二甲醚闪急沸腾喷雾的数值模拟和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对二甲醚闪急沸腾喷射雾化与蒸发混合过程进行了深入的理论与实验研究,研究内容主要集中在闪急沸腾条件下的二甲醚喷雾混合相关过程的机理分析及模型的建立上,并在此基础上进行了二甲醚闪急沸腾喷雾的多维数值模拟。
     为了构建闪急沸腾喷雾的非现象学模型,本文在气泡生长一维模型的基础上,编写了一个可用于模拟均匀过热液体内部气泡生长过程的计算程序。计算程序的有效性通过过热水中的气泡生长实验数据进行了验证。在准确计算二甲醚各主要热物性参数的基础上,本文利用该计算程序对二甲醚气泡生长过程进行了模拟计算,重点研究了环境压力和燃油温度对二甲醚气泡生长的影响。研究结果表明,根据气泡生长的加速度曲线,二甲醚气泡的生长过程可划分为表面张力控制阶段、过渡阶段和传热控制阶段。在不同的阶段,气泡生长表现出不同的特点,而这是抑制气泡生长的作用在气液界面上的液体动压和促进气泡生长的热边界层内的热反馈效应共同作用、相互竞争的结果。
     为了深入研究过热燃油喷射的雾化机理,本文将雾化问题的研究范围拓展至喷雾的上游边界—喷嘴内部流动。根据发动机燃油喷射的实际情况将气泡流确定为过热液体在喷嘴内的流动形态。鉴于目前较为常用的一维模型和多维模型都无法给出气泡在喷嘴内部生长的更多细节,本文将“内部模式”与“外部模型”有效地结合起来,在合理的假设前提下提出了一个改进的适用于过热液体的喷嘴内部流动模型。该一维模型可对气泡在喷嘴内的生长过程进行模拟计算,并为闪急沸腾喷雾的多维数值模拟提供较为准确的初始条件。模型的有效性通过初始喷雾锥角的实验结果得到了初步验证。
     作为分析流体运动稳定性的有效工具,线性稳定性分析法在燃油射流雾化机理的研究中得到了广泛的应用。为此,本文在已有的理论基础上,采用线性稳定性分析法推导得到了一个可描述闪急沸腾射流不稳定性的色散方程,并对影响二甲醚射流不稳定性的多个因素进行了研究和分析。研究结果表明,在普通射流条件下,提高射流速度和减小液体粘性有利于改善雾化效果,而表面张力和环境介质对射流稳定性的影响则相对比较复杂,需要具体问题具体分析。在闪急沸腾条件下,气相体积分数和射流锥角越大,射流越不稳定,射流雾化效果越好,这也被认为是除气泡的微爆效应之外,闪急沸腾喷雾能极大地改善雾化效果的另一个重要原因。
     大量的实验研究表明,在闪急沸腾条件下,气泡的微爆作用是促使燃油射流或者油滴发生雾化的主要原因,但是气泡为何破碎、何时破碎、如何破碎等至今仍不十分清楚。鉴于此,本文继续采用线性稳定性分析法,考虑粘性应力对气泡生长不稳定性的影响,在已有的理论基础上重新推导了气泡生长不稳定性的色散方程,建立了新的液滴破碎准则,并确定了子液滴的特性参数。研究结果表明,气泡Weber数和气泡的体积分数越大,扰动增长速率就越大。当气泡生长速度较小时,即使初始的油滴/气泡半径比不同,破碎时刻的气泡体积分数也基本保持不变,而气泡破碎时间将随着气泡生长速度的增大或者初始油滴/气泡半径比的减小而缩短。
     鉴于KIVA程序中的液滴蒸发子模型并不适用于闪急沸腾喷雾,本文在两区模型的基础上对其进行了相应的改进,通过质量守恒和能量守恒,得到了过热液滴的半径和温度的表达式。在将气泡破碎模型和改进后的液滴蒸发模型与KIVA程序耦合之后,本文对两组高压共轨喷雾实验进行了多维模拟,计算结果表明,喷雾贯穿距的预测值与实测值基本吻合,油滴索特平均直径(SMD)与实验结果吻合较好,这也间接验证了气泡破碎模型和液滴蒸发模型的有效性。
     本文采用高速摄像技术对二甲醚闪急沸腾喷雾进行了实验研究,重点考察了喷嘴启喷压力、喷孔直径和环境背压对喷雾形态和宏观特性参数的影响。实验结果表明,喷嘴启喷压力越大,喷雾贯穿距越大,而喷孔直径和环境背压的变化对喷雾贯穿距的影响比较复杂,但也基本上可认为是促进贯穿距增大的有利因素和阻碍贯穿距增大的不利因素相互竞争的结果;另外,喷嘴启喷压力越小、喷孔直径越大、环境背压越低,喷雾锥角就越大。最后,本文对基准条件下的喷雾实验进行了多维模拟,计算结果与实验结果取得了较好的一致。
In this paper, the mechanism of atomization and vaporization process as well as mixture formation of dimethyl ether (DME) flash boiling spray are investigated numerically and experimentally in detail. The research contents focus on the analyses of mechanism of spray mixing process and the construction of spray models under flash boiling condition, and the multi-dimensional simulation of DME flash boiling spray is then performed.
     In order to establish the non-phenomenological model of flash boling spray, a computational program is written to simulate the process of bubble growth in uniformly superheated liquid. The program is validated by the experimental results of superheated water. On the base of calculating the main thermophysical properties of DME accurately, the computational program is used to simulate the process of DME vapor bubble growth under flash boiling condition and the study of influences of ambient pressure and fuel temperature on the DME bubble growth is carried out. The results show that according to the curve of time varying interface acceleration, the process of DME bubble gorwth can be divided into three domains: surface tension controlled growth, transition domain and heat transfer controlled growth. The bubble growth behaves differently in the three domains, which results from the interaction and competition between the hydrodynamic pressure and thermal feedback effect.
     To understand the atomization mechanism of superheated fuel further, the researching range is extended to the spray upstream boundary, namely the internal flow of injector nozzle. Accoding to actual situation of fuel injection of engine, the bubbly flow is confirmed as the flow pattern in the injector nozzle. Considering the known one-dimensional and multi-dimensional flow models can not reveal more details of bubble growth in the injector nozzle, the "internal flashing mode" and "external flashing mode" are combined effectively in this paper and an improved flow model for the superheated liquid in the injector nozzle is developed under reasonable hypotheses. The established one-dimensional model can not only simulate the process of bubble growth in the injector nozzel, but also supply the more accurate initial conditions for the multi-dimensional simulation of DME flash boiling spray. The validity of model is testified by the comparison between predicted and experimental results of initial spray cone angle.
     As a useful tool to analyse the stability of fluid flow, linear stability analysis method is adopted widely in the studies of atomization mechanism of fuel. Based on the linear stability analysis method, a dispersion equation which can describe the instability of flash boiling jet is derived in this paper and the instability of DME jet under normal and superheated conditions are analyzed in detail. Conclusions can be made that under normal condition, increasing the relative velocity and decreasing the liquid viscosity are able to improve the atomization of DME jet. The influences of surface tension and surrounding air density on the instability of DME jet are relatively complicated, which needs to be treated differently under different conditions. Under superheated condition, the more obvious the effect of flash boiling is, the more unstable the DME jet is. This is another important point for flash boiling spray in obtaining better atomization compared with common spray.
     A lot of experimental studies reveal that the spray is atomized primarily by bubble micro-explosion under flash boiling condition, but the exact atomization mechanism concerning when and how the bubble breakup operates is not very clearly identified up to now. Considering the influence of viscous stress additionally, the linear stability analysis method is adopted to deduce the more complete dispersion equation to represent the disturbance development during the bubble growth, and a new criterion for bubble breakup is established. The results show the bubble becomes more unstable with the increase of bubble Weber number and void fraction. The breakup void fraction is nearly constant at the lower bubble growth rate with different initial radius ratios of droplet to bubble, while the breakup time tends to be shorter with the increase of bubble growth rate or the decrease of initial radius ratio of droplet to bubble.
     For the original droplet vaporizaiton model in KIVA is not valid for the simulation of flash boiling spray, it is improved on the base of two-zone model. The formulations of superheated droplet's radius and temperature varying with time are obtained by conservation of mass and energy. Through coupling the bubble breakup model and the improved droplet vaporizaiton model with KIVA, two groups of DME flash boiling spray within a common-rail injection system are simulated numerically. The study indicates that the predicted spray tip penetration agrees with the experimental result basically, while the calculated sauter mean diameter (SMD) of droplet agrees with that of experiment well, which indicates indirectly that the bubble breakup model and the improved droplet vaporizaiton model are valid.
     The ultra high-speed video system is applied to conducted the experimental research on DME flash boiling spray, and the investigations of spray figure and macroscopical characteristic parameters of spray under different nozzle opening pressure, nozzle hole diameter and ambient pressure are carried out in this paper. The results show that the spray tip penetration increases with the enhancement of nozzle opening pressure,while the influences of nozzle hole diameter and ambient pressure on the spray tip penetration are relatively complicated, which result from the competition between the positive factors and passive ones. In addtion, decreasing the nozzle opening pressure and ambient pressure, or increasing the nozzle hole diameter, will increase the spray cone angle. Finally, the multi-dimensional simulation of DME flash boiling spray is performed and the comparison between calculation and experiment has a good agreement.
引文
[1]汪卫东.替代能源:未来汽车工业发展的新方向.中国内燃机学会2005年学术年会暨APC2005年学术年会论文集,中国武汉,2005:529-533.
    [2]Eirich J and Chapman E.Development of a Dimethyl Ether (DME) Fueled Shuttle Bus.SAE 2003-01-0756,2003.
    [3]Hansen K F and Ristola T.Demonstration of a DME (Dimethyl Ether) Fuelled City Bus.SAE 2000-01-2005,2000.
    [4]新型燃料“二甲醚”公交车明年在上海问世.http://news.sina.com.cn,2005.
    [5]Sorenson S C and Svend E M.Performance and Emissions of A 0.273 Liter Direct Injection Diesel Engine Fuelled with Dimethyl Ether.SAE 950064,1995.
    [6]The IDA (International DME Association) Website News Paper.http://www.vs.ag,2005.
    [7]John B H,Bodil V and Joensen F.Large Scale Manufacture of Dimethyl Ether-A New Alternative Diesel Fuel from Natural Gas.SAE 950063,1995.
    [8]肖进.溶气燃油射流雾化与燃烧机理研究.[博士学位论文].上海:上海交通大学,2004.
    [9]Kim Y K,Iwai N,Suto H and Tsuruga T.Improvement of Alcohol Engine Performance by Flash Boiling Injection.JASE Review,1980(2):81-86.
    [10]Sher E and Elata C.Spray Formation from Pressure Cans by Flashing.Industrial Engineering and Process Design and Development,1977,16(2):237-242.
    [11]Lienhard J H and Day J B.The Breakup of Superheated Liquid Jets.ASME Journal of Basic Engineering,September 1970:515-522.
    [12]Lienhard J H and Stephenson J M.Temperature and Scale Effects upgn Cavitation and Flashing in Free and Submerged Jets.ASME Journal of Basic Engineering,June 1996:525-532.
    [13]Suzuki M,Yamamoto T,Futagami N,et al.Atomization of Superheated Liquid Jets.First International Conference on Liquid Atomization and Spray Systems,Tokyo,Japan,August 1978.
    [14]Brown R and York J L.Sprays Formed by Flashing Liquid Jets.AIChE Journal,May 1962:149-153.
    [15]Wu K J,Steinberger R L and Bracco F V.On the Mechanism of Breakup of Highly Superheated Liquid Jets.The Combustion Institute Central States Section,1981 Spring Meeting,Warren,Michigan,March 1981.
    [16]段树林.闪急沸腾喷雾及燃烧的试验研究.[博士学位论文].大连:大连理工大学,1996.
    [17]Zeng Y B and Lee C F.An Atomization Model for Flash Boiling Sprays.Combustion Sci.and Tech.,2001(169):45-67.
    [18]史绍熙.汽车发动机燃烧技术的新进展.燃烧科学与技术,2001,7(1):1-14.
    [19]赵新顺,曹会智,温茂禄,等.HCCI技术的研究现状与展望.内燃机工程,2004,25(4):73-77.
    [20]汪映,周龙保,蒋德明.均质充量压缩燃烧方式的研究进展及存在问题.车用发动机,2002(5):6-9.
    [21]陈志,黄震,吕兴才,等.DME均质充量压燃着火过程的数值模拟研究.内燃机学报,2004,22(1):1-6.
    [22]胡铁刚,周龙保,刘圣华,等.变压缩比二甲醚均质充量压燃发动机排放特的研究.内燃机工程,2005,26(5):lO-13.
    [23]钟赟,乔信起,李德钢,等.二甲醚发动机HCCI燃烧的试验和数值模拟研究.车用发动机,2005(2):10-12.
    [24]朱驰,刘圣华.二甲醚均质充量压燃发动机排放特性的试验研究.内燃机学报,2004,22(1):51-55.
    [25]李德钢,乔信起,罗马吉,等.二甲醚均质充量压燃发动机燃烧特性试验研究.汽车工程,2005,27(2):179-181.
    [26]刘圣华,Eddy,胡铁刚,等.二甲醚均质充量压燃发动机燃烧特性的研究.内燃机学报.2005,23(3):207-2 1 2.
    [27]郑尊清,尧命发,汪洋,等.二甲醚均质压燃燃烧过程的试验研究.燃烧科学与技术,2003,9(6):56 1-565.
    [28]Christensen M,Hultqvist A and Johansson B.Demonstrating the Multi Fuel Capability of A Homogeneous Charge Compression Ignition Engine with Variable Compression Ration.SAE 993679,1999.
    [29]Brown N and Ladonunatoes N.A Numerical Study of Fuel Evaporation and Transportation in the Intake Manifold of A Port-Injected Spark Ignition Engine.Journal of Automobile Engineering Part D,1991,205:161-205.
    [30]Soloman A S P,Rupprecht S D,Chen L D,et al.Atomization and Combustion Properties of Flashing Injectors.Paper No.82-0300,20th Aerospace Sciences Meeting,American Institute of Aeronautics and Astronautics,Orlando,Fla.,Jan.1982.
    [31]Oza R D and Sinnamon J F.An Experimental and Analytical Study of Flashing-Boiling Fuel Injection.SAE 830590,1983.
    [32]Oza R D.On the Mechanism of Flashing Injection of Initially Subcooled Fuels.Journal of Fluid Engineering,1984,106:105-109.
    [33]Reitz R D.A Photographic Study of Flash-Boiling Atomization.Aerosol Science and Technology,1990,12:561-569.
    [34]Nagai N,Sato K and Lee C W.Atomization Characteristic of Superheated Liquid Jets.ICLASS-85,VB/3/1-VB/3/11,1990.
    [35]Park S and Lee S Y.An Experimental Investigation of The Flash Atomization Mechanism.Atomization and Sprays,1994,4:159-179.
    [36]Senda J,Yamaguchi M,Wakashiro T,et al.Spray Characteristics of Pintle Type Injection under Low-Pressure Field.ICLASS-91,Paper 96,1991:857-864.
    [37]Senda J,Yarnaguchi M,Tsukamoto T,et al.Characteristics of Spray Injected from Gasoline Injector.JSME International Journal Series B,1994,37:931-936.
    [38]Senda J,Nishikori T,Tsukamoto T,et al.Atomization of Spray under Low-Pressure Field from Pintle Type Gasoline Injector.SAE 920382,1992.
    [39]Athans R E and Hirsa A.A photographic Study of A Small Flashing Jet.Flow Visualization and Image Processing of Multiphase System,ASME,1995,209:201-206.
    [40]Peter E M,Takimoto A and Hayashi Y.Flashing and Shattering Phenomena of Superheated Liquid Jets.JSME International Journal Series B,1994,37:313-321.
    [41]Aquino C,Plensdorf W,Lavoie G,et al.The Occurrence of Flash Boiling in a Port Injected Gasoline Engine.SAE 982522,1998.
    [42]Kessler C,Sloss A and McCahan S.Flash Atomization in Single and Binary Hydrocarbon Sprays.ILASS Americas 11th Annual Conference on Liquid Atomization and Spray System,Sacramento,CA,1998:264-267.
    [43]Zeng Y B and Lee C F.A Preferential Vaporization Model for Multi-component Droplets and Sprays.Atomization and Sprays,2002,12(1):163-186.
    [44]Adachi M,McDonell V G,Tanaka D,et al.Characterization of Fuel Vapor Concentration Inside a Flash Boiling Spray.SAE 970871,1997.
    [45]Zuo B,Gomes A M and Rutland C J.Modeling Superheated Fuel Sprays and Vaporization.Int J Engine Research,2000,1(4):321-336.
    [46]Kawano D,Goto Y,Odaka M,et al.Modeling Atomization and Vaporization Processes of Flash-Boiling Spray.SAE 2004-01-0534,2004.
    [47]Kawano D,Senda J,Wada Y,et al.Modeling of Evaporation Process ofMulti-Component Fuel Spray.日本机械学会论文集(B),2004,70(696):2213-2219.
    [48]Ra Y C and Reitz R D.A Model for Droplet Vaporization for Use in Gasoline and HCCI Engine Applications.Journal of Engineering for Gas Turbines and Power,ASME,2004,126(4):422-428.
    [49]张煜盛,张培榕,范鸿宾.燃油热强化在涡流室式柴油机上的应用研究及其机理探讨.小型内燃机,1993,22(6):25-29.
    [50]段树林,冯林,许锋,等.柴油闪急沸腾喷雾的试验研究.大连铁道学院学报,1997,18(1):57-60.
    [51]段树林,冯林,宋永臣,等.闪急沸腾喷雾场粒度分布规律及燃烧特性的研究.内燃机学报,1999,17(1):54-58.
    [52]段树林,冯林,高希彦,等.闪急沸腾喷雾场粒度分布特性的研究.内燃机工程,1998,19(2):27-31.
    [53]魏建勤,傅维镳.柴油混合闪蒸喷雾的探索研究.工程热物理学报,1998,19(4):509-513.
    [54]吴楚,魏建勤,许沧粟,等.闪蒸喷雾的试验研究.浙江大学学报(工学版),2002,36(5):516-520.
    [55]乔信起,刘建江,黄震,等.闪急沸腾喷雾速度场的LDA研究.燃烧科学与技术,2001,7(4):303-308.
    [56]乔信起,张光德,王嘉松,等.稳态闪急沸腾喷雾速度分布的试验研究.汽车工程,2003,25(2):108-110.
    [57]Senda J and Fujimoto H.Fuel Design Approach for Low Emission Spray Combustion Fields.Compatibility between the strategy for Emissions Reduction Panal,SAE Fuels & Lubricants Meeting SFL42,June 16,2004.
    [58]Senda J,Hashimoto K,Yoshiharu I,et al.CO_2 Mixed Fuel Combustion System for Reduction of NO and Soot Emission in Diesel Engine.SAE 970319,1997.
    [59]黄震,邵毅明,志贺圣一,等.燃油溶气雾化新概念.上海交通大学学报,1994,28(2):1-6
    [60]黄震,大圣泰弘,姜高植.溶有CO_2燃油的闪急沸腾喷射过程研究.内燃机学报,2000,1 8(4):335-339.
    [61]肖进,黄震.溶有CO_2燃油发动机燃烧的数值研究.内燃机学报,2003,21(1):1-6.
    [62]侯玉春,黄震,肖进,等.正十二烷—二氧化碳溶气燃油雾化喷射相变过程的研究.内燃机学报,2005,23(2):113-118.
    [63]Wakai K,Nishida K,Yoshizaki T,et al.Spray and Ignition Characteristics of Dimethyl Ether Injected by a D.I.Diesel Injector.COMODIA 1998,1998.
    [64]Wakai K,Yoshizaki T,Nishida K,et al.Numerical and Experimental Analyses of the Injection Characteristics of Dimethyl Ether with A D.I.Diesel Injection System.SAE 1999-01-1122,1999.
    [65]Yu J and Bae C.Dimethyl Ether (DME) Spray Characteristics in a Common-Rail Fuel Injection System.Proc.IMechE.,Part D:J.Automobile Engineering,2003(217):1135- 1144.
    [66]Yu J,Lee J W and Choongsik B.Dimethyl Ether (DME) Spray Characteristics Compared to Diesel in a Common-Rail Fuel Injection System.SAE 2002-01-2898,2002.
    [67]Oguma M,Hyun G,Goto S,et al.Atomization Characteristics for Various Ambient Pressure of Dimethyl Ether (DME).SAE 2002-01-1711,2002.
    [68]Lee S W,Jin K and Yasuhiro D.Spray Characteristics of Alternative Fuels in Constant Volume Chamber (Comparison of the Spray Characteristics of LPG,DME and n-Dodecane).JSAE Review,2001 (22):271-276.
    [69]Lee S W,Murata Y and Daisho Y.Spray and Combustion Characteristics of Dimethyl Ether Fuel.Proc.IMechE.,Part D:J.Automobile Engineering,2005(219):97-102.
    [70]Jaeman L,Yongrae K and Kyoungdoug M.Characteristics of the Spray and Combustion Process of DME under Engine Conditions.COMODIA 2004,2004.
    [71]Oda Y,Kajitani S and Suzuki S.Characteristics of a Spray Formation and Combustion in Diesel Engines Operated with Dimethyl Ether.SAE 2003-01-1925,2003.
    [72]Konno M,Kajitani S,Chen Z L,et al.Investigation of the Combustion Process of a DI CI Engine Fueled with Dimethyl Ether. SAE 2001-01-3504,2001.
    [73] Zheng Z Q, Shi C T and Yao M F. Experimental Study on Dimethyl Ether Combustion Process in Homogeneous Charge Compression Ignition Mode. Transactions of Tianjin University, 2004,10(4):241-246.
    [74] Rivard W C and Travis J R. A Non-equilibrium Vapor Production Model for Critical Flow. Nuclear Science and Engineering, 1980, 74:40-48.
    [75] Stralen S V and Cole R. Boiling Phenomena. Hemisphere Publishing Corp. Washington,D.C. 1979.
    [76] Senda J, Hojyo Y and Fujimoto H. Modeling of Atomization Process in Flash Boiling Spray. SAE 941925,1994.
    [77] Zeng YangBing. Modeling of Multicomponent Fuel Vaporization in Internal Combustion Engines. [Ph.D. Thesis]. Urbana Illinois: University of Illinois at Urbana-Champaign, 2000.
    [78] Chang Dar-Long. Modeling of Air-Assisted and Flash Boiling Sprays in Gasoline Direct Injection Engines. [Ph.D. Thesis]. Urbana Illinois: University of Illinois at Urbana- Champaign, 2003.
    [79] Avedisian C T and Glassman I. High Pressure Homogeneous Nucleation of Bubbles with Superheated Binary Liquid Mixtures. ASME Journal of Heat Transfer, 1981,103:273-280.
    [80] Senda J, Hoiyo Y and Fujimoto H. Modeling on Atomization and Vaporization Process in Flash Boiling Spray. JSAE Review, 1994,15:291-296.
    [81] Kwak H Y and Lee S. Homogeneous Bubble Nucleation Predicted by A Molecular Interaction Model. ASME Journal of Heat Transfer, 1991,113:714-721.
    [82] Rayleigh L. On the Pressure Developed in A Liquid during the Collapse of A Spherical Cavity. Phil. Mag. 1917(34):94-98.
    [83] Plesset M S and Zwick S A. The Growth of A Vapor Bubble in Superheated Liquid. J.Appl. Phys., 1954,25(4):493-500.
    [84] Dergarabedian P. The Rate of Growth of Vapor Bubbles in Superheated Water. J. Appl.Mech., 1953,20:537-545.
    [85] Forster H K and Zuber N. Growth of A Vapor Bubble in A Superheated Water. J. Appl.Phys., 1954,25(4):474-478.
    [86] Birkhoff G, Margulies R S and Horning W A. Spherical Bubble Growth. Phys. Fluids,1958,1(3):201-204.[87] Scriven L E. On the Dynamics of Phase Growth. Chem. Eng. Sci., 1959(10):1-13.
    [88] Kosky P G Bubble Growth Measurements in Uniformly Superheated Liquids. Numer.Eng. Sci., 1968(23):695-706.
    [89] Florschuetz L W, Henry C L and Khan A R. Growth Rates of Free Vapor Bubbles in Liquids at Uniform Superheats under Normal and Zero Gravity Conditions. Int. J. Heat Mass Transfer, 1969,12:1465-1489.
    [90] Lien Y C. Bubble Growth Rates at Reduced Pressure. [Ph.D. Thesis]. MIT, 1969.
    [91] Mikic B B, Rohsenow W M and Griffith P. On Bubble Growth Rate. Int. J. Heat Mass Transfer, 1970(13):657-666.
    [92] Theofanous T G and Patel P D. Universal Relations for Bubble Growth. Int. J. Heat Mass Transfer, 1976(19):425-429.
    [93] Bohrer T H. Bubble Growth in Highly Superheated Liquids. [M.S. Thesis]. West Lafayette: Purdue University, 1973.
    [94] Theofanous T, Biasi L and Isbin H S. A Theoretical Study on Bubble Growth in Constant and Time-Dependent Pressure Field. Chem. Eng. Sci., 1969(26):263-274.
    [95] Board S J and Duffey R B. Spherical Vapor Bubble Growth in Superheated Liquids.Chem. Eng. Sci., 1971(26):263-274.
    [96] Donne M D and Ferranti M P. The Growth of Vapor Bubble in Superheated Sodium. Int.J. Heat Mass Transfer, 1975(18):477-493.
    [97] Lee H S and Merte J H. Spherical Vapor Bubble Growth in Uniformly Superheated Liquids. Int. J. Heat Mass Transfer, 1996, 39(12):2427-2447.
    [98] Prosperetti A and Plesset M. Vapor-Bubble Growth in A Superheated Liquid. J. Fluid Mech., 1978(85):349-368.
    [99] Miyatake O and Tanaka I. Bubble Growth in Uniformly Superheated Water at Reduced Pressure. Part?: Numerical Analysis and Derivation of A Simplified Expression, Trans.JSME Ser.B, 1982a(48):355-363[in Japanese].
    [100] Miyatake O and Tanaka I. Bubble Growth in Uniformly Superheated Water at Reduced Pressure. Part ?: Experimental Results and Comparison with Numerical Results and with the Simplified Expression, Trans. JSME Ser.B, 1982b(48):364-372[in Japanese].
    [101]Law C K,Lee C H and Srinivasan N.Combustion Characteristics of Water-in-Oil Emulsion Droplets.Combustion and Flame,1980,37:125-143.
    [102]Shen H,Chen L and Wu C K.The Droplet Group Micro-Explosion in W/O Diesel Fuel Emulsion Sprays.SAE 950855,1995.
    [103]Wang C H,Liu X Q and Law C K.Combustion and Microexplosion of Freely Falling Multicomponent Droplets.Combustion and Flame,1984,56:175-197.
    [104]Wang C H and Law C K.Microexplosion of Fuel Droplets under High Pressure.Combustion and Flame,1985,59:53-62.
    [105]Cho P,Law C K and Mizomoto M.Effect of Pressure on the Micro-Explosion of Water/Oil Emulsion Droplets over A Hot Plate.ASME Journal of Heat Transfer,1991,113:272-275.
    [106]Tsue M,Kadota T and Segawa D.Statistical Analysis on Onset of Microexplosion for An Emulsion Droplet.26th Symposium (International) on Combustion,1996:1629-1635.
    [107]Hang X,Yun B S,Chong J Z,et al.Experimental Investigation on Micro-Explosion of Emulsified Diesel Oil by Holography.Nist.Special Publication,1991:307-314.
    [108]Li T X,Zhu D L and Law C K.Droplet Combustion,Microexplosion and Sooting Characteristics of Several Energetic Liquid Propellants.Journal of Propulsion and Power,1998,14:45-50.
    [109]Wang C H and Ueng G J.An Experimental Investigation of Fuel Droplet Combustion under Micro-Gravity.International Communications in Heat and Mass Transfer,1997,27:931-944.
    [110]Call C,Zhu D L and Law C K.Combustion and Microexplosion of Han-Based Liquid Gun Propellants at Elevated Pressure.Journal of Propulsion and Power,1997,13:448-450.
    [111]Lasheras J C,Fernandez-Pello A C and Dryer F L.Experimental Observation on the Disruptive Combustion of Free Droplets of Multicomponent Fuels.Combustion Science Technology,1980,22:195-209.
    [112]Razzaghi M.Droplet Size Estimation of Two-Phase Flashing Jets.Nuclear Engineering and Design,1989,114:115-124.
    [113]王应时,范维澄,周力行,等.燃烧过程数值计算.北京:科学出版社,1986.
    [114]范维澄,王跃鹏.流动及燃烧的模型与计算.合肥:中国科学技术大学出版社,1992.
    [115]Travis J R.Numerical Calculation of Two-phase Flow.Nuci.Sci.Engr.,1976,61.
    [116]Gronews J F.The Statistical Description of A Spray in Term of Drop Velocity,Size,and Position.[Ph.D.Thesis].Univ.of Wisconsin,1967.
    [117]Westbrook C K.Three Dimensional Numerical Modeling of Liquid Fuel Spray.16th Symposium (International) on Combustion,1976.
    [118]Haselman L C and Westbrook C K.A Theoretical Model for Two-phase Fuel Injection in Stratified Charge Engines.SAE 780318,1978.
    [119]Williams F A.Combustion Theory.2nd ed.,The Benjamin/Cummings Publishing Company,1985.
    [120]Borman G L.Unsteady Vaporization History and Trajectories of Fuel Drops Injected into Swirling Air.SAE 598C,1962.
    [121]Gosman A D and Johns J R.Computer Analysis of Fuel-Air Mixing in D.I.Diesel Engines.SAE 800091,1980.
    [122]Amsden A A,Butler T D,O'Rourke P J,et al.KIVA-Ⅱ:A computer Program for Chemically Reactive Flows with Sprays.Los Alamos National Laboratory Report:LA-11560-MS,1989.
    [123]Amsden A A,Ramshaw J D,O'Rourke P J,et al.KIVA:A computer Program for Two and Three Dimensional Fluid Flows with Chemical Reactions and Fuel Sprays.Los Alamos National Laboratory Report:LA- 10245-MS,1985.
    [124]Crowe C T.The Particle Source in Cell Model for Gas Droplet Flow.ASME 75-WA/H7-25,1975.
    [125]Dukowicz J K.A Particle Fluid Numerical Model for Liquid Sprays.J.Comp.Phys.,1980,35(2):229-253.
    [126]Kruger C,Steiner R and Kraus E.Demands on CFD Models of Mixture Preparation and Combustin in IC Engines for Industrial Purposes.5th World Congress on Computational Mechanics,Vienna,Austria,2002.
    [127]Spalding D B.A General Computer Program for Fluid Flow.Heat Transfer and Chemical Processes.Imperial College Report HTS/81/10(1981).
    [128]Patankar S V and Spalding D B.A Calculation Procedure for Heat,Mass and Momentum Transfer in 3D Parabolic Flows.International J.Heat Mass Transfer,1972,15:1787-1806.
    [129]Hirt C W,Amsden A A and Cook J L.An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds.J.Comp.Phys.,1974,14:227-253.
    [130]Butler T D,Cloutman L D,Dukowicz J K,et al.CONCHAS:An ALE Computer Code for Multicomponent Chemically Reactive Flow at All Speeds.Los Alamos:LA-8129-MS,1979.
    [131]Cloutman L D,Dukowicz J K,Ramshaw J D,et al.CONCHAS-SPRAY:A Computer Code for Reactive Flows With Fuel Sprays.Los Alamos National Laboratory Report:LA-9294-MS 1982.
    [132]Amsden A A.KIVA-Ⅲ:A KIVA Program with Block-Structured Mesh for Complex Geomotries.Los Alamos National Laboratory Report:LA-12503-MS,1993.
    [133]Amsden A A.KIVA-3V:A Block-Structured KIVA Program for Engines with Vertical or Canted Valves.Los Alamos National Laboratory Report:LA- 13313-MS,1997.
    [134]Amsden A A.KIVA-3V Release 2:Improvements to KIVA-3V.Los Alamos National Laboratory Report:LA-UR-99-915,1999.
    [135]Torres D and O'Rourke P J.KIVA-4.14th International Multidimensional Engine Modeling User's Group Meeting,Detroit.MI.USA.,2004.
    [136]解茂昭.内燃机计算燃烧学.大连:大连理工大学出版社,2005.
    [137]Riznie J,Kojasoy G and Zuber N.On the Spherically Symmetric Phase Change Problem.Int.J.Fluid Mech.Res.,1999(26):110-145.
    [138]Sparrow E M,Ramadhyani S and Patankar S V.Effect of Subcooling on Cylindrical Melting.J.Heat Transfer.1978(100):395-402.
    [139]Kim C J and Kaviany M.A Numerical Method for Phase-Change Problem.Int.J.Heat Mass Transfer,1990(33):2721-2734.
    [140]Patankar S V传热与流体流动的数值计算.北京:科学出版社,1984.
    [141]吴江涛,刘志刚,潘江.二甲醚热物理性质的研究.西安交通大学学报,2004,38(11):1160-1164.
    [142]王斌,吴江涛,刘志刚.二甲醚热力学性质的计算.西安交通大学学报,2004,38(9):916-919.
    [143]王锡斌,蒋德明,周龙保,等.利用分子理论估算二甲醚的热物理特性参数.内燃 机学报,2004,22(6):486-492.
    [144]Yaws C L.Matheson气体数据手册.北京:化学工业出版社化学与应用化学出版中心,2003.
    [145]Robinson A J and Judd R L.The Dynamics of Spherical Bubble Growth.Int.J.Heat Mass Transfer,2004(47):5101-5113.
    [146]Robinson A J and Judd R L.Bubble Growth in A Uniform and Spatially Distributed Temperature Field.Int.J.Heat Mass Transfer,2001 (44):2699-2710.
    [147]Ranz W E.Some Experiments on Orifice Sprays.Can.J.Chem.Eng.,1958,36:175-181.
    [148]Taylor G I.Generation of Ripples by Wind Blowing over A Viscous Fluid.The Scientific Papers ofG I Taylor,1940,3:244-254.
    [149]Steinberger R L,Santavicca D A,Bracco F V,et al.Measurements of The Spray Angle of Atomization Jets.Trans.ASME,J.Fluid Eng.,Ser.I,1983:406-413.
    [150]Reitz R D and Bracco F V.Mechanism of Atomization of A Liquid Jet.Phys.Fluids,1982,25:1730-1742.
    [151]McCarthy M J and Malloy N A.Review of Stability of Liquid Jets and Influence of Nozzle Design.J.Chem.Eng.,1974(7):1-20.
    [152]Reitz R D.Atomization and Other Breakup Regimes of A Liquid Jets.[Ph.D.Thesis].New Jersey:Princeton University,1978.
    [153]Arai M,Tabata M and Shimizu M.Disintegration Process and Spray Characteristics of Fuel Jet Injected by A Diesel Nozzle.SAE 840275,1984.
    [154]Ruiz F G.Experimental and Theoretical Analysis of High Speed Atomization,and Its Application to Diesel Fuel Injection.[Ph.D.Thesis].Pennsylvania:Carnegie Mellon University,1987.
    [155]Ohrn T R,Senser D W and Lefebvre A H.Geometric Effects on Spray Cone Angle for Plain-Orifice Atomizers.Atomization and Sprays,1991 (1):253-268.
    [156]Karasawa T,Tanaka M,Abe K,et al.Effect of Nozzle Configuration on The Atomization of Steady Spray.Atomization and Sprays,1992(2):411-426.
    [157]Ruff G A,Wu P K,Bernal L P,et al.Continuous and Dispersed-Phase Structure of Dense Nonvaporating Pressure-Atomized Sprays.J.Propulsion and Power,1992,8(2):280-289.
    [158] Dodge L G, Ryan III T W and Ryan M G Effect of Different Injector Hole Shapes on Diesel Sprays. SAE 920623,1992.
    [159] BergwerkW. Flow Pattern in Diesel Nozzle Spray Holes. Proc. Inst. Mech. Engrs.,1959, 5(25):655-660.
    [160] Hiroyasu H, Arai M and Shimizu M. Break-up Length of A Liquid Jet and Internal Flow in A Nozzle. In ICLASS-91, Gaithersburg, Maryland, July 1991.
    [161] Arai M. Break-up Mechanism of A High Speed Liquid Jet and Control Methods for A Spray Behavior. In International Symposium on Advanced Spray Combustion,Hiroshima, 6-8 July 1994.
    [162] Arai M, Shimizu M and Hiroyasu H. Similarity between The Breakup Lengths of A High Speed Liquid Jet in Atmospheric and Pressurized Conditions. In ICLASS-91,Gaithersburg, Maryland, 1991.
    [163] Soteriou C, Andrews R and Smith M. Direct Injection Diesel Spray and The Effect of Cavitation and Hydraulic Flip on Atomization. SAE 950080,1995.
    [164] Bode J. Zum Kavitationseinflub auf den Zerfall von Flussigkeitsfreistrahlen.Max-Planck- Institut fur Stromungsforschung, March 1991.
    [165] Schmidt D P and Corradini M L. The Internal Flow of Diesel Fuel Injector Nozzles: A Review. Int. J. Engine Research, 2001,2(1):1-23.
    [166] Nurick W H. Orifice Cavitation and Its Effects on Spray Mixing. J. Fluids Eng., 1976,98:681-687.
    [167] Schmidt D P and Corradini M L. Analytical Prediction of The Exit Flow of Cavitation Orifices. Atomization and Sprays. 1997,7(6):54-65.
    [168] Ruiz F. A Few Useful Relations for Cavitating Orifices. In Proceedings of International Conference on Liquid Atomization and Spray System (ICLASS-91). Gaithersburg,Maryland, 15-18 July 1991:595-602.
    [169] Rayleigh L. On The Pressure Developed in A Liquid during The Collapse of A Spherical Cavity. Phil. Mag., 1917(34):94-98.
    [170] Plesset M S. The Dynamics of Cavitation Bubbles. Trans. ASME, J. Appl.. Mechanics,1949(16):228-231.
    [171] Knapp R T, Daily J W and Hammitt F G Cavitation. McGraw-Hill Book Company,1970.
    [172]Kato H,Kayano H and Kageyama.A Consideration of Thermal Effect on Cavitation Bubble Growth.Cavitation and Multiphase Flow Forum,ASME FED,1994,194:7-14.
    [173]Kubota A,Kato H and Yamaguchi H.Finite Difference Analysis of Unsteady Cavitation on A Two-Dimensional Hydrofoil.In Proceedings of The 5th International Conference on Numerical Ship Hydrodynamics,Hiroshima,September 1989.
    [174]Delannoy Y and Kueny J L.Two Phase Flow Approach in Unsteady Cavitation Modeling.Cavitation and Multiphase Flow Forum,ASME FED,1990,98:153-158.
    [175]Scbmidt D P,Rutland C J and Corradini M L.A Fully Compressible Two-Dimensional Model of High Speed Cavitating Nozzles.Atomization and Sprays,1999(9):255-276.
    [176]Genge O and Roosen P.Optische Untersuchung Kavitierender Stroemungen Innerhalb Verschiedender Planarer,Nicht Achsensymmetrischen Duesen.Annual Scientific Conference on Gesellschaft fur Angewandte Mathematic and Mechanic,Gottingen,2000.
    [177]Blinkov V N,Jones O C and Nigmatulin B L.Nucleation and Flashing in Nozzles-2:Comparison with Experiments Using a Five-Equation Model for Vapor Void Development.Int.J.Multiphase Flow,1993,19(6):965-983.
    [178]David A and Alon G.High Speed Bubbly Nozzle Flow with Heat,Mass and Momentum Interactions.Int.J.Heat and Mass Transfer,2003(46):1993-2003.
    [179]Suh H K and Lee C S.Experimental and Analytical Study on the Spray Characteristics of Dimethyl Ether (DME) and Diesel Fuels within A Common-Rail Injection System in A Diesel Engine.Fuel,2008(87):925-932.
    [180]Hiroyasu H and Arail M.Fuel Spray Penetration and Spray Angle in Diesel Spray.Trans.JSAE,1980(21):5-11.
    [181]Suh H K,Park S W and Lee C S.Atomization Characteristics of Dimethyl Ether Fuel as an Alternative Fuel Injected through a Common-Rail Injection System.Energy and Fuels,2006(20):1471-1481.
    [182]Reid R C.Rapid Phase Transitions from Liquid to Vapor.Advanced in Chemical Engineering,1983(12):105-208.
    [183]D J特里顿著.物理流体力学.董务民等译.北京:科学出版社,1986.
    [184]陆维松.动力稳定性原理.北京:气象出版社,1992.
    [185]易家训.流体力学—理论的简明导论.北京:高等教育出版社,1982.
    [186]P G 德拉津,W H 雷德著.流动动力稳定性.周祖巍等译.北京:宇航出版社,1990.
    [187]Rayleigh L.On the Instability of Jets.Proc.London Math.Soc.,1879(10):4-13.
    [188]Weber C Z.Zum Zerfail eines Dlussigkeitsstrahles.Mathermatic und Mechanik.11,1931.
    [189]Sterling A M.The Instability of Capillary Jets.J.Fluid Mech.,1975,68(3):477-495.
    [190]Hoyt J W,Taylor J J and Runge C D.The Structure of Jets of Water and Polymer Solution in Air.J.Fluid Mech.,1974,63:635-640.
    [191]Hoyt J W and Taylor J J.Waves on Water Jets.J.Fluid Mech.,1977,83:119-127.
    [192]Fenn R W and Middleman S.Newtonian Jet Stability:The Role of Air Resistance.AIChE J.,1969,15(3):379-383.
    [193]Grant R P and Middleman S.Newtonian Jet Stability.AIChE J.,1976,12(4):669-678.
    [194]Levich V G.Physicochemieal Hydrodynamics.Prentice-Hail,1962.
    [195]Yang H Q.Asymmetric Instability of A Liquid Jet.Phys.Fluids,1992,4:681-689.
    [196]宋军.内燃机燃油雾化与喷雾两相流的多维数值模拟.[博士学位论文].武汉:华中理工大学,1996.
    [197]史绍熙,郗大光,秦建荣,等.液体射流的非轴对称破碎.燃烧科学与技术,1996,2(3):189-199.
    [198]Yuan W X and Schnerr G H.Numerical Simulation of Two-phase Flow in Injection Nozzles:Interaction of Cavitation and Externai Jet Formation.Journal of Fluids Engineering,2003,125(6):963-969.
    [199]潘文全.流体力学基础(上、下册).北京:机械工业出版社,1982.
    [200]郭敦仁.数学物理方法.北京:人民教育出版社,1965.
    [201]Lin S P and Reitz R D.Drop and spray formation from a liquid jet.Annu.Rev.Fluid Mech.,1998(30):85-105.
    [202]Hiroyasu H and Arai M.Structure of Fuel Sprays in Diesel Engines.SAE 900475,1990.
    [203]徐海涛.直喷式柴油机喷雾混合机理、建模及三维数值模型.[博士学位论文].武汉: 华中理工大学,1998.
    [204]Matsumura K and Nariai H.Self-Triggering Mechanism of Vapor Explosion for A Molten Tin and Water System.Journal of Nuclear Science and Technology,1996, 33:298-306.
    [205]沈维道,郑佩芝,蒋淡安.工程热力学.北京:高等教育出版社,1983.
    [206]Kobayashi K.A Study on The Evaporation and Combustion of A Single Droplet (2nd.Report:Evaporation Velocity).Trans.JSME (in Japanese),1954,20(100):833-837.
    [207]Sirignano W A.Fluid Dynamics and Transport of Droplet and Sprays.Cambridge University Press,UK,1999.
    [208]Mills A F.Basic Heat and Mass Transfer.Richard D.Irwin,Homewood,1995.
    [209]Lee J and Nishida K.Insight on Early Spray Formation Process of a High-Pressure Swirl Injector for DISI Engines.SAE 2003-01-1809,2003.
    [210]金昶明,卓斌.直喷式柴油机排放与性能的准维模拟.内燃机学报,2001,19(1):29-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700