固液界面纳米气泡与基底相互作用研究及滑移长度测量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固液界面边界条件是流体力学研究中的一个基本内容。近年来研究显示,在固液接触面上流体相对于固体墙的运动速度并不总是零,这种现象称为固液界面边界滑移,由滑移长度来表征。边界滑移的存在将减小流体与固体墙之间的拖曳摩擦力,对基于微纳米流体流动的生物芯片的应用具有重要的意义。理论分析和实验结果显示,存在于固液界面上的纳米气泡是产生边界滑移的主要原因。本文应用原子力显微镜(AFM)在聚苯乙烯样品表面研究了固液界面纳米气泡与样品基底的相互作用,改进了的接触模式AFM边界滑移测量方法并提出采用敲击模式AFM法测量滑移长度,应用这两种方法对不同润湿性样品表面进行了测量,初步建立了纳米气泡尺寸及分布密度与边界滑移之间的关系。
     采用改进了的微悬臂夹持器在去离子水中实现了聚苯乙烯样品表面纳米气泡成像并对纳米气泡进行表征,在纳米尺度上揭示了沿固液气三相接触线的线张力对纳米气泡接触角影响机理并计算得到线张力数值。在应用敲击模式进行纳米气泡成像过程中,发现除增加扫描载荷外,降低探针的扫描速度同样会造成纳米气泡聚合。通过实验观察和对具体的纳米气泡进行跟踪,揭示了纳米气泡聚合的过程。纳米气泡的聚合同时伴随着纳米气泡的移动,在外界扰动下,小的纳米气泡首先被移动,与较大纳米气泡发生聚合,产生新的纳米气泡。提出采用AFM的力调制模式曲线分析的方法区分样品表面固体颗粒和纳米气泡。
     研究了纳米气泡在聚苯乙烯薄膜上产生纳米凹痕的作用机理。将聚苯乙烯薄膜浸入去离子水中后,在薄膜上产生大小不同的纳米气泡。随着浸入时间的增加,在较大尺寸纳米气泡周围产生聚苯乙烯环状结构,而小尺寸纳米气泡逐渐消失,在样品表面留下纳米凹痕结构。结合理论分析和实验现象,建立了纳米气泡的存在对聚苯乙烯薄膜影响的模型。模型显示,纳米气泡较高的内部压强与固液气三相接触线上表面张力沿竖直方向分量共同作用引起聚苯乙烯薄膜发生变形,从而产生纳米凹痕结构。
     针对纳米气泡易于移动的问题,从提高纳米气泡稳定性的角度出发,提出了纳米气泡非移动性概念。首先采用AFM的力-距离曲线分别在进给和收缩运动中测量了作用在探针上的表面张力沿竖直方向分力,验证了接触角滞后理论对于纳米气泡仍然成立。在此基础上,应用接触角滞后理论计算在纳米凹痕结构和疏水材料岛状结构上移动纳米气泡所需的水平初始力,建立了这两种结构提高纳米气泡非移动性的理论模型。随后,分别在具备纳米凹痕结构和疏水岛状结构的样品表面上施加较高的扫描载荷,实验验证了以上两种结构能够提高纳米气泡的非移动性。
     针对当前采用接触模式AFM测量边界滑移时无法消除静电力和表面粗糙度对测量结果影响的问题,采用双低速逼近法和虚拟固液接触面法分别确定静电力引起的微悬臂偏转分量和修正实验测量得到的固液接触面位置,改进了接触模式AFM边界滑移测量方法。利用它在不同逼近速度下和不同润湿性样品表面测量滑移长度,探索了样品逼近速度和表面润湿性对边界滑移的影响。针对接触模式测量中无法消除微悬臂偏转对分离距离和逼近速度影响的问题,又引入敲击模式AFM法在不同润湿性样品表面测量其滑移长度,并比较了两种测量方法的优劣。结合测量得到的滑移长度和AFM液体中成像得到的纳米气泡,初步建立了纳米气泡尺寸和分布密度与滑移长度之间的关系。
The boundary condition at the solid-liquid interface is a fundamental problem in fluid dynamics. Recent studies have shown that at solid-liquid interfaces, the fluid velocity is not always equal to that of solid surfaces, a phenomenon called boundary slip. The degree of boundary slip is evaluated by a slip length. The existence of boundary slip will reduce drag friction force between fluid flows and soild walls, which is in particular significant for micro/nanofluidics based biosensor applications. Theoretical and experimental studies suggest that at the solid-liquid interfaces, the presence of nanobubbles is responsible for the existance of the boundary slip. In this paper, atomic force microscopy (AFM) is applied to study nanobubbles-substrate interaction at solid-liquid interfaces on polystyrene surfaces. The traditional contact mode AFM method of slip length measurement is modified and a new method based on tapping mode AFM is developed. Using these two methods, slip lengths are measured on hydrophilic, hydrophobic, and superhydrophobic surfaces. Based on nanobubble imaging and slip length measurement, the relationship between nanobubbles and boundary slip is developed.
     In this paper, the tip holder commonly used for imaging in air is modified to improve nanobubble imaging on polystyrene surfaces in water. The influence of line tension force along solid-liquid-gas three phase contact line on contact angles of nanobubbles is investigated and the line tension force is measured on nanoscale. Influence of scan speed and scan load on nanobubble imaging is investigated. The detailed process of nanobubble coalescence is studied by experimental observation. With external disturbance, small nanobubbles are firstly moved and merged into large nanobubbles during coalescence. Cantilever tip-nanobubble interaction is performed using force modulation curves, which can be used to distinguish nanobubbles and solid objects at solid-liquid interfaces.
     In this paper, the mechanism of nanobubble induced nanoindents on polystyrene films is investigaed. The evolution of nanobubbles and polystyrene films are studied after the films are immersed into DI water. With time, rim stuructures appear and gradually grow up around larger nanobubbles. Smaller nanobubbles gradually disappear leaving nanoindents. Based on the theoretical analysis and experimental observation, a model is set up to explain the phenomenon. The high inner pressure and decomponent force of surface tension force in the direction normal to the sample surfaces are thought to be the reason for the generation of nanoindents.
     From aspect of improving nanobubble stability and reducing friction force between solid-liquid interfaces, a concept of nanobubble immobility is proposed. The force-distance curves in contact mode AFM are firstly applied to study solid-liquid-gas three phase contact properties for nanobubbles. By comparing the decomponents of surface tension forces along vertical direction for both approaching and retracting movements, it is verified that contact angle hysteresis is still valid for nanobubbles. Based on the concept of contact angle hysteresis, a model is developed to evaluate nanobubble immobility on nanoindents and island structures by calculating the force needed to slide nanobubbles. The model is then verified through experiments by applying higher scan load on surfaces with nanoindents and island structures, respectively.
     In the study of boundary slip, two very low approach velocities are first applied to determine the cantilever deflection component generated by electrostatic force. In order to eliminate the influence of surface roughness on the measured slip length, the mean plane of sample surfaces are taken as virtual solid-liquid interfaces. Through above treatment, the contact mode AFM method is improved. The method is then used to measure slip lengths using different approach velocity on surfaces with different wettabilities. The effect of approach velocity and wettability on boundary slip is studied. To simplify the process of slip length measurement, tapping mode AFM is applied to measure slip lengths on surfaces with different wettability. With the measured slip length and nanobubble images, the relationship between nanobubbles and boundary slip is developed.
引文
1. S. Goldstein. Modern development in fluid dynamics. Clarendon, 1938:677-680
    2. G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 1970:149
    3. S. G G. Stokes, On the Effect of the Internal Friction of Fluids on the Motion of Pendulums, Transaction of the Cambridge Philosophical Society. 1851, 9:8-106
    4. S. Goldstein, Fluid Mechanics in First Half of This Century, Annual Review of Fluid Mechanics. 1969, 1:1-28
    5. E. Lauga, M. P. Brenner and H. A. Stone. Microfluidics: the no-slip boundary condition. In Springer Handbook of Experimental Fluid Mechanics, Spring: Berlin Heidelberg. 2005: 1219-1240
    6. C. Neto, D. R. Evans, E. Bonaccurso, H. J. Butt and V. S. J. Craig, Boundary slip in Newtonian liquids: a review of experimental studies, Reports on Progress in Physics. 2005, 68(12):2859~2897
    7.吴承伟,马国军,周平.流体流动的边界滑移问题研究进展,力学进展. 2008, 38(3):265~282
    8. V. Srinivasan, V. K. Pamula and R. B. Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids, Lab on a Chip. 2004, 4(4):310-315
    9. B. H. Weigl, R. L. Bardell and C. R. Cabrera, Lab-on-a-chip for drug development, Advanced Drug Delivery Reviews. 2003, 55(3):349~377
    10. M. A. Northrup, B. Benett, D. Hadley, P. Landre, S. Lehew and J. Richards, A miniature DNA-based analytical instrument based on micromachined silicon reaction chambers, Analytical Chemistry. 1998, 70:918-922
    11. H. Craighead, Future lab-on-a-chip technologies for interrogating individual molecules, Nature. 2006, 442(7101):387~393
    12. W. C. Tang and A. P. Lee, Defense applications of MEMS, 2001, 26:318-319
    13. M. Holmberg, A. Kuhle, J. Garnaes, K. A. Morch and A. Boisen,Nanobubble trouble on gold surfaces, Langmuir. 2003, 19(25): 10510-10513
    14. N. Ishida, T. Inoue, M. Miyahara and K. Higashitani, Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy, Langmuir. 2000, 16(16):6377~6380
    15. ST. Lou, Z. Q. Ouyang, Y. Zhang, X. J. Li, J. Hu, M. Q. Li and F. J. Yang, Nanobubbles on solid surface imaged by atomic force microscopy, Journal of Vacuum Science & Technology B. 2000, 18(5):2573~2575
    16. A. C. Simonsen, P. L. Hansen and B. Klosgen, Nanobubbles give evidence of incomplete wetting at a hydrophobic interface, Journal of Colloid and Interface Science. 2004, 273(1):291~299
    17. J. W. G. Tyrrell and P. Attard, Atomic force microscope images of nanobubbles on a hydrophobic surface and corresponding force-separation data, Langmuir. 2002, 18(1): 160-167
    18. J. Israelachvili and R. Pashley, The Hydrophobic Interaction Is Long-Range, Decaying Exponentially with Distance, Nature. 1982, 300(5890):341~342
    19. A. Carambassis, L. C. Jonker, P. Attard and M. W. Rutland, Forces measured between hydrophobic surfaces due to a submicroscopic bridging bubble, Physical Review Letters. 1998, 80(24):5357~5360
    20. H. K. Christenson and P. M. Claesson, Direct measurements of the force between hydrophobic surfaces in water, Advances in Colloid and Interface Science. 2001, 91(3):391~436
    21. T. R. Jensen, M. O. Jensen, N. Reitzel, K. Balashev, G. H. Peters, K. Kjaer and T. Bjornholm, Water in contact with extended hydrophobic surfaces: Direct evidence of weak dewetting, Physical Review Letters. 2003, 90(8):086101
    22. M. Sakamoto, Y. Kanda, M. Miyahara and K. Higashitani, Origin of long-range attractive force between surfaces hydrophobized by surfactant adsorption, Langmuir. 2002, 18(15):5713~5719
    23.郑最胜,李南方.纳米气泡简介,化学教学. 2008,(3):41~43
    24. C. Cottin-Bizonne, C. Barentin, E. Charlaix, L. Bocquet and J. L. Barrat, Dynamics of simple liquids at heterogeneous surfaces: Molecular-dynamics simulations and hydrodynamic description, European Physical Journal E. 2004, 15(4):427~438
    25. E. Lauga and H. A. Stone, Effective slip in pressure-driven Stokes flow, Journal of Fluid Mechanics. 2003, 489:55-77
    26. M. Sbragaglia and A. Prosperetti, Effective velocity boundary condition at a mixed slip surface, Journal of Fluid Mechanics. 2007, 578:435-451
    27. P. Joseph, C. Cottin-Bizonne, J. M. Benoit, C. Ybert, C. Journet, P. labeling and L. Bocquet, Slippage of water past superhydrophobic carbon nanotube forests in microchannels, Physical Review Letters. 2006, 97(15): 156104
    28. J. Ou, B. Perot and J. P. Rothstein, Laminar drag reduction in microchannels using ultrahydrophobic surfaces, Physics of Fluids. 2004, 16(12):4635~4643
    29.张雪花,胡钧.固液界面纳米气泡的研究进展,化学进展. 2004, 16(5):673~681
    30. B. Bhushan. Springer Handbook of Nanotechnology, second ed. Springer, 2007
    31. B. Bhushan and Y. C. Jung, Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces, Journal of Physics-Condensed Matter. 2008, 20(22):225010
    32. B. Bhushan, Y. C. Jung and K. Koch, Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion, Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences. 2009, 367(1894):1631~1672
    33. M. Nosonovsky and B. Bhushan. Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics. Springer, 2008
    34. G. M. Whitesides, The origins and the future of microfluidics, Nature. 2006, 442(7101):368~373
    35. X. L. Zhang and S. J. Haswell, Materials matter in microfluidic devices, MRS Bulletin. 2006, 31(2):95~99
    36. T. T. M. Tan, Y. Y Gan, L. H. Gan, T. Yong, B. Zhou, Y L. Lam and Y Zhou. Coating of polystyrene thin film on glass for protein immobilization in optical biosensor applications. Lieberman, R. A., Asundi, A. K.Asanuma, H. SPIE Conference on Advanced Photonic Sensors and Applications, Singapore, Singapore, 1999, Spie-Int Soc Optical Engineering: 150-157
    37. C. S. Chen, D. N. Breslauer, J. I. Luna, A. Grimes, W. C. Chin, L. P. Leeb and M. Khine, Shrinky-Dink microfluidics: 3D polystyrene chips, Lab on a Chip. 2008, 8(4):622~624
    38. Y. D. Yin, Y. Lu, B. Gates and Y N. Xia, Template-assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures, Journal of the American Chemical Society. 2001, 123(36):8718~8729
    39. N. Zammatteo, C. Girardeaux, D. Delforge, J. J. Pireaux and J. Remade, Amination of polystyrene microwells: Application to the covalent grafting of DNA probes for hybridization assays, Analytical Biochemistry. 1996, 236(1):85~94
    40. D. R. Evans, V. S. J. Craig and T. J. Senden, The hydrophobic force: nanobubbles or polymeric contaminant, Physica a-Statistical Mechanics and Its Applications. 2004, 339(1-2): 101-105
    41. M. Mao, J. H. Zhang, R. H. Yoon and W. A. Ducker, Is there a thin film of air at the interface between water and smooth hydrophobic solids, Langmuir. 2004, 20(5): 1843-1849
    42. C. T. McKee and W. A. Ducker, Refractive index of thin, aqueous films between hydrophobic surfaces studied using evanescent wave atomic force microscopy, Langmuir. 2005, 21(26): 12153-12159
    43. Y S. Seo and S. Satija, No intrinsic depletion layer on a polystyrene thin film at a water interface, Langmuir. 2006, 22(17):7113-7116
    44. K. Tanaka, A. Takahara and T. Kajiyama, Film thickness dependence of the surface structure of immiscible polystyrene/poly(methyl methacrylate) blends, Macromolecules. 1996, 29(9):3232-3239
    45. Y Takata, J. H. J. Cho, B. M. Law and M. Aratono, Ellipsometric search for vapor layers at liquid-hydrophobic solid surfaces, Langmuir. 2006, 22(4):1715~1721
    46. M. Switkes and J. W. Ruberti, Rapid cryofixation/freeze fracture for the study of nanobubbles at solid-liquid interfaces, Applied Physics Letters. 2004, 84(23):4759~4761
    47. R. Steitz, T. Gutberlet, T. Hauss, B. Klosgen, R. Krastev, S. Schemmel, A. C. Simonsen and G. H. Findenegg, Nanobubbles and their precursor layer at theinterface of water against a hydrophobic substrate, Langmuir. 2003, 19(6):2409~2418
    48. X. H. Zhang, A. Quinn and W. A. Ducker, Nanobubbles at the interface between water and a hydrophobic solid, Langmuir. 2008, 24(9):4756~4764
    49. A. Poynor, L. Hong, I. K. Robinson, S. Granick, Z. Zhang and P. A. Fenter, How water meets a hydrophobic surface, Physical Review Letters. 2006, 97(26):266101
    50. T. Koishi, S. Yoo, K. Yasuoka, X. C. Zeng, T. Narumi, R. Susukita, A. Kawai, H. Furusawa, A. Suenaga, N. Okimoto, N. Futatsugi and T. Ebisuzaki, Nanoscale hydrophobic interaction and nanobubble nucleation, Physical Review Letters. 2004, 93(18): 185701
    51. G. Binnig, C. F. Quate and C. Gerber, Atomic Force Microscope, Physical Review Letters. 1986, 56(9):930-933
    52. B. Bhushan. Handbook of Micro/nanotribology. CRC Press. 1999
    53.郑伟民,蔡继业.原子力显微镜在DNA领域中研究应用,现代仪器. 2006,(1):9~11
    54. J. W. Yang, J. M. Duan, D. Fornasiero and J. Ralston, Very small bubble formation at the solid-water interface, Journal of Physical Chemistry B. 2003, 107(25):6139~6147
    55. B. M. Borkent, S. M. Dammer, H. Schonherr, G. J. Vancso and D. Lohse, Superstability of surface nanobubbles, Physical Review Letters. 2007, 98(20):204502
    56.张雪花,楼柿涛,张志祥,张晓东,孙洁林,胡钧.固液界面纳米气泡的研究,电子显微学报. 2003, 22(3):136~141
    57.张雪花,张晓东,楼柿涛,张志祥,孙洁林,胡钧.温度对云母/水界面纳米气泡形成影响的研究,电子显微学报. 2004, 23(4):468
    58. X. H. Zhang, X. D. Zhang, S. T. Lou, Z. X. Zhang, J. L. Sun and J. Hu, Degassing and temperature effect on the formation of nanobubbles at the mica/water interface, Langmuir. 2004, 20:3813-3815
    59. C. Cottin-Bizonne, J. L. Barrat, L. Bocquet and E. Charlaix, Low-friction flows of liquid at nanopatterned interfaces, Nature Materials. 2003, 2(4):237~240
    60. S. Herminghaus, Roughness-induced non-wetting, Europhysics Letters. 2000,52(2):165~170
    61. K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley and K. K. Gleason, Superhydrophobic carbon nanotube forests, Nano Letters. 2003, 3(12): 1701-1705
    62. D. Quere, Rough ideas on wetting, Physica a-Statistical Mechanics and Its Applications. 2002, 313(l-2):32~46
    63. W. L. Ryan and E. A. Hemmingsen, Bubble Formation in Water at Smooth Hydrophobic Surfaces, Journal of Colloid and Interface Science. 1993, 157(2):312~317
    64. S. Ljunggren and J. C. Eriksson, The lifetime of a colloid-sized gas bubble in water and the cause of the hydrophobic attraction, Colloids and Surfaces a-Physicochemical and Engineering Aspects. 1997, 130:151-155
    65. D. Bernoulli. Hydrodynamica. 1738:59
    66. P. S. Girard, Memoires de la Classe des Sciences Mathematiques et Physiques de lTnstitut de France. 1815, 14:329
    67. S. D. Poission, l'Ecole Polytechnique. 1831, 13:161-169
    68. J. C. Maxwell, On Stresses in rarefied gases arising from inequalities of temperature, Philosophical Transactions of the Royal Society London. 1879, 170:231-256
    69. C. L. M. H. Navier, Memoire sur les lois du mouvement des fluides, Memoires de l'Academie Royale des sciences de lTnstitut de France VI. 1823:389-440
    70. P. L. G. Du Buat. Principes d' Hydraulique. 1786:92-93
    71. E. Villari, Introno all'efflusso del mercurio per tubi di vetro di piccolissimo diametro, Accademia delle Scienze dell Instituto di Bologna. 1875, 6:487-520
    72. E. G. Warburg, Poggendorff s Annalen. 1870, 140:367-379
    73. J. Poiseuille, Memoires des Savants Etrangers. 1841, 7:150
    74. H. Helmholtz and G. Pictowsky, Uber Reibung tropfbarer Flussigkeiten, Sitzungsber. Kais. Akad. Wiss. Wein, Math.-Naturwiss. Kl. Abt. 2. 1868, 40:607-658
    75. J. Traube and S. H. Whang, Uber reibungskonstante und wandschicht, Zeitschrift fur Physikalische Chemie A. 1928, 138:102-122
    76. E. Schnell, Slippage of Water over Nonwettable Surfaces, Journal of Applied Physics. 1956,27:1149-1152
    77. N. V. Churaev, V. D. Sobolev and A. N. Somov, Slippage of Liquids over Lyophobic Solid-Surfaces, Journal of Colloid and Interface Science. 1984, 97(2):574~581
    78.曹炳阳,陈民,过增元.纳米通道内液体流动的滑移现象,物理学报. 2006, 55(10):5305~5310
    79. J. Baudry, E. Charlaix, A. Tonck and D. Mazuyer, Experimental evidence for a large slip effect at a nonwetting fluid-solid interface, Langmuir. 2001, 17(17):5232~5236
    80. C. Cottin-Bizonne, B. Cross, A. Steinberger and E. Charlaix, Boundary slip on smooth hydrophobic surfaces: Intrinsic effects and possible artifacts, Physical Review Letters. 2005, 94(5):056102
    81. C. D. F. Honig and W. A. Ducker, No-slip hydrodynamic boundary condition for hydrophilic particles, Physical Review Letters. 2007, 98(2):028305
    82. D. C. Tretheway and C. D. Meinhart, Apparent fluid slip at hydrophobic microchannel walls, Physics of Fluids. 2002, 14(3):L9~L12
    83. O. I. Vinogradova and G. E. Yakubov, Dynamic effects on force measurements. 2. Lubrication and the atomic force microscope, Langmuir. 2003, 19(4): 1227-1234
    84. C. Cottin-Bizonne, S. Jurine, J. Baudry, J. Crassous, F. Restagno and E. Charlaix, Nanorheology: An investigation of the boundary condition at hydrophobic and hydrophilic interfaces, European Physical Journal E. 2002, 9(1):47~53
    85. C. H. Choi, K. J. A. Westin and K. S. Breuer, Apparent slip flows in hydrophilic and hydrophobic microchannels, Physics of Fluids. 2003, 15(10):2897~2902
    86. P. Joseph and P. Tabeling, Direct measurement of the apparent slip length, Physical Review E. 2005, 71(3):035303
    87. R. Pit, H. Hervet and L. Leger, Direct experimental evidence of slip in hexadecane: Solid interfaces, Physical Review Letters. 2000, 85(5):980~983
    88. T. Schmatko, H. Hervet and L. Leger, Friction and slip at simple fluid-solid interfaces: The roles of the molecular shape and the solid-liquid interaction,Physical Review Letters. 2005, 94(24):244501
    89. Y. X. Zhu and S. Granick, Rate-dependent slip of Newtonian liquid at smooth surfaces, Physical Review Letters. 2001, 87(9):096105
    90. E. Bonaccurso, M. Kappl and H. J. Butt, Hydrodynamic force measurements: Boundary slip of water on hydrophilic surfaces and electrokinetic effects, Physical Review Letters. 2002, 88(7):076103
    91. V. S. J. Craig, C. Neto and D. R. M. Williams, Shear-dependent boundary slip in an aqueous Newtonian liquid, Physical Review Letters. 2001, 8705(5):054504
    92. Y. X. Zhu and S. Granick, Limits of the hydrodynamic no-slip boundary condition, Physical Review Letters. 2002, 88(10):106102
    93. E. Bonaccurso, H. J. Butt and V. S. J. Craig, Surface roughness and hydrodynamic boundary slip of a newtonian fluid in a completely wetting system, Physical Review Letters. 2003, 90(14):144501
    94. K. B. Migler, H. Hervet and L. Leger, Slip Transition of a Polymer Melt under Shear-Stress, Physical Review Letters. 1993, 70(3):287~290
    95. R. Pit, H. Hervet and L. Leger, Friction and slip of a simple liquid at a solid surface, Tribology Letters. 1999, 7(2-3): 147-152
    96. C. D. Meinhart, S. T. Wereley and J. G. Santiago, PIV measurements of a microchannel flow, Experiments in Fluids. 1999, 27(5):414~419
    97. J. Yamada, Evanescent wave Doppler velocimetry for a wall's near field, Applied Physics Letters. 1999, 75(12):1805~1806
    98. O. I. Vinogradova, Drainage of a Thin Liquid-Film Confined between Hydrophobic Surfaces, Langmuir. 1995, ll(6):2213~2220
    99. B. Bhushan. Nanotribology and Nanomechanics: An Introduction, Second ed. Springer, 2008
    100. J. Koplik and J. R. Banavar, No-slip condition for a mixture of two liquids, Physical Review Letters. 1998, 80(23):5125~5128
    101.J. Koplik, J. R. Banavar and J. F. Willemsen, Molecular-Dynamics of Fluid-Flow at Solid-Surfaces, Physics of Fluids a-Fluid Dynamics. 1989, 1(5):781~794
    102.P. A. Thompson and M. O. Robbins, Shear-Flow near Solids - Epitaxial Order and Flow Boundary-Conditions, Physical Review A. 1990,41(12):6830~6837
    103.L. Bocquet and J. L. Barrat, Hydrodynamic Boundary-Conditions,Correlation-Functions, and Kubo Relations for Confined Fluids, PhysicalReview E. 1994, 49(4):3079~3092
    104.L. Bocquet and J. L. Barrat, Hydrodynamic properties of confined fluids,Journal of Physics-Condensed Matter. 1996, 8(47):9297~9300
    105.E. Ruckenstein and P. Rajora, On the no-slip boundary condition ofhydrodynamics, Journal of Colloid and Interface Science. 1983,96(22):488~491
    106.P. G. de Gennes, On fluid/wall slippage, Langmuir. 2002, 18(9):3413~3414
    107.D. C. Tretheway and C. D. Meinhart, A generating mechanism for apparentfluid slip in hydrophobic microchannels, Physics of Fluids. 2004,16(5):1509~1515
    108.0. I. Vinogradova, Slippage of water over hydrophobic surfaces,International Journal of Mineral Processing. 1999, 56(l-4):31~60
    109.U. C. Boehnke, T. Remmler, H. Motschmann, S. Wurlitzer, J. Hauwede andT. M. Fischer, Partial air wetting on solvophobic surfaces in polar liquids,Journal of Colloid and Interface Science. 1999, 211(2):243~251
    110. J. Ou and J. P. Rothstein, Direct velocity measurements of the flow pastdrag-reducing ultrahydrophobic surfaces, Physics of Fluids. 2005,17(10):103606
    111.R. M. Pashley, Effect of degassing on the formation and stability ofsurfactant-free emulsions and fine teflon dispersions, Journal of PhysicalChemistry B. 2003, 107(7):1714~1720
    112.K. W. Stockelhuber, B. Radoev, A. Wenger and H. J. Schulze, Rupture ofwetting films caused by nanobubbles, Langmuir. 2004, 20(1): 164-168
    113.M. Zbik and R. G. Horn. Hydrophobic attraction may contribute to aqueousflocculation of clays. International Symposium on Electrokinetic Phenomena,Krakow, Poland, 2002, Elsevier Science Bv:323~328
    114. A. Agrawal, J. Park, D. Y. Ryu, P. T. Hammond, T. P. Russell and G. H.McKinley, Controlling the location and spatial extent of nanobubbles usinghydrophobically nanopatterned surfaces, Nano Letters. 2005,5(9):1751~1756
    115.C. W. Extrand and Y. Kumagai, An experimental study of contact anglehysteresis, Journal of Colloid and Interface Science. 1997, 191(2):378~383
    116.T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. Lond.,Ser. A. Math. Phys. Sci. 1805, 95:65-87
    117. A. Amirfazli and A. W. Neumann, Status of the three-phase line tension,Advances in Colloid and Interface Science. 2004, 110(3): 121-141
    118.P. Blecua, R. Lipowsky and J. Kierfeld, Line tension effects for liquiddroplets on circular surface domains, Langmuir. 2006, 22(26): 11041-11059
    119.T. Pompe and S. Herminghaus, Three-phase contact line energetics fromnanoscale liquid surface topographies, Physical Review Letters. 2000,85(9):1930~1933
    120.B. Bhushan. Principles and Applications of Tribology. Wiley, 1999
    121.B. Bhushan. Introduction to Tribology. Wiley, 2002
    122. J. Israelachvili. Intermolecular & Surface Forces. 3rd ed. Academic Press,1992
    123.M. P. Brenner and D. Lohse, Dynamic Equilibrium Mechanism for SurfaceNanobubble Stabilization, Physical Review Letters. 2008, 101(21):214505
    124. J. E. Mark. Polymer data handbook. Oxford University Press, 1999
    125.L. Si, M. V. Massa, K. Dalnoki-Veress, H. R. Brown and R. A. L. Jones,Chain entanglement in thin freestanding polymer films, Physical ReviewLetters. 2005, 94(12): 127801
    126.H. R. Brown and T. P. Russell, Entanglements at polymer surfaces andinterfaces, Macromolecules. 1996, 29(2):798-800
    127.H. Meyer, T. Kreer, A. Cavallo, J. P. Wittmer and J. Baschnagel, On thedynamics and disentanglement in thin and two-dimensional polymer films,European Physical Journal-Special Topics. 2007, 141:167-172
    128.E. Bormashenko, On the role of contact line tension and 2D defects in theformation of the water depletion layer on hydrophobic surfaces, ChemicalPhysics Letters. 2008, 456(4-6): 186-188
    129.V. V. Yaminsky and B. W. Ninham, Hydrophobic Force - LateralEnhancement of Sub critical Fluctuations, Langmuir. 1993, 9(12):3618~3624
    130.M. A. Poggi, J. S. Boyles and L. A. Bottomley, Measuring the compressionof a carbon nanospring, Nano Letters. 2004, 4(6): 1009-1016
    131.C. G. L. Furmidge, Studies at phase interfaces. I. The sliding of liquid dropson solid surfaces and a theory for spray retention, Journal of Colloid Science.1962, 17(4):309~324
    132.P. Roura and J. Fort, Comment on "effects of the surface roughness onsliding angles of water droplets on superhydrophobic surfaces", Langmuir.2002, 18(2):566~569
    133.T. G. Stange, R. Mathew, D. F. Evans and W. A. Hendrickson, ScanningTunneling Microscopy and Atomic Force Microscopy Characterization ofPolystyrene Spin-Coated onto Silicon Surfaces, Langmuir. 1992,8(3):920~926
    134.D. R. Lide. CRC Handbook of Chemistry and Physics, 88th ed. AmericanChemical Society, 2008:382
    135.G A. Matei, E. J. Thoreson, J. R. Pratt, D. B. Newell and N. A. Burnham,Precision and accuracy of thermal calibration of atomic force microscopycantilevers, Review of Scientific Instruments. 2006, 77(8):083703
    136.B. Bhushan, K. Koch and Y. C. Jung, Nanostructures forsuperhydrophobicity and low adhesion, Soft Matter. 2008, 4:1799-1804
    137.C. Jai, T. Cohen-Bouhacina and A. Maali, Analytical description of themotion of an acoustic-driven atomic force microscope cantilever in liquid,Applied Physics Letters. 2007, 90(11): 113512
    138.D. Lasne, A. Maali, Y. Amarouchene, L. Cognet, B. Lounis and H. Kellay,Velocity profiles of water flowing past solid glass surfaces using fluorescentnanoparticles and molecules as velocity probes, Physical Review Letters.2008, 100(21):214502

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700