液氮核态沸腾可视化实验研究及换热模型改进
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液氮等低温液体的饱和温度远低于室温,且其汽化潜热小,由于漏热等原因易发生沸腾。与水、甲醇等常规液体沸腾实验相比,低温液体沸腾实验由于设有为减少环境漏热影响而添加的杜瓦等设备使得装置结构更为复杂,观测过程也更加困难。虽然常温液体沸腾研究成果通常可以扩展到低温液体,但其中涉及一些经验参数的适用性还有待验证。核态沸腾中的高热流密度区域,温差小并伴随大换热系数,换热效果明显优于其他区域;而且由于该区域气泡大量产生、合并,流场和温度场极为复杂,目前研究还存在许多问题。在此背景下,本文对低温液体高热流密度沸腾开展了实验观测及传热模型改进的研究。
     本文首先对高热流密度沸腾时厚液层的蒸发过程进行分析,研究厚液层蒸发传热模型及其相关参数,发现常规液体的经验公式或其中的某些相关参数对液氮的适用性值得进行针对性的验证。在此基础上,根据液氮及测量对象的特点,在综合分析文献中的主要实验测量手段后,决定采用可视化技术和控制热流方法对沸腾表面进行观测,设计并搭建了实验台。
     通过实验获得传热模型中的高热流密度沸腾区起点、合体气泡脱离频率、临界热流密度等参数,讨论了沸腾表面材料和表面直径对临界热流密度及其对应过热度的影响规律。基于厚液层传热模型,结合本文的实验结果,推算出了厚液层初始厚度和活化核心密度,进而分析了表面材料对活化核心密度的影响方式。将实验中获得的各参数与厚液层传热模型的基本方程相结合,建立起较完整的液氮高热流密度区沸腾传热模型。采用该模型对液氮中高热流密度沸腾过程进行模拟分析,计算结果与实验值基本上都能够很好地吻合。
Cryogenic liquid with a saturation temperature much lower than room temperature and small latent heat of vaporization is apt to boil in case of heat leak or internal heat resource. Compared with the liquids with near ambient temperature, such as water and methanol, the experiments on the boiling of cryogenic liquids, especially the observation procedure, are more complex and difficult due to the obligatory insulation structures for reducing heat leakage from the surroundings. Even though the results from common liquid's boiling can be extended to the cryogenic liquids, there are many empirical parameters still requiring the verification of its applicability. The high heat flux boiling in nucleate boiling can achieve better heat transfer efficiency than other regions due to its large heat transfer coefficient with a small temperature difference. The flow and temperature field is very complex due to the production and coalescence of the large numbers of bubbles. There are still many problems to resolve. Therefore, the high heat flux boiling of the cryogenic liquids was scheduled to be studied in this work.
     Firstly, the evaporation process of macro-layer in the high heat flux boiling was analyzed, followed by an investigation of macro-layer evaporation model and the parameters in the model. It was found that the applicability of the physical model and empirical parameters for boiling process still needs further verification for the cryogenic liquid such as nitrogen. On this basis, according to the characteristics of the liquid nitrogen and the measured objects, the visualization and heat flux control methods were carried out to monitor the boiling phenomena on the heated surface, referring to the relevant literatures. The experimental program was then developed, and the experiment apparatus was designed and built.
     The parameters in the macro-layer evaporation model, such as the starting point of high heat flux boiling, the detachment frequencies of coalesced bubbles and the critical heat flux, was obtained from the measuring results. The influences of the boiling surface materials and the surface diameter on the critical heat flux and the corresponding superheat were discussed. The thickness of macro-layer and the active site density were then calculated from the equations of macro-layer evaporation model with the help of the experimental results. The influence of the boiling surface materials on the active site density was also analyzed. Finally, a boiling heat transfer model of liquid nitrogen at high heat flux was established, with which the calculation results can fit well with the results from experiments.
引文
1.鹿彪,张立红,低温阀门设计制造与检验,阀门,1993,3:6-10.
    2. V. K. Dhir, Boiling curve. In:Handbook of Phase Change:Boiling and Condensation. Eds:S. G. Kandlikar, M. Shoji, V. K. Dhir. Taylor & Francis, Philadelphia,1999,63-70.
    3. J. J. Xu, Z. Q. Lu, Boiling heat transfer and gas liquid two phase flow, Nuclear Energy, Beijing,1993, 420-422.
    4. V. P. Carey, Pool boiling, in:liquid-vapor phase-change phenomena:an introduction to the thermophysics of vaporization and condensation process in heat transfer equipment, Hemisphere, Washington, DC,1992 (Chapter 7).
    5. W. M. Rohsenow, A method of correlating heat transfer data for surface boiling of liquids, Trans. ASME, 1952,74:969.
    6. N. Zuber, Nucleate boiling. The region of isolated bubbles and the similarity with natural convection, International Journal of Heat and Mass Transfer,6:53-78.
    7. N. Zuber, On the stability of boiling heat transfer. Trans ASME,1958,80(3):711-716.
    8. N. Zuber, Hydrodynamic aspects of boiling heat transfer, AEC Report No. ASCU-4439,1959.
    9. Y. Katto, S. Yokoya, Trans. JSME (in Japanese),1968,34 (258):345.
    10. Y. Haramura, Y. Katto, A new hydrodynamic model of critical heat flux applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids, International Journal of Heat and Mass Transfer,1983,26 (2):389-399.
    11. C. Pan, J. Y. Hwang, T. L. Lin, The mechanism of heat transfer in transition boiling, International Journal of Heat and Mass Transfer,1989,32:1337-1349.
    12. A. M. Bhat, R. Prakash, J. S. Saini, On the mechanism of macrolayer formation in nucleate pool boiling at high heat flux, International Journal of Heat and Mass Transfer,1983,26 (5):735-740.
    13. S. Maruyama, M. Shoji, S. Shimizu, A numerical simulation of transition boiling heat transfer, in: Proceedings of the Second JSME-KSME Thermal Engineering Conference,1992,3:345-348.
    14. M. Shoji, H. Kuroki, Model of macrolayer formation in pool boiling, in:Proceedings of the 10th International Heat Transfer Conference,1994,147-152.
    15. Y. He, M. Shoji, S. Maruyama, Numerical study of high heat flux pool boiling heat transfer, International Journal of Heat and Mass Transfer,2001,44:2357-2373.
    16. V. K. Dhir, P. Liaw, Framework or unified model for nucleate and transition pool boiling, Trans. ASME J. Heat Trans,1989,111 (3):739-746.
    17. N. Nagai, S. Nishio, Liquid-solid contact phenomena in boiling heat transfer (proposal of concept of contact-line length density), Trans. JSME B,1997,63 (106):220-227.
    18. Y. H. Zhao, T. Masuoka, T. Tsuruta, Prediction of critical heat flux based on the microlayer model, Trans. JSME B,1996,62 (598):246-251.
    19. V. A. Grigorev, Y. M. Pavlov, E. V. Ametistov, Correlation of experimental data on heat transfer with pool boiling of several cryogenics liquids. Thermal Engineering,1973,20:81-89.
    20. K. Stephan, M. Abdelsalem, Heat transfer correlations for natural convection boiling, International Journal of Heat and Mass Transfer,1980,23 (1):73-87
    21. V. A. Grigoriev, V. V. Klimenko, Y. M. Pavlov, Y. V. Ametistov, The influence of some heating surface properties on the critical heat flux in cryogenic liquids boiling Conference Proceedings, Proceedings of Sixth International Heat Transfer, Toronto,1978,1:215-220.
    22. J. W. Westwater, J. J. Hwalek, M. E. Irving Suggested standard method for obtaining boiling curves by quenching. Industrial and Chemical Fundamentals,1986,25(4):685-692.
    21 Bar-Cohen, A. McNeil, Engineering Foundation Conf. Pool and External Flow Boiling, Santa Barbara, USA,1992,171-175.
    24. D. N. Lyon, Peak nucleate-boiling heat fluxes and nucleate-boiling heat-transfer coefficients for liquid N2, liquid O2 and their mixtures in pool boiling at atmospheric pressure, International Journal of Heat and Mass Transfer,1964,7:1097-1116.
    25. C. Beduz, R. G. Scurlock, A. J. Sousa, Angular dependence of boiling heat transfer mechanism in liquid nitrogen, Advances in Cryogenic Engineering,1988,33:363-370.
    26. V. Drach, J. Fricke, Transient heat transfer from smooth surfaces into liquid nitrogen, Cryogenics,1996, 36:263-269.
    27. D. Y. T. Lin, J. W. Westwater, Effects of metal thermal properties on boiling curves obtained by the quenching method, Proceedings of the International Heat Transfer,1982,4:155-160.
    28. M. G. Kang, Effect of surface roughness on pool boiling heat transfer, International Journal of Heat and Mass Transfer,2002,43(22):4073-4085.
    29. S. C. Bankoff, Entrapment of gas in the spreading of liquid over a rough surface, AIChE J.1958,4:24.
    30. C. H. Wang, V. K. Dhir, On the gas entrapment and nucleation site density during pool boiling of saturated water, Journal of Heat Transfer,1993,115:670.
    31. C. H. Wang, Experimental and analytical study of the effects of wettability on nucleation site density during pool boiling, PhD Thesis, Univ. of California, Los Angeles,1992.
    32 M. Shoukri, R. L. Judd, Nucleation site activation in saturated boiling. J. Heat Transfer,1975,97:93.
    33. C. H. Wang, V. K. Dhir, Effect of surface wettability on active nucleation site density during pool boiling of saturated water, ASME Journal of Heat Transfer,1993,115:659.
    34. D. B. R. Kenning, Wall temperatures in nucleate boiling, Proc. Eurotherm. Semin, Adv. Pool Boiling Heat Transfer, Paderborn, Germany,1989,1.
    35. R. L. Judd, A. Chopra, Interaction of the nucleation process occurring at adjacent nucleation sites, Journal of Heat Transfer,1993,115:955.
    36. Qi Yusen, J. F. Klausner, Mei Renwei. Role of surface structure in heterogeneous nucleation. International Journal of Heat and Mass Transfer,2004,47:3097-3107.
    37. S. R. Yang, Z. M. Xu, J. W. Wang, On the fractal description of active nucleation site density for pool boiling. International Journal of Heat and Mass Transfer,2001,44:2783-2786.
    38. T. G. Theofanous, J. P. Tu, A. T. Dinh, The boiling crisis phenomenon (Part I):nucleation and nucleate boiling heat transfer. International Journal of Heat and Mass Transfer,2002,26:775-792.
    39.贾涛,刁彦华,张辉亚,用数学形态学识别核态沸腾中的活化核心密度,华中科技大学学报,2006,34(11):107-109.
    40. T. Kumada, H. Sakashita, H. Yamagishi, Pool boiling heat transfer-Ⅰ. Measurement and semi-empirical relations of detachment frequencies of coalesced bubbles, International Journal of Heat and Mass Transfer, 1995,38(6):969-977.
    41. T. Kumada, H. Sakashita, Pool boiling heat transfer-II. Thickness of liquid macrolayer formed beneath vapor masses, International Journal of Heat and Mass Transfer,1995,38(6):979-987.
    42. S. Hiroto, K. Toshiaki, Macrolayer formation and mechanisms of nucleate boiling, critical heat flux, and transition boiling, Heat Transfer-Japanese Research,1998,27(2):155-168.
    43. S. Hiroto, Y. Hiroshi, K. Toshiaki, Studies on pool boiling heat transfer:Macrolayer thickness in transition boiling, Heat Transfer-Japanese Research,1998,27(8):568-583.
    44. H. Sakashita, A. Ono, Boiling behaviors and critical heat flux on a horizontal plate in saturated pool boiling of water at high pressures, International Journal of Heat and Mass Transfer,2009,52:744-750.
    45. K. Rajvanshi, J. S. Saini, R. Prakashi, Investigation of macrolayer thickness in nucleate pool boiling at high heat flux, International Journal of Heat and Mass Transfer,1992,35(2):343-350.
    46. S. Nishio, T. Gotoh, N. Nagaib, Observation of boiling structures in high heat-flux boiling, International Journal of Heat and Mass Transfer,1998,41:3191-3201.
    47. H. Auracher, W. Marquardt, Experimental studies of boiling mechanisms in all boiling regimes under steady-state and transient conditions, International Journal of Thermal Sciences,2002,41:586-598.
    48. C. Bang, S. H. Chang, W. P. Baek, Visualization of a principle mechanism of critical heat flux in pool boiling, International Journal of Heat and Mass Transfer,2005,48:5371-5385.
    49. A. Ono, H. Sakashita, Liquid-vapor structure near heating surface at high heat flux in subcooled pool boiling, International Journal of Heat and Mass Transfer,2007,50:3481-3489.
    50. L. Bewilogua, R. Knoener, H. Vinzelberg, Heat transfer in cryogenic liquids under pressure, Cryogenics,1975,15:121-125.
    51. E. L. Park, C. P. Colver, C. M. Sliepcevich, Nucleate and film boiling heat transfer to nitrogen and methane at elevated pressures and large temperature differences, Advances in Cryogenic Engineering,1966, 11:516-529.
    52. P. Brennan, E. Skrabek, Design and development of prototype static cryogenics heat transfer.1971, NASA, CR-121939.
    53. D. Steiner, E U. Schlunder, Heat transfer and pressure drop for boiling nitrogen flowing in a horizontal tube 1. Saturated flow boiling. Cryogenics,1976,16 (3):387-399.
    54.齐守良,张鹏,王如竹,液氮流动沸腾换热研究综述,低温与超导,2009,34(6):417-423.
    55. D. Steiner, E. U. Schlunder, Heat transfer and pressure drop for boiling nitrogen flowing in a horizontal tube 2. Pressure drop. Cryogenics,1976,16 (3):457-764.
    56. Y. Katto, S. Yokoya, Behavior of vapor mass in saturated nucleate and transition pool boiling, Trans. JSME,1975,41:295-305.
    57. M. Lemmert, J. M. Chwala, Influence of flow velocity on surface boiling heat transfer coefficient, in:E. Hahne, U. Grigull (Eds.), Heat Transfer in Boiling, Academic Press and Hemisphere, New York and Washington. D.C,1977.
    58. Y. A. Kirichenko, M. L. Dolgoy, N. M. Levchenko, V. V. Tsybul'skiy, L. A. Slobozhanin, N. S. Shcherbakova, A study of the boiling of cryogenic liquids, Heat Transfer-Soviet Research,1976,8(4): 64-72.
    59. K. Ohira, Study of nucleate boiling heat transfer to slush hydrogen and slush nitrogen, Heat Transfer-Asian Research,2002,32(11):13-28
    60. D. Warner, E. L. Park, J. Affiliation, Effect of heat transfer surface aging on heat flux in nucleate boiling liquid nitrogen, Advances in cryogenic engineering,1975,20:300-303
    61. P. Wang, P. L. Lewin, D. J. Swaffield, G. Chen, Electric field effects on boiling heat transfer of liquid nitrogen, Cryogenics,2009,49:379-389
    62. M E. Bland, C. A. Bailey, G. Davey, Boiling from metal surface immersed in liquid nitrogen and liquid hydrogen, Cryogenics,1973,13(11):651-657.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700