结构表面对受限空间核沸腾机理及强化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沸腾是一种高效的传热方式,被广泛地应用于诸多工业领域。为了提高沸腾传热效率,研究者们提出了不同的强化方法。其中,限制工作液体所在的空间尺度被认为是一种有效的强化方法。其缺陷是会降低高热通量条件下的沸腾传热效率,原因是此时大量气泡挤在受限空间中无法脱离,这些气泡相互合并后致使加热表面被气膜覆盖进而导致传热效率降低。本文提出了新的强化结构表面,基本解决了气泡难以释放的问题,提高了核沸腾传热性能,并通过高速摄像及红外热像法研究了结构表面的强化机理,在实验的基础上建立了物理及数学模型。
     设计出一种特殊构型表面,将加热表面划分成具有不同功能的区域,部分区域的空间受限,用来促进气泡形成、生长和脱离,而其它区域上方为自由空间,其作用是存储液体和释放气泡。在受限空间中生成的气泡很容易排放到自由空间中,引起的尾流又能够将自由空间中的液体抽吸到受限空间中,从而完成一个传热循环。通过传热性能测试,得到了不同工作液体在光滑和不同规格的强化表面上的沸腾曲线。实验结果表明,水和乙醇在结构强化表面上的沸腾传热特性得到了明显强化,水在两种强化表面上的平均传热系数分别为光滑表面的2.3和2.5倍,乙醇则分别为3.5和2.3倍。
     利用高速摄像研究了水和乙醇在光滑及强化表面上的气泡生成、生长及脱离等动力学行为。通过图像处理及分析,得到了气泡直径、核化点密度以及气泡脱离频率的数据,分析了在强化表面上沸腾传热的强化机理。实验结果表明,两种空间受限表面上的气泡均始终产生于空间受限区域,自由空间区域则没有气泡生成。水在两种强化表面上的平均核化点数量分别为光滑表面的2.2和3.3倍,在一种强化表面上气泡平均脱离频率为光滑表面的2.1倍,是沸腾得以强化的关键因素。以乙醇为工质时,两种空间受限强化表面上的平均气泡直径分别为光滑表面上的3.2和2.0倍,平均核化点数量分别为光滑表面的3.3和5倍,平均气泡脱离频率均为光滑表面的1.3倍,是沸腾得以强化的关键因素。在乙醇的沸腾过程中发现了一种新的‘喷射态’气泡形态。
     运用强化元件确定了金属加热表面上沸腾时产生气泡的核化点位置并运用红外测温手段对加热表面过热度波动幅度及波动频率进行了测定,以研究沸腾时金属加热表面与气泡间是否存在液膜的科学问题。实验结果表明,在实验热通量范围内,加热表面的过热度波动幅度始终未超过1K,而理论计算和文献研究的结果都表明没有液膜存在的加热表面的过热度波动幅度至少为5K。强化表面与光滑表面的平均过热度波动频率的比值在实验热通量范围内平均值为1.1,强化表面与光滑表面的气泡脱离频率的比值在实验热通量范围内平均值为1,这表明二者具有一致的趋势。气泡脱离频率要明显高于表面温度波动频率,强化表面E0.15上气泡脱离频率与表面过热度波动频率的比值介于1-2.4之间,平均值为1.5,而光滑表面上的该项数值介于1-2之间,平均值为1.4。这说明气泡脱离频率和表面温度波动频率在数值上无法对应。低过热度波动幅度,过热度波动频率与气泡脱离频率在趋势上的一致性以及在数值上的差异性共同表明,加热壁面在沸腾过程中没有发生干壁现象,即加热壁面与气泡之间始终有液膜存在。
     在光滑加热表面的某些区域涂覆超亲水或超疏水涂层,使加热表面呈现不同的润湿特性,制备出局部改性表面。通过传热实验研究了改性表面的沸腾传热特性,并利用红外热像技术对表面上的温度分布及变化状况进行了研究,对传热机理进行了探讨。结果表明,局部改性表面的传热特性得到了强化,并且其传热性能也超越了完全改性表面。表面温度分布研究表明,核化点影响范围的扩大是局部改性表面传热特性提高的主要原因,而气泡脱离频率的影响较小
     通过理论分析,构建了受限空间表面在大气压下发生池沸腾时的物理及数学模型。基于实验数据,运用指数回归的方法建立了用于计算受限空间沸腾时气泡直径,核化点密度,气泡脱离频率及传热通量的经验关联式。该模型能够分别独立计算气泡直径,脱离频率和核化点密度这三个沸腾过程中的关键参数,再通过这三个参数计算整个过程中的热通量。与以往模型不同的是,在计算这三个参数的时候都引入了受限空间尺度参数,使计算更为准确。对水在两种强化表面上的沸腾传热计算结果表明,本实验所涉及的热通量范围内,本模型能够预测液体在受限空间沸腾时的气泡直径,脱离频率及核化点密度,比文献报导的计算方法更具准确性,能够准确地预测传热通量。
Boiling heat transfer is an efficient way which is widely used in various industrial fields. In order to improve the efficiency of boiling heat transfer, many enhanced methods have been proposed within the past several decades. Confined space is one of most efficient methods for boiling heat transfer enhancement. However, its heat transfer efficiency is significantly reduced by the flourish bubbles which can't be released from the confined space. To solve this problem, this paper presents an enhanced surface to improve the nucleate boiling; subsequently the heat transfer enhancement mechanism was investigated by high-speed CCD and Infrared methods.
     A new and special surface is designed to enhance boiling heat transfer by dividing a heat surface into different functional areas. Boiling spaces of part of the areas are confined to promote bubble formation, growth and detachment, while the other spaces are kept open to store the liquid and release bubbles. Boiling curves are acquired for water and ethanol on plain and enhanced structure surfaces to test the heat transfer characteristics. Experimental results show that boiling heat transfer characteristics are well improved on the enhanced surfaces, average boiling heat transfer coefficient of water on the two enhanced surfaces are improved to2.3and2.5times of that on plain surface, respectively. For ethanol, responding values are3.5and2.3, respectively.
     Bubble generation, growth, detachment dynamics are studied by high-speed camera visualization for water and ethanol on different surfaces. Data of the diameter of the bubble, the nucleation site density and the bubble departure frequency are acquired by the image processing. The boiling heat transfer enhancement mechanisms on the enhanced surface are analyzed based on the image processing results. The analysis indicates that all the bubbles on the enhanced surface are generated in the confined space while no bubble emerges from the free space. For water, average nucleation site density on the two enhanced surface are2.2and3.3times of that on plain surface, respectively, average bubble departure frequency on one enhanced surface is2.1times of that on plain surface, are key factors to the boiling enhancement. For ethanol, bubble diameter, nucleation site density and bubble departure frequency on the two enhanced surfaces are3.2and2.3.3and5.1.3and1.3times of those on plain surfaces, respectively, are key factors to boiling heat transfer. Specially, a new form of bubbles is found in the boiling process of ethanol, as 'jet-state' bubble.
     The enhanced structure surface is used to determine the exact positions of the nucleation site on the thin copper heating surface and infrared camera is used to test the superheat fluctuation range and frequency to investigate the scientific topic-whether a liquid film exists between heating surface and bubbles. The results show that the fluctuations of the heating surface superheat did not exceed1K at all the measurement points. It conflicts with theoretic calculation and literature results that superheat fluctuation should be at least5K if no liquid film exists between heating surface and bubbles.
     The results show that the fluctuations of the heating surface superheat did not exceed1K at all the measurement points, the superheat fluctuation frequency curves have the same trend with the bubble departure frequency curves but lower in magnitude. The low superheat fluctuations on the metal heating surface indicate that no dry-out phenomenon occurs during the boiling process, which identifies that a liquid film always exists between bubbles and heating surface. The relationship between the superheat fluctuations and bubble departure frequency also indicates that bubbles are not directly generated from heating surface but are generated within a thin layer of liquid closed to the surface. These results also approve that the liquid film does exist between the heating surface and bubbles. The ratio of superheat fluctuation frequency on enhanced surface to that on plain surface is1.1. while the ratio of bubble departure frequency is1. Bubble departure frequency is obviously higher than superheat fluctuation frequency, the ratio values on enhanced surface are between1and2.4,1.5for average, while the ratio values on plain surface are between1and2.1.4for average. The low superheat fluctuations, the same trend and the difference in value between the bubble departure frequency and superheat fluctuation frequency together indicate that on the metal heating surface no dry-out phenomenon occurs during the boiling process, which identifies that a liquid film always exists between bubbles and heating surface.
     The heating surface is modified to different wetting properties. Experimental study of boiling heat transfer is performed to investigate the heat transfer characteristics of these surfaces. An Infrared thermography is used to investigate the temperature distribution on the boiling surface, and thus to analyze the boiling mechanisms. Heat transfer experimental results show that the heat transfer characteristics of the specially designed surface are superior to the traditional wetting-property-modified surfaces and also the plain surface. The surface temperature distribution obtained by Infrared thermography shows that the extension of the impact scope of nucleation points is the main reason for the improvement of heat transfer of the surface, while the effect of bubble departure frequency is small.
     Based on theoretical analysis, physical and mathematical models are established for the confined space boiling under atmospheric pressure. Experimental data are used to verify its accuracy and precision of the model predictions, and compared with other models in literature. Comparison shows that the model can better predict the boiling heat transfer characteristics for liquid boiling in the confined space.
引文
[1]Ebadian M A. Lin C X. A Review of High-Heat-Flux Heat Removal Technologies [J]. ASME Journal of Heat Transfer,2011,133:110801-110811.
    [2]Stephan K. Dieter G, Elisabeth D, et al. Heat Transfer and Bubble Formation in Pool Boiling:Effect of Basic Surface Modifications for Heat Transfer Enhancement [J]. International Journal of Thermal Sciences,2006,45:217-236.
    [3]Trautman M A, Tirumala M, You S M. Investigation of Microporous Coatings and Mesoscale Evaporator Enhancements for Two-Phase Cooling of Electronic Components [J]. Journal of Electronic Packaging.2008,130:011007.
    [4]Yagov V V. Generic features and puzzles of nucleate boiling [J]. International Journal of Heat and Mass Transfer,2009,52:5241-5249.
    [5]Nakayama W. Nakajima T. Hirasawa S. Heat Sink Studs Having Enhanced Boiling Surfaces for Cooling of Microelectronic Components [J]. ASME Jounral of Heat Transfer,1984:84-89.
    [6]Gradeck M. Kouachi A. Lebouche M. et al. Boiling curves in relation to quenching of a high temperature moving surface with liquid jet impingement [J]. International Journal of Heat and Mass Transfer,2009.52:1094-1104.
    [7]Okuyama F. Kim J H. Mori S. et al. Boiling propagation of water on a smooth film heater surface [J]. International Journal of Heat and Mass Transfer,2006.49:2207-2214.
    [8]Manna M. Stephan K. Stephan P. Influence of heat conduction in the wall on nucleate boiling heat transfer [J]. International Journal of Heat and Mass Transfer.2000.43:2193-2203.
    [9]Bang 1 C. Chang S H. Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool [J]. International Journal of Heat and Mass Transfer,2005,48: 2407-2419.
    [10]Hahne E, Barthau G. Heat transfer and nucleation in pool-boiling [J]. International Journal of Thermal Sciences,2006,45:209-216.
    [11]Celata G P, Cumo M, Gallo D, et al. A Photographic study of subcooled flow boiling burnout at high heat flux and velocity [J]. International Journal of Heat and Mass Transfer,2007,50:283-291.
    [12]Honda H, Takamastu H, Wei J J. Enhanced Boiling of FC-72 on Silicon Chips With Micro-Pin-Fins and Submicron-Scale Roughness [J]. ASME Journal of Heat Transfer,2002,124:383-390.
    [13]Jakob M. Heat Transfer [M]. New York:Wiley,1949.
    [14]Pioro I L. Rohsenow W, Doerffer S S. Nucleate Pool Boiling Heat Transfer. I:Review of Parametric Effects of Boiling Surface [J]. International Journal of Heat and Mass Transfer,2004.47:5033-5044.
    [15]McHale J P. Garimella S V. Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces [J]. International Journal of Multiphase Flow,2010,36:249-260.
    [16]Bonilla C F, Grady J J, Avery G A. Pool Boiling Heat Transfer from Scored Surfaces [J]. Chemical Engineering Progress Symposium Series.1965,61(57):280-288.
    [17]Nakayama W. Daikoku T. Kuwahara H, et al. Dynamic model of enhanced boiling heat transfer on porous surfaces [J]. ASME Journal of Heat Transfer,1980,102:445-456.
    [18]Chen Y M. Groll M. Mertz R, et al. Bubble dynamics of boiling of propane and iso-butane on smooth and enhanced tubes [J]. Experimental Thermal and Fluid Science,2004,28:171-178.
    [19]Haider S I, Webb R L. A transient micro-convection model of nucleate [J]. International Journal of Heat and Mass Transfer,1997,40:3675-3688.
    [20]Pastuszko R. Boiling heat transfer enhancement in subsurface horizontal and vertical tunnels [J]. Experimental Thermal and Fluid Science,2008,32:1564-1577.
    [21]Yang S W, Jeong J, Kang Y T. Experimental correlation of pool boiling heat transfer for HFC 134a on enhanced tubes:Turbo-E [J]. International Journal of Refrigeration.2008,31:130-137.
    [22]Cooke D, Kandlikar S G. Pool Boiling Heat Transfer and Bubble Dynamics Over Plain and Enhanced Microchannels [J]. ASME Journal of Heat Transfer,2011,133:0529021-0529029.
    [23]Penley S J. Wirtz R A. Correlation of Subatmospheric Pressure, Saturated, Pool Boiling of Water on a Structured-Porous Surface [J]. ASME Jounral of Heat Transfer,2011.133:0415011-0415017.
    [24]Milton R M, Gottzmann C F. High Efficiency Reboilers and Condensers [J]. Chemical Engineering Progress Symposium Series,1972,68(9):56-61.
    [25]Gottzmann C F, O'Neill P S, Minton P E. High Efficiency Heat Exchangers [J]. Chemical Engineering Progress Symposium Series.1973.69(7):69-75.
    [26]Czikk A M. O'Neill P S. Correlation of Nucleate Boiling from Porous Metal Films [J]. Advances in Enhanced Heat Transfer.1979.15:103-113.
    [27]Chang J Y. You S M. Enhanced boiling heat transfer from micro-porous surfaces:effects of a coating composition and method [J]. International Journal of Heat and Mass Transfer,1997,40: 4449-4460.
    [28]Poniewski M E. Peculiarities of boiling heat transfer on capillary-porous coverings [J]. International Journal of Thermal Sciences.2004.43:431-442.
    [29]Melendez E, Reyes R. The pool boiling heat transfer enhancement from experiments with binary mixtures and porous heating covers [J]. Experimental Thermal and Fluid Science.2006,30:185-192.
    [30]Liter S G, Kaviany M. Pool-boiling CHF enhancement by modulated porous-layer coating:theory and experiment [J]. International Journal of Heat and Mass Transfer,2001,44:4287-4311.
    [31]Min D H, Hwang G S. Usta Y. et al.2-D and 3-D modulated porous coatings for enhanced pool boiling [J]. International Journal of Heat and Mass Transfer,2009.52:2607-2613.
    [32]Kim J H, Rainey K N, You S M, et al. Mechanism of Nucleate Boiling Heat Transfer Enhancement From Microporous Surfaces in Saturated FC-72 [J]. ASME Jounral of Heat Transfer,2002.124: 501-506.
    [33]El-Genk M S, Ali A F. Subcooled Boiling of PF-5060 Dielectric Liquid on Microporous Surfaces [J]. ASME Jounral of Heat Transfer.2011,133:0815031-0815039.
    [34]Parker J L, El-Genk M S. Effect of Surface Orientation on Nucleate Boiling of FC-72 on Porous Graphite [J]. ASME Jounral of Heat Transfer,2006.128:1161-1175.
    [35]Li C, Peterson G P. Parametric Study of Pool Boiling on Horizontal Highly Conductive Microporous Coated Surfaces [J]. ASME Jounral of Heat Transfer,2007,129:1465-1475.
    [36]Franco A. Latrofa E M, Yagov V V. Heat transfer enhancement in pool boiling of a refrigerant fluid with wire nets structures [J]. Experimental Thermal and Fluid Science,2006,30:263-275.
    [37]Kim S J, Bang 1 C. Buongiorno J. et al. Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids [J]. Applied Physics Letters,2006.89.
    [38]Kim S J. Bang I C, Buongiorno J, et al. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux [J]. International Journal of Heat and Mass Transfer,2007.50: 4105-4116.
    [39]Xu J L. Ji X B, Zhang W, et al. Pool boiling heat transfer of ultra-light copper foam with open cells [J]. International Journal of Multiphase Flow,2008,34:1008-1022.
    [40]Yang Y P. Ji X B. Xu J L. Pool boiling heat transfer on copper foam covers with water as working fluid [J]. International Journal of Thermal Sciences,2010,45:1-11.
    [41]Li S H, Furberg R. Toprak M S. et al. Nature-Inspired Boiling Enhancement by Novel Nanostructured Macroporous Surfaces [J]. Advanced Functional Material,2008.18:2215-2220.
    [42]Chen R K. Lu M C. Srinivasan V. et al. Nanowires for Enhanced Boiling Heat Transfer [J]. Nano Letter,2009.9(2):548-553.
    [43]Yang W J. Zhang N L. Vrable D L. Macro-to Microscale Boiling Heat Transfer From Metal-Graphite Composite Surfaces [J]. ASME Jounral of Heat Transfer,2011.131: 0910011-0910018.
    [44]Katto Y. Yokoya S. Experimental Study of Nucleate Pool Boiling in Case of Making Interference-Plate Approach to the Heated surface. Third International Heat Transfer Conference [C]. Chicago:1966.
    [45]lshibashi E. Nishikawa K. Saturated Boiling Heat Transfer in Narrow Spaces [J]. International Journal of Heat and Mass Transfer,1969.12:863-894.
    [46]Yao S C. Chang Y. Pool Boiling Heat Transfer in a Confined Space [J]. International Journal of Heat and Mass Transfer,1983.26:841-848.
    [47]Xia C L. Hu W L, Guo Z Y. Natural Convective Boiling in Vertical Rectangular Narrow Channels [J]. Experimental Thermal and Fluid Science,1996,12:313-324.
    [48]Guo T W, Zhu T Y. Experimental research on the enhancement of boiling heat transfer of liquid helium in narrow channel [J]. Cryogenics,1997,37:67-70.
    [49]Bonjour J, Lallemand M. Flow Patterns During Boiling in a Narrow Space Between Two Vertical Surfaces [J]. International Journal of Multiphase Flow,1998,24:947-960.
    [50]Bonjour J, Clausse M, Lallemand M. Experimental study of the coalescence phenomenon during nucleate pool boiling [J]. Experimental Thermal and Fluid Science.2000,20:180-187.
    [51]Zhao Y H. Tsuruta T, Ji C Y. Experimental study of nucleate boiling heat transfer enhancement in confined space [J]. Experimental Thermal and Fluid Science,2003,28:9-16.
    [52]Haynes B S. Fletcher D F. Subcooled flow boiling heat transfer in narrow passages [J]. International Journal of Heat and Mass Transfer.2003,46:3673-3682.
    [53]Peng C H. Guo Y, Qiu S Z, et al. Two-phase flow and boiling heat transfer in two vertical narrow annuli [J]. Nuclear Engineering and Design.2005.235:1737-1747.
    [54]Ghiu C D, Joshi Y K. Pool Boiling Using Thin Enhanced Structures Under Top-Confined Conditions [J]. ASME Jounral of Heat Transfer,2006,128:1302-1311.
    [55]Passos J C. Hirata F R. Possamai L F B. et al. Confined boiling of FC72 and FC87 on a downward facing heating copper disk [J]. International Journal of Heat Fluid Flow,2004,25:313-319.
    [56]Passos J C. DaSilva E L, Possamai L F B. Visualization of FC72 confined nucleate boiling [J]. Experimental Thermal Fluid Science,2005,30:1-7.
    [57]Passos J C, Possamai L F B, Hirata F R. Confined and unconfined FC72 and FC87 boiling on a downward-facing disc [J]. Applied Thermal Engineering,2005,25:2543-2554.
    [58]Misale M, Guglielmini G, Priarone A. Nucleate boiling and critical heat flux of HFE7100 in horizontal narrow spaces [J]. Experimental Thermal and Fluid Science,2011,35:772-779.
    [59]Griffith P, Wallis J D. The role of surface conditions in nucleate boiling [J]. Chemical Engineering Progress Symposium Series,1960,56(49):49-63.
    [60]Young R K, Hummel R L. Improved nucleate boiling heat transfer [J]. Chemical Engineering Progress Symposium Series.1965,61(59):264-270.
    [61]Gaertner R F. Methods and Means for Increasing the Heat Transfer Coefficient between a Wall and Boiling Liquid. U.S. Patent 3301314[P].1967,01.31.
    [62]Bliss F E, Hsu S T, Crawford M. An Investigation into the Effects of Various Platings in the Film Coefficient during Nucleate Boiling From Horizontal Tubes [J]. International Jounral of Heat Mass Transfer,1969,12:1061-1072.
    [63]Vittala C B V. Gupta S C, Agarwal V K. Boiing heat transfer from a PTFE coated heating tube to alcohols [J]. Experimental Thermal and Fluid Science,2001.25:125-130.
    [64]Qiu Y H, Liu Z H. Nucleate boiling on the superhydrophilic surface with a small water impingement jet [J]. International Jounral of Heat and Mass Transfer,2008,51:1683-1690.
    [65]Takata Y, Surface Wettability Effects in Liquid-Vapor Phase Change. The Eighteenth International Symposium on Transport Phenomena [C]. Daejeon:2007.
    [66]Phan H T, Caney N, Marty P, et al. Surface wettability control by nanocoating:The effects on pool boiling heat transfer and nucleation mechanism [J]. International Jounral of Heat and Mass Transfer. 2009.52:5459-5471.
    [67]Rioboo R, Marengo M, Dall'Olio S. et al. An Innovative Method to Control the Incipient Flow Boiling through Grafted Surfaces with Chemical Patterns [J]. Langmuir,2009.25:6005-6009.
    [68]Forrest E. Williamson E, Buongiorno J. et al. Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings [J]. International Jounral of Heat Mass Transfer.2010,53:58-67.
    [69]Pioro I L, Rohsenow W, Doerffer S S. Nucleate pool-boiling heat transfer. Ⅱ:assessment of prediction methods [J]. International Jounral of Heat and Mass Transfer.2004.47:5045-5057.
    [70]Labuntsov D A. Heat Transfer Problems with Nucleate Boiling of Liquids [J]. Thermal Engineering, 1972,19(9):21-28.
    [71]Rohsenow W M. A method of correlation heat-transfer data for surface boiling of liquids [J]. ASME Jounral of Heat Transfer,1951.74:969-976.
    [72]Theofanous T G. Tu J P. Dinh A T. et al. The boiling crisis phenomenon Part 1:nucleation and nucleate boiling heat transfer [J]. Experimental Thermal and Fluid Science.2002,26:775-792.
    [73]Bang I C, Chang S H. Direct observation of a liquid film under a vapor environment in a pool boiling using a nanofluid [J]. Applied Physics Letters.2005,86:134107.
    [74]Ono A, Sakashita H. Liquid-vapor structure near heating surface at high heat flux in subcooled pool boiling [J]. International Journal of Heat and Mass Transfer.2007.50:3481-3489.
    [75]Rohsenow W M. Hartnett J P. Cho Y I. Hand-book of Heat Transfer.3rd edition [M]. New York: McGraw-Hill,1998.
    [76]Pioro I L. Experimental evaluation of constants for the Rohsenow pool boiling correlation [.I]. International Journal of Heat and Mass Transfer,1999.42:2003-2013.
    [77]Shoji M, Takagi Y. Bubbling features from a single artificial cavity [.(]. International Journal of Heat and Mass Transfer.2001,44:2763-2776.
    [78]Xu J J. Chen B D. Wang X J. Visualization of bubble growth and departure in a vertical narrow rectangular channel. Proceedings of the 18th International Conference on Nuclear Engineering [C]. Xi'an, China:2010.
    [79]Haustein H D. Dietze G F, Kneer R. A new empirical model for bubble growth:boiling in an infinite medium and on a wall at high superheat. Proceedings of the ASME/JSME 20118th Thermal Engineering Joint Conference [C]. Honolulu, Hawaii. USA:2011.
    [80]Wagner E, Stephan P. High-Resolution Measurements at Nucleate Boiling of Pure FC-84 and FC-3284 and Its Binary Mixtures [J]. ASME Jounral of Heat Transfer.2011.131: 1210081-12100812.
    [81]Lin X P. Christopher D M. Li Y S. et al. Bubble Dynamics From Artificial Nucleation Sites During Subcooled Pool Boiling. Proceedings of the ASME 20092nd Micro/Nanoscale Heat& Mass Transfer International Conference [C]. Shanghai. China:2011.
    [82]Sathyabhama A. Babu T P A. Nucleate Pool Boiling Heat Transfer Measurement and Flow Visualization for Ammonia-Water Mixture [J]. ASME Jounral of Heat Transfer,2011.133: 1015061-1015067.
    [83]Quan X J. Chen G, Cheng P. A thermodynamic analysis for heterogeneous boiling nucleation on a superheated wall [J]. International Jounral of Heat and Mass Transfer.2011.54:4762-4769.
    [84]Moghaddam S. Kiger K. Physical mechanisms of heat transfer during single bubble nucleate boiling of FC-72 under saturation conditions-1. Experimental investigation [J]. International Journal of Heat and Mass Transfer.2009.52:1284-1294.
    [85]Moghaddam S. Kiger K. Physical mechanisms of heat transfer during single bubble nucleate boiling of FC-72 under saturation conditions-II:Theoretical analysis [J]. International Journal of Heat and Mass Transfer.2009,52:1295-1303.
    [86]Cavicchi R E. Thomas A C. Bubble nucleation.growth and surface temperature oscillations on a rapidly heated microscale surface immersed in a bulk subcooled but locally superheated liquid under partial vacuum [J]. International Journal of Heat and Mass Transfer.2011.54:5612-5622.
    [87]Bon B, Guan C K. Klausner J F. Heterogeneous nucleation on ultra smooth surfaces [J]. Experimental Thermal and Fluid Science.2011.35:746-752.
    [88]Luke A. Interactions between bubble formation and heating surface in nucleate boiling [J]. Experimental Thermal and Fluid Science.2011.35:753-761.
    [89]Kotthoff S, Gorenflo D. Danger E. et al. Heat transfer and bubble formation in pool boiling:Effect of basic surface modifications for heat transfer enhancement [J]. International Journal of Thermal Sciences.2006,45:217-236.
    [90]Moore F D. Mesler R B. The measurement of rapid surface temperature fluctuations during nucleate boiling of water [J]. AIChE Journal.1961.7:620-624.
    [91]Mikic B B. Rohsenow W M. A new correlation of pool boiling data including the effect of heated surface characteristics [J]. ASME Jounral of Heat Transfer.1969.91:245-250.
    92] Misale M, Garibaldi P, Passos J C, et al. Experiments in a single-phase natural circulation mini-loop [J]. Experimental Thermal and Fluid Science,2007,31:1111-1120.
    93] Bergles A E. Enhancement of pool boiling [J]. International Jounral of Refrigeration,1997,20(8): 545-551.
    94] Li C, Wang Z, Wang P, et al. Nanostructured Copper Interfaces for Enhanced Boiling [J]. Interface Science,2008,4(8):1084-1088.
    95] Prasad L, Alam M S, Gupta S C, et al. Enhanced Boiling of Methanol on Copper Coated Surface [J]. Chemical Engineering Technology,2007,30:901-906.
    96] Judd R L, Hwang K S. A Comprehensive Model for Nucleate Pool Boiling Heat Transfer Including Microlayer Evaporation [J]. ASME Jounral of Heat Transfer,1976,98:623-629.
    97] Webb R L. The Evolution of Enhanced Surface Geometries for Nucleate Boiling [J]. Heat Transfer Engineering,1981,2:46-69.
    98] Ghiu C D, Joshi Y K. Visualization study of pool boiling from thin confined enhanced structures [J]. International Journal of Heat and Mass Transfer,2005.48:4287-4299.
    99] Cassie A B D, Baxter S. Wettability of Porous Surfaces [J]. Transactions of the Faraday Society. 1944.40:546-551.
    100] Shoji M. Studies of boiling chaos:a review [J]. International Journal of Heat and Mass Transfer. 2004,47:1105-1128.
    101] Nukiyama S. The maximum and minimum values of the heat transmitted from metal to boiling water under atmospheric pressure [J]. International Journal of Heat and Mass Transfer.1966.9: 1419-1433.
    102] Fritz W. Maximum volume of vapor bubbles [J]. Physikalischen Zeitschrift.1935.36:379-384.
    103] Zuber N. Hydrodynamic Aspect of Boiling Heat Transfer [D]. Los Angeles:University of California, 1959.
    104] Dhir V K. Mechanistic Prediction of Nucleate Boiling Heat Transfer-Achievable or a Hopeless Task? [J]. ASME Jounral of Heat Transfer,2006,128:1-12.
    105] Basu N, Warrier G R, Dhir V K. Onset of Nucleate Boiling and Active Nucleation Site Density During Subcooled Flow Boiling [J]. ASME Jounral of Heat Transfer.2002,123:717-728.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700