gas-solid Reactive Mixtures Applied to Biomass Pyrolysis in a Fluidized Bed,International Journal of Multiphase Flow[J], 2001,27 (12):2155-2187.
    [51]沈志恒,孙巧群,刘国栋等,湍动流化床内气固两相流动特性的数值模拟[J],工程热物理学报, 2007, 28(6): 968-970.
    [52] Wachem B G M van, Schouten J C, Krishna R, et al., Eulerian Simulations of Bubbling Behaviour in Gas-Solid Fluidized Beds[J], Computers&Chemical Engineering, 1998, 22(1): 299-306.
    [53] Laux H, Johansen S T, Computer Simulation of Bubble Formation in a Gas-Solid Fluidized Bed, In Fluidization LX, Proceedings of the Ninth Engineering Foundation Conference on Fluidization, Durangeo CO,1998:517-425.
    [54] Yu Liang, Lu Jing, Zhang Xiangping et al., Numerical Simulation of the Bubbling Fluidized Bed Coal Gasification by the Kinetic Theory of Granular Flow (KTGF)[J], Fuel, 2007, 86(5/6): 722-734.
    [55]王小芳,金保升,钟文琪,基于欧拉多相流模型的流化床煤气化过程三维数值模拟[J],东南大学学报, 2008, 38(3): 454-460.
    [56] Neri A, Gidaspow D, Riser Hydrodynamics: Simulation Using Kinetic Theory[J], AIChE J, 2000, 46: 52-67.
    [57] Huilin L, Gidaspow D, Bouillard J, et al., Hydrodynamic Simulation of Gas-Solid Flow in a Riser Using Kinetic Theory of Granular Flow[J], Chem. Eng., 2003, 95: 1-13.
    [58] Schmidt A, Renz U, Numerical Prediction of Heat Transfer in Fluidized Beds by a Kinetic Theory of Granular Flows[J], Int. Therm. Sci., 2000, 39: 871-885.
    [59] Benyahia S, Arastoopour H, Knowlton T M et al., Simulation of Particles and Gas Flow Behavior in the Riser Section of a Ccirculating Fluidized Bed Using the Kinetic Theory Approach for the Particulate Phase[J], Powder Technology, 2000, 112: 24-33.
    [60] Goldschmidt M J V, Kuipers J A M, Swaaij W P M, Hydrodynamic Modeling of Dense Gas-Fluidised Beds Using the Kinetic Theory of Granular Flow: Effect of Coefficient of Restitution on Bed Dynamics[J], Chem. Eng. Sci., 2001, 56: 571-578.
    [61] Chan C K, Guo Y C, Lau K S, Numerical Modeling of Gas-Particle Flow Using a Comprehensive Kinetic Theory with Turbulence Modulation[J], Powder Technology, 2005, 150(1): 42-55.
    [62]李晓光,赵宏伟,吴茵等,国内外有机硅工业进展[J],吉林化工学院学报, 2006, 23(2): 30-31.
    [63]王皖林,王涛,中国甲基氯硅烷合成技术进展[J],有机硅材料, 2008, 22(1): 1-5.
    [64]郑建军,我国三大有机硅单体生产装置发展概述[J],化工新型材料, 1999:76-77.
    [65] Hurd D T, Rochow E G, On the Mechanism of the Reaction between Methyl Chloride and Silicon-Copper[J], J Am Chem Soc, 1945, 67(7): 1057-1059.
    [66] Halm R L, Wilding O K, Method of Direct Process Performance Improvement via Control of Silicon Manufacture[P], US 4898960, 1990.
    [67]邓亮,甲基(氢)氯硅烷合成及动力学研究[D],浙江:浙江大学, 2006.
    [68] Lewis L, Ward W, The Use of A Fixed-Bed Reactor to Evaluate t he Interactions of Catalyst s and Promoters in the Methylchlorosilane Reaction and to Determine the Effect of Cu in the Form of the Eta Phase on This Reaction[J], Ind. Eng. Chem. Res., 2002, 41(3): 397-402.
    [69]李波涛,固定床直接法合成甲基氯硅烷的实验研究[D],浙江:浙江大学, 2006.
    
    [70] Anderson R T B, Jackson R, A Fluid Mechanical Description of Fluidized Beds[J], I & EC Fundam, 1967, 6(4): 527-534.
    
    [71] Bowen R M, Theory of Mixtures[M], Academic Press, New York:1976.
    
    [72] Alder B J, Wainwright T E, Studies in Molecular Dynamics II: Behaviour of a Small Number of Elastic Spheres[J], Chem. Phys., 1990, 33: 1439.
    
    [73] Chapman S, Cowling T G, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, England: 1990.
    
    [74] Gidaspow D, Lu H L, Collisional Viscosity of FCC Particles in a CFB[J], AIChE J, 1996, 42: 2503-672510.
    
    [75] Gidaspow D, Bezburuah R, Ding J, Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Approach, In Fluidization VII[C], Proceedings of the 7th Engineering Foundation Conference on Fluidization, 1992: 75-82.
    
    [76] Lebowitz J, Exact L, Solution of Generalized Percus-Yevick Equation for a Mixture of Hard Spheres[J], The Phy. Rev., 1964, 133(4A): A895-A899.
    
    [77] Lun C K K, Savage S B, Jerey D J, et al., Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flow Field [J], Fluid Mech., 1984, 140: 223-256.
    
    [78] Ogawa S, Umemura A, Oshima N, On the Equation of Fully Fluidized Granular Materials[J], Appl. Math. Phys., 1980, 31: 483.
    
    [79] Syamlal M, Rogers W, O'Brien T J, MFIX Documentation Theory Guide[P], DE9400087, 1993.
    
    [80] Drew D A, Lahey R T, Particulate Two-Phase Flow[M], Butterworth-Heinemann, Boston: 1993.
    
    [81] Syamlal M, O'Brien T J, Computer Simulation of Bubbles in a Fluidized Bed[J], AIChE Symp Series, 1989, 85: 22-31.
    
    [82] Dallavalle J M, Micromeritics[M], Pitman publishing corpration, New York: 1948.
    
    [83] Richardson J R, Zaki W N, Sedimentation and Fluidization: Part I[J], Trans Inst Chem Eng, 1954, 32: 35-53.
    [84] Garside J, Al-Dibouni M R, Velocity-Voidage Relationships for Fluidization and Sedimentation[J], I&EC Process Des. Dev., 1977, 16: 206-214.
    [85] Wen C Y, Yu Y H, Mechanics of Fluidization[J], Chem. Eng. Prog. Symp., 1966, 62: 100-111.
    [86] Ergun S, Fluid Flow through Packed Columns[J], Chem. Eng. Prog., 1952, 48(2): 89-94.
    [87] Syamlal M, The Particle-Particle Drag Term in a Multiparticle Model of Fluidization [P], DE 87006500, 1987.
    [88] Hulme I, Clavelle E, Lee L V et al., CFD Modeling and Validation of Bubble Properties for a Bubbling Fluidized Bed[J], Ind. Eng. Chem. Res., 2005, 44(12): 4254-4266.
    [89] Wachem B G M van, Schouten J C, Vanden Bleek C M, et al.,Comparative analysis of CFD models of dense gas-solid systems[J], AIChE J, 2001, 47(5): 1035-1051.
    [90] Scott Cooper, Charles J, Coronella, CFD Simulations of Particle Mixing in a Binary Fluidized Bed[J], Powder Technology, 2005, 151: 27-36.
    [91] Guenther C, Syamlal M, The Effect of Numerical Diffusion on Simulation of Isolated Bubbles in a Gas-Solid Fluidized Bed[J], Powder Technology, 2001, 116: 142-154.
    [92] Mou Kall Edf, Darwish M, Sekar B, A Pressure-Based Aalgorithm for Multi-Pphase Flow at All Speeds[J], Journal of Computational Physics, 2003, 190(2): 550-571.
    [93] Cundall P A, Hart R D, Numerical Modelling of Discontinua, Engineering Computations, 1992, 2(9): 101-113.
    [94] Kawaguchi T, Tanaka T, Tsuji Y, Numerical Simulation of Two Dimensional Fluidized Beds Using the Discrete Element Method(Comparison Between the Two and Three Dimensional Models)[J], Powder Technology, 1998, 196: 129-138.
    [95] Lu Huilin, He Yurong, Dimitri Gidaspow, Hydrodynamic Modelling of Binary Mixture in a Gas Bubbling Fluidized Bed Using the Kinetic Theory of Granular Flow[J], Chemical Engineering Science, 2003, 58: 1197-1205.
    [96]梁卫华,王金福,罗务习等,工业硅粉流化特性实验[C],中国颗粒学会2002年年会暨海峡两岸颗粒技术研讨会会议论文集, 2002.
    [97] Hong S C, Jo B R, Doh D S, Determination of Minimum Fluidization Velocity by the Statistical Analysis of Pressure Fluctuations in a Gas-Solid Fluidized Bed[J], Powder Technology, 1990, 60(3): 215-221.
    [98]刘安源,流化床内流动、传热及燃烧特性的离散颗粒模拟[D],北京:中国科学院工程热物理研究所, 2002.
    [99] Fan L T, Ho T C, Walawender W P, Pressure Fluctuations in a Fluidized Bed[J], AIChE J, 1981, 27(3): 388-396.
    [100]梁卫华,王金福,韩禄等,压力脉动法预测硅粉颗粒最小流化速度的实验[J],过程工程学报, 2002, 2(1): 1-6.
    [101] Puncochar M, Dvanhos J, Cermak J et al., Evaluation of Minimum Fluidization Velocity in Gas Fluidized Bed from Pressure Fluctuations[J], Chem. Eng. Comm., 1985, 35(1): 81-87.
    [102]张锴,赵玉龙,张济宇等,鼓泡床内气体分布器设计及其对水力学的影响[J],煤化工, 1995, 23(4): 11-15.
    [103]化学工程师手册编辑委员会,化学工程师手册[M],机械工业出版社, 2001.
    [104]董谊仁,侯章德,填料塔气体分布器及其塔内件[J],化工生产与技术1996, (4): 6-13.
    [105]张吕鸿,填料塔进料气体分布器气液运动的研究[博士论文],天津:天津大学, 1998.
    [106] Biyikli S, Tuzla K, Chen J C, Heat Teansfer around a Horizontal Tube in Freeboard Region of Fluidized Beds[J], AIChE J,1983,29(5):712-716.
    [107] Gauthier D, Zerguerrans S, Lamant G F, Influence of the Particle Distribution of Powders on the Velocities of Minimum and Complete Fluidization[J], Chem. Eng. J., 1999, 74: 181-196.
    [108] Sebastian Zimmermann, Fariborz Taghipour, CFD Modeling of the Hydrodynamics and reaction kinetics of FCC Fluidized-Bed Reactors [J], Ind. Eng. Chem. Res., 2005, 44: 9818-9827.
    [109] Ding J, Lyczkowski R W, Three-dimensional kinetic theory modeling of hydrodynamics and erosion in fluidized beds [J], Power Technology, 1992, 73: 127-138.
    [110] Rong D, Horio M, Investigation of particle and Bubble Behaviors around Tubes Immersed in a Pressurized Fluidized Bed[C], Proeeedings of the 15th Intenrational Conefrenee On Fluidized Bed Combustion No, FBC99-0159.
    [111]何玉荣,陆慧林,刘阳等,流化床内气固两相绕流单沉浸管的流体动力计算[J],燃烧科学与技术, 2003, 9(5): 475-481.
    [112] He Y, Lu H, Sun Q, Yang L, et al., Hydrodynamics of gas-solid flow around immersed tubes in bubbling fluidized beds[J], Powder Technology, 2004, 145: 88-105.
    [113]赵永志,程易,沉浸管式流化床的颗粒尺度模拟[J],化学工程, 2007, 35(11): 21-24.
    [114] Zabrodsky S S, Hydrodynamics and Heat Transfer in Fluidized Beds, MIT Press, 1966.
    [115] Zabrodsky S S, Compound Heat Exchange Between a High Tempreture Gas-Fluidized Bed and Solid Surface, Int, J, Heat Mass Transfer, 1973, 16: 241-249.
    [116]森滋腾,多孔介质分布板流化床内颗粒-流体传热的研究[J],化学工学, 1972, 36: 1130.
    [117] Pfeffer R , Happel J, An analytical study of heat and mass transfer in multiparticle systems at low Reynolds numbers [J], AIChE J, 1964, 10(5): 605-611.
    [118] Kunii D, Levenspiel O,华东石油学院等译,流态化工程[M],北京:石油化学工业出版社, 1971.
    [119] Dow W M, Jakob M, Heat transfer between a vertical tube and a fluidized air-solid mixture[J], Chem. Eng. Progr., 1951: 637-648.
    [120] Sater V E, Levenspiel O, Two-Phase Flow in Packed Beds. Evaluation of Axial Dispersion and Holdup by Moment Analysis[J], Ind. Eng. Chem. Fundamen., 1966, 5 (1): 86-92.
    [121] Ruckenstein E , Nonhomogeneous Fluidization[J], Ind. Eng. Chem. Fundamen., 1966, 5 (1): 139-141.
    [122] Saxena S C, Heat Transfer between Immersed Surfaces and Gas-Fluidized Bed[C], in: Hartnett J P, Irvine Jr T F Eds, Advances in Heat Transfer,New York: Academic,1989.
    [123] Mickley H S, Fairbanks C A, Mechanisms of heat transfer to fluidized beds [J], AIChE J, 1955,(1): 374-384.
    [124] George A H, Smalley J L, An Instrumented Cylinder for the Measurement of Instantaneous Local Heat Flux in High Temperature Fluidized Beds[J], Heat Mass Transfer, 1991, 34(12):3025-3036.
    [125] Wicke E, Fetting F, W?rmeübertragung in Gaswirbelschichten[J], Chem. Ing. Techn., 1954, 26(6): 301-309.
    [126]林汉涛,大粒子流化床埋管传热模型研究[J],动力工程,1985,(6): 25-28.
    [127]杨晶,倪学梓,王立,近表面乳化团空隙率和热物性分布的不均匀性及其对乳化团传热模型预测值的影响[J],冶金能源,1995,14(1): 52-58.
    [128]王立,倪学梓,冯旭,流化床埋人表面附近乳化相的不均匀性及其对建立传热数学模型的影响[J],冶金能源, 1992, 11(3): 24-26.
    [129]刘安源,刘石,流化床内颗粒碰撞传热的机理[J],中国电机工程学报,2003,23(3): 161-165.
    [130] Sun J,Chert M M.A theoretical analysis of heat transfer due to particle impact [J].Int.J.Heat Mass Transfer, 1988,31(5): 969-975.
    [131] Delvosalle C,Vandersehuren J.Gas to particle and particle to particle heat transfer in fluidized beds of large particles [J],Chemical Engineering Science,1985, 40(4): 769-779.
    [132] Rong D.DEM simulation of hydrodynamics,heat transfer and combustion in fluidized beds[D], Tokyo University of Agriculture and Technology, Japan, 2000.
    [133]卢焕章,石油化工基础数据手册[M],北京:化学工业出版社,1982.
    [134] Huang D, Levy E, Heat Thansfer to Fine Powders in a Bubbing Fluidized Bed with Sound Assistance [J], AIChE J, 2004, 50(2), 302-310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700