纸张电磁干燥技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纸张电磁干燥技术是利用电磁加热原理干燥纸张,是一种不同于传统蒸汽干燥的全新的纸张干燥技术。在环保压力日益严峻、能源危机日益逼近的今天,研究纸张电磁干燥技术就有其特别重要的意义,特别是对于高速卫生纸机来说,更有其客观现实需要和巨大发展潜力。
     本论文综述了国内外相关研究中对纸张干燥传热传质、电磁感应加热、工业过程控制等的研究进展,介绍了研究多孔介质传热传质过程的Luikov唯象理论和Whitaker体积平均理论,提出了电磁穿透干燥的概念,分析了电磁干燥技术的传热传质过程,利用多孔介质气流干燥理论,结合纸张气流穿透干燥的特点,模拟干燥条件,建立了纸张气流穿透干燥的数学模型:纤维颗粒热平衡方程:穿透空气气相能量方程:气相物质连续平衡方程:纸页干燥固相纤维连续方程:纤维固相动量方程:并对数学模型进行了分析求解。
     利用自制实验装置进行了穿透热风干燥实验。通过实验发现,利用数学模型计算的理论数值与实验结果吻合较好,证明本研究提出的数学模型和数值计算方法比较可靠和有效。
     本论文以电磁感应原理为基础,结合纸张干燥的要求,运用AUTOCAD软件设计了相应的实验室用电磁干燥装置,并详细剖析了其各个部分的选材和结构,通过UG软件的实体建模、装配建模等模块对电磁干燥装置的各个部分进行了三维仿真设计和整体装配,最后用ANSYS软件对电磁烘缸干燥装置主体部分进行了传热和受力分析,从理论上验证其设计的合理性。
     本论文利用自制实验装置,进行了电磁干燥装置的过程控制实验、加热均匀性实验、加热温度反馈滞后性及准确性实验,证明电磁干燥技术能够满足纸张干燥的要求。通过纸张电磁干燥实验,探讨了电磁干燥技术对纸张性能的影响,证明其更适合于吸收性高的生活用纸等的生产。通过应用实验,证明电磁干燥技术干燥效率高,干燥速度快,为电磁干燥技术的工程化提供了理论支持。
     本论文相应开发了用于电磁干燥装置的隔热保温有机硅涂料。采用甲基三氯硅烷、二甲基二氯硅烷和苯基三氯硅烷通过加温催化水解缩合,制得了有机硅树脂。通过对单体配比、催化剂、反应温度和时间等因素的研究,确定了合成性能良好的有机硅树脂的原料配比——甲基三氯硅烷:二甲基二氯硅烷:苯基三氯硅烷=2.5:1:5。通过对耐高温颜填料及助剂的选择和实验,确定了耐高温涂料配方。通过应用实验及ANSYS模拟仿真表明,所得到的涂料具有较好的物理机械性能、耐高温、耐冲击及隔热保温等性能。
     本论文对纸张电磁烘缸干燥技术的研究,是对节能、环保、高效的纸张干燥新技术的一种探索,在纸张电磁干燥技术理论和实践两方面都有较大的意义。
Electromagnetic drying of paper is based on the principle of electromagnetic heating drying, which is different from the traditional steam drying of paper. In the day of increasingly energy and environment pressure, it is full of high sense to search the electromagnetic drying of paper. Especially for high-speed tissue paper machine, it possesses objective reality and great potential for development.
     This dissertation reviews the domestic and international research in heat and mass transfer for paper drying, electromagnetic induction heating, industrial process control, etc. It introduced heat and mass transfer in porous media of Luikov Whitaker phenomenological theory and the average volume theory. Following that, the concept of electromagnetic penetration drying was put forward. The drying of the electromagnetic heat and mass transfer process were analyzed. Using air drying of porous media theory, combined with the characteristics of flow through air drying, the mathematical model was established by simulating drying conditions, which concludes five differential equations: Fiber particle heat balance equation: Gaseous phase energy equation of through air: Gas continuous balance equation:. Continuous equation of solid fiber: Momentum equation of solid fiber: The mathematical model was analyzed and solved.
     Through hot air drying experiments was carried out by using home-made experimental device. It was found that the theoretical calculations using mathematical agreed well with the experimental results. It was proved that the mathematical model and numerical calculations were reliable and effective.
     Based on the principles of electromagnetic induction, combined with paper drying requirements, the dissertation uses AutoCAD software to design the appropriate laboratory electromagnetic drying device. The selection of material and structure of it's parts were analyzed. By using UG software modeling, assembly modeling module, it carried out three-dimensional simulation of the design and overall assembly of the electromagnetic drying unit. Finally, by using ANSYS software, the heat transfer and stress analysis were carried out for the main part of electromagnetic dryer device, which verified the rationality of the design in theory.
     By using self-made experimental device, the dissertation carried out process control experiment, experiment heating uniformity experiment, heating temperature and the accuracy of the feedback lag experiment. The results proved that electromagnetic drying technology could meet the requirements of paper drying. Through making the experiments of paper electromagnetic drying, the dissertation discussed the effects on paper physical characteristics and demonstrated that it is more suitable for production of the high absorption tissue paper. By the application experiments, it proved that electromagnetic drying was of high drying efficiency and significant economic benefits, which provides the theoretical support for the application of electromagnetic drying technology.
     The silicone coating of thermal insulation was developed for electromagnetic drying system. The silicone resin was obtained by the use of methyl trichlorosilane, dimethyl dichlorosilane, and phenyl-trichlorosilane. Through the study of monomer ratio, catalyst, reaction temperature and time, the well-received performance of silicone resin ratio of raw materials was that methyl trichlorosilane:dimethyldichlorosilane:phenyl trichlorosilane 2.5: 1:5. By the selection and testing of filler and additive, the high temperature resistant coating formulations were confirmed. Through a series of application experiments, it showed that the coating has good mechanical properties, thermal insulation, impact resistance properties and high temperature resistance.
     The study of electromagnetic drying technology of paper has both theoretical and practical significance.
引文
[1]中国造纸协会,中国造纸工业2008年度报告.2009,4:2-8
    [2]余贻骥,把握现代造纸工业特点促进产业健康持续发展[J].纸和造纸,2006,25(5):1-3
    [3]陈克复.制浆造纸机械与设备(下)[M].中国轻工业出版社,2003,5:37-39
    [4]杨懋惺,2020年的中国造纸工业—中国造纸工业市场前景预测[J],中国造纸,2004,23(2):59-63
    [5]曹振雷.中国造纸工业综述和发展前景[J].中国造纸,2003,22(1):51-53
    [6]王金忠.Top DuoRun:高速纸机的烘干新概念[J].中华纸业,2001,(2):56
    [7]程建国,王义亮.一种新型的纸机干燥技术—气热式陶瓷红外干燥系统[J].黑龙江造纸,2000,4:39-40
    [8]刘云峰.一种新型纸张干燥设备—燃油燃气烘缸[J].轻工机械,1997,3:32
    [9]赵前哲,志大器,周伟松,周景春.感应加热电源的发展动态及选用[C].《机械工人》热处理及表面工程专辑,2006.7:26-38
    [10]湖南赛诺精密机器有限公司.微波干燥[OL]. http://baike. baidu. com/view/2807529. html? wtp=tt,更新:2009-12-30
    [11]王正顺等.内置式电磁烘缸干燥装置[J].纸和造纸2005,8:32-35
    [12]王正顺等.电磁烘缸干燥装置研究[J].山东轻工业学院学报,2006,2:43-45
    [13]董继先,张艳华,王涛.纸机干燥部新技术的发展[J].中华纸业,2007,3:34-36
    [14]张伟.电磁感应加热造纸烘缸及PLC控制系统的实现[D].浙江大学,2006.3:20-28
    [15]张锋,李运来.造纸机电磁感应加热烘缸的研究与设计[J].黑龙江造纸,2006,4:26-28
    [16]卢谦和.造纸原理与工程.[M].北京:中国轻工业出版社,2003,5:123-136
    [17]陈嘉祥等.造纸工艺学[M].中国轻工出版社,1983.5:126-184
    [18]潘天明.现代感应加热装置[M].冶金工业出版社,1996.8:34-37
    [19]汪世平.倍频式GIBT高频感应加热电源的研究[D].浙江大学电力电子与电力传动,2005.3:56-59
    [20]俞永祥,陈辉明.感应加热电源的发展[M].金属热处理,2000.8:78-89
    [21]汪世平.倍频式IGBT高频感应加热电源的研究[D].浙江大学2007.3:23-28
    [22]刘磊.一种应用于感应加热的高频谐振电路研究[D].浙江大学2007.8:35-39
    [23]夏小荣.高频感应加热电源[D].浙江大学2003.3:46-52
    [24]陆君伟.管道电磁加热装置设计研究[J].苏盐科技,2000.9:23-28
    [25]金以慧,方崇智.过程控制[M].北京:清华大学出版社,1993:134-138
    [26]邵惠鹤.工业过程高级控制[M].上海:上海交通大学出版社,2003,6:139-148
    [27]金以慧.过程控制[M].北京:清华大学出版社,1991.8:31-33
    [28]蒋慰孙,俞金寿.过程控制工程[M].北京:中国石化出版社,1998,7:1-5
    [29]潘天明.现代感应加热装置[M].北京:北京冶金工业出版社,1996,9:67-78
    [30]吴泽华,陈治中.大学物理:中册[M].杭州:浙江大学出版社,1998:219-223
    [31]郭会军.基于智能控制的超音频感应加热电源的研制[D].西安:西安理工大学,2001,5:23-36
    [32]陈建洪.基于DSP控制的超音频串联谐振式感应加热电源[D].西安理工大学,2003.3:23-36
    [33]秦工,杨昭.基于金属薄片的电磁感应加热理论模型的研究[J].江汉大学学报(自然科学版),2006,34(1):20-22
    [34]张伟,麻红昭,张华.基于IGBT中频感应加热造纸烘缸系统的设计与实现[J].轻工机械,2006.12:34-38
    [35]J. V., Garcia J. Lapiedra L., Fernandez M. Dede, E. J., Esteve V., Gonzalez. Design of a series resonant converter for induction heating. Electrotechnical Conference, 1991. Poreeedings,6th Mediterranean,1991.5(Vol.2):1384-1387
    [36]段海雁.感应加热电源的数字化控制研究[D].山东大学2007.5:25-42
    [37]陈维.固态高频感应加热电源的研究[D].西安理工大学2003.3:23-54
    [38]全亚杰.感应加热电源的发展历程与动向[J].电焊机,Vol.31,2001(11):3-6
    [39]饶益花,赵立宏.高频感应加热电源控制电路优化设计[J].机械与电子2004(11):62-63
    [40]熊磊.串联谐振感应加热电源的数字化控制研究[D].南昌大学2005.5:12-32
    [41]张素荣.基于DSP的高频感应加热电源控制系统的研究[D].西安理工大学2004.3:15-26
    [42]林瑞泰,多孔介质传热传质引论[M].北京:科学出版社.1995.8:34-50
    [43]冯铭杰.卫生纸空气穿透干燥技术[J].造纸科学与技术,2004,23(2):56-57
    [44]Charles E. Swann. Through-air Tissue Drying:What is it?. Paper & Tissue Industry 2002(11):36-37
    [45]卢涛,毛细多孔介质干燥过程中传热传质模型研究及应用[D].大连理工大学,2003,6:5-43
    [46]Whitaker S. Simultaneous heat, mass, and momentum transfer in porous media:a theory of drying[M], Advances in Heat Transfer.1977,13:119-203
    [47]Whitaker S. Drying in porous media[C], Second Australasian Conference on Heat and Mass Transfer.1977,5:409-420
    [48]陈文靖.气流干燥器加速段的计算[J].成都科技大学学报,1995(5):9-14
    [49]郑国生,曹崇文.颗粒物料气流干燥的数学模型[J].北京农业工程大学学报,1994,14(2):35-32
    [50]A S Pelegrina, G H Crapiste. Modelling the pneumatic drying of food particles[J]. Journal of Food Engineering,2001,48:301-310
    [51]Alfred Watzl. Through-air Drying Captures Premium Tissue. Markets Paper & Tissue Industry,2003(2):32-38
    [52]冯铭杰.卫生纸空气穿透干燥技术[J].造纸科学与技术,2004,23(2):56-57
    [53]A S Pelegrina, G H Crapiste. Modelling the pneumatic drying of food particles[J]. Journal of Food Engineering,2001,48:301-310
    [54]卢涛.毛细多孔介质干燥过程中传热传质模型研究及应用[D].大连理工大学,2003,6:5-43
    [55]Whitaker S. Simultaneous heat, mass, and momentum transfer in porous media:a theory of drying[M], Advances in Heat Transfer.1977,13:119-203
    [56]Arastoopour H, Gidaspow D. Vertical pneumatic conveying using four hydrodynamic models. Ind Chem Fundam,1979,18(2):123-130
    [57]戚宗刚.串联感应加热电源技术的研究[D].浙江大学,2004.3:12-32
    [58]王正顺.电磁烘缸干燥装置[P].中国专利:200420040449.2,2005-04-20
    [59]潘如峰.高频感应加热电源技术的研究[D].浙江大学2004.3:6-24
    [60]张伟.电磁感应加热造纸烘缸及PLC控制系统的实现[D].浙江大学,2006.3:
    [61]JoseVieira, AlexandreMota. Smith predictor based neural fuzzy controller applied in awatergas heater thatpresents a large time-delay and load disturbances[C]//Proc of IEEE Conference on Control Applications. Istanbu:1 [s. n.],2003:362-367
    [62]Wang. ZS, Sun. JD, Chen. KF, Zhao. CS. Application of Expert Control System Used in the Electromagnetic Drying Process[C].2008.11.4-6,Volume 2:605-608
    [63]孙京丹,王正顺.纸张干燥系统发展现状[J].纸和造纸,2009.28(4):4749
    [64]张震,董继先.纸张干燥新技术及装备介绍纸和造纸2009,29(9):16-20
    [65]陈栩雪.Unigraphics NX4.0应用基础与实训教程[M].北京:冶金工业出版社,2007,4:1-13
    [66]张文.基于全数字锁相环的感应加热电源研制[D].山东大学2007.5:4-36
    [67]沈健,李森.UG在机械设计中的应用[J].机械工程与自动化,2007(2):43-45
    [68]李霞,王强.UG软件在挖掘机三维仿真设计中的应用[J].矿山机械,1999.5:46
    [69]韩晓敏.全数字化感应加热电源的设计[D].山东大学2007.5:23-34
    [70]林慧珠.机械零件设计的强大工具—Unigraphics[J].化工装备技术,2003(6):57-59
    [71]赵波,龚勉,浦维达.UG CAD实用教程[M].北京:清华大学出版社,2002.83-168
    [72]李波,张云杰.Unigraphics NX4.0工程制图与装配设计.北京:北京大学出版社,2003.199-260
    [73]张冶,洪雪.Unigraphics NX三维工程设计与渲染教程[M].北京:清华大学出版社,2003,3:351-385
    [74]Elina Madetoja, Eeva-Kaisa Rouhiainen, Pasi Tarvainen. A decision support system for paper making based on simulation and optimization. Engineering with Computers (2008)24:145-153
    [75]潘春荣,罗庆生.UG软件在注塑模辅助设计和制造中的应用研究[J].机械设计与制造,2002(6):23-24
    [76]何小高,卢先荣,徐海.应用ANSYS分析刚性路面的温度应力和荷载应力[J].Highways & Automotive Applications,2004.6:35-38
    [77]邵蕴秋.ANSYS10.0有限元分析实例导航[M].中国铁道出版社,2007,5:120-135
    [78]王风丽,宋艘良.在ANSYS中建立杂有限元模型[J].哈尔滨理工大学学报,2003,49(6);22-25
    [79]潘天明.IGBT超音频感应加热电源[J].工业加热,1996.2:23-26
    [80]王峰,陈辉明,王英,潘如峰新型高频电磁加热热水器的研究与设计[J].电源技术应用,2003.6(8):45-47
    [81]周海等.ANSYS工程应用教程——热与电磁学篇[M].中国铁道出版社,2006,7:125-138
    [82]王磊,李珊,周陶勇等.基于ANSYS几种建模方法的探讨[J].现代机械,2006,3:36-38
    [83]田志川.感应加热原理的讨论[J].通化师范学院学报2004,25(4):44-45
    [84]刘清,王孟效.纸机干燥部暖缸的智能控制[J].中国造纸,2004,23(7):44
    [85]孙增圻等.智能控制理论与技术[M].北京:清华大学出版社,1997,6:128-136
    [86]孙瑜,王孟效.一种预测智能控制算法及其在多段通气优化控制中的应用[J].化工自动化及仪表,2003,30(1):31
    [87]刘焕彬.制浆造纸过程自动测量与控制[M].北京:中国轻工业出版社,2003,5:34-45
    [88]刘诗锐.抄纸车间配浆自动控制[J].中国造纸,2005,24(4):36-38
    [89]邵惠鹤.工业过程高级控制[M].上海:上海交通大学出版社,1997,6:126-138
    [90]尚群立,等.配浆过程计算机优化控制方案的研究[J].中国造纸,1998,17(5):17
    [91]YangRallming, LuciaLucian A, RagauskasArthur J. Controlling the effciency of oxygen delignification through selected key operational parameters:Pulp mixing and metals management[J]. Technical Assoc. of the Pulp and Paper Industry Press, 2001(11):453-458
    [92]邹伟.专家控制在纸浆浓度控制中的应用研究[D].陕西科技大学,2006,3:76-83
    [93]武狄,张忠民,李强.模糊专家控制在工业加热炉燃烧过程中的应用[J].舰船电子工程Vol.25 No.5:94
    [94]朱丹波.基于专家控制的DCS在纸机干燥部的应用[D].咸阳:陕西科技大学,2005,6:89-95
    [95]刘丽娜,李德雄.专家控制系统的理论分析[J].石家庄铁路职业技术学院学报2006.12 VOL.5 No.4:72
    [96]梁灿彬,秦光戎,梁竹健.电磁学(第2版)[M].北京高等教育出版社,2004,3:230-238
    [97]沈凯,陆继东,陈交顺,罗海岩,陈威,李春华.专家控制在循环流化床锅炉燃烧控制系统中的应用[J].动力工程,2003,23(4):2557-2559
    [98]顾敏明,潘海鹏.湿度专家控制系统的设计与实现[J].工业仪表与自动化装置,2007,4:20-22
    [99]孙小青,王海滨,朱斯国.专家控制在自动清理控制系统中的实现[J].自动化技术与应用,2007,26(5):35-38
    [100]黄黎明,唐朝晖.智能控制过程中模糊专家控制规则的获取[J].计算机工程与应用2007,43(13):239-241
    [101]张博,张根宝,李艳.纸机干燥部供汽系统的专家控制系统[J].中国造纸,2007,26(2):42-44
    [102]杨春节.高速纸机的DCS控制系统设计及应用[J].化工自动化及仪表,2001,28(1):5-8
    [103]杨小军.自适应迭代学习控制新算法及其在工业过程控制中的应用[D].西安电子科技大学,2002.1:65-72
    [104]罗铁祥,徐正权.工业过程控制专家系统壳体构造[J].武汉化工学院学报2000,22(3):65-67
    [105]达飞鹏,徐嗣鑫,宋文忠.纸厂定量/水分的智能控制研究[J].控制理论与应用1999,16(3):458-460
    [106]金晓明,王树青.工业过程先进控制的概念设计[J].化工自动化及仪表,2000,27(4):1-5
    [107]卢荣德,陈宗海,王雷.复杂工业过程计算机建模/仿真与控制的综述[J].系统工程与电子技术2002,24(1):52-57
    [108]刘建,王孟效.专家控制在碱回收燃烧工段中的应用研究[J].陕西科技大学学报Feb.2008,No1:90-93
    [109]Zhou Xuqiang, Wang Xionghai. Distributed intelligent temperature and humidity monitoring system of electrical switchgear[J]. Electrotechnical Journal,2003(11): 45-46
    [110]Nie Simin, Sun Xiangrong, Wu Kun, et al. A Simple and clever device for monitor and control of temperature and moisture in tobacco drying[J]. Journal of Agricultural Mechanization Research,2006(3):81-85
    [111]Zhou Xuqiang, Wang Xionghai. Distributed intelligent temperature and humidity monitoring system of electrical switchgear[J]. Electrotechnical Journal,2003(11): 45-46
    [112]WUMin, LIU Yong-xia, CAOWei-hua, et. al. Research and implementation of intelligent optimizing control system for heating-combustion process in coke oven (B) [J]. Metallurgical Industry Automation,2006,30(6):10-14
    [113]杨博,王孟效,汤伟,冯茜.专家控制在纸机干燥部通风系统控制中的应用[J].制造自动化2008.7:61-64
    [114]杨博,王孟效.专家控制在气垫式流浆箱控制中的应用[J].中华纸业,2008.2 No.4:22-25
    [115]邹伟.专家控制在纸浆浓度控制中的应用研究[D].陕西科技大学,2006.5:43-48
    [116]吴洪涛.专家控制及其在工程船舶运动控制中的应用研究[D].武汉理工大学,2006.4:56-67
    [117]Wang zhengshun, Chen Kefu. Application of Expert Control System Used in the Electromagnetic Drying Process, ICPPB'08,2008.11 Volume 2:605-608
    [118]Sun Xiangrong, Wu Kun, et al. A Simple and clever device for monitor and control of temperature and moisture in tobacco drying[J]. Journal of Agricultural Mechanization Research,2006(3):81-85
    [119]王正顺,陈克复,黄良辉,康国兵.纸张穿透热风干燥过程的数学模型[J].华南理工大学学报(自然科学版),2010,38(4):40-44
    [120]张根宝,李艳.纸机干燥部供汽系统的专家控制系统[J].中国造纸,2007,26(2):42-44
    [121]王正顺,陈克复,孙京丹.耐高温隔热保温有机硅涂料研究[J].中华纸业,2010,238(6):38-41
    [122]余政.新型耐高温硅烷偶联剂的合成研究[D].南昌大学,2007.6:78-89
    [123]王军,孙友军,殷宪霞.有机硅耐高温涂料的研制[J].特种涂料与涂装专刊,2007,10(9):22-24,28
    [124]Kiik, Matti, Tobin, et al. Heat reflective coated structural article [P]. US Pat,6872440. 2005
    [125]Hallissy G, Higbie William G, et al. Flexible, insulative fire protective coatings and conduits, utilitarian components, and structural materials coated therewith [P]. US Pat, 2004054035.2004
    [126]Hugo Gerd. Coating material with reflective properties in two wavelength ranges, and absorbent properties in a third wavelength range [P]. US Pat,6017981.2000
    [127]Hamada Masatoshi. Heat-resistant coating material[J]. JP,1979,5:54-117
    [128]Mitsubishi Heavy Ind Ltd. Heat-resistant and thermal-insu-lating coating film [P]. JP Pat,9071874.1997
    [129]陆洪彬,陈建华.隔热涂料的隔热机理及其研究进展[J].材料导报,2005,19(4):71
    [130]侯佩民,郭焱,刘福长等.水性环氧改性丙稀酸热反射隔热涂料[P].CN Pat, 1434063.2003
    [131]蒋晓军,黄长庚,周志勇.空心微珠隔热涂料的研制[C].伪装专业学组第八届学术年会.宝鸡:中国兵工学会工程装备专业委员会,2004,8:45-49
    [132]郭年华,陈先,张强,等.聚氨酯改性高氯化聚乙烯热反射涂料[J].涂料工业,1999,(7):11-15
    [133]赵继华.耐高温隔热涂料的研究[J].涂料工业,2002,(11):22-26
    [134]郭年华.聚氨酯改性氯丙树脂太阳热反射涂料的研制[J].现代涂料与涂装,2003,(1):6-8
    [135]马承银,李延升,段远琼.二氧化钛包覆中空玻璃微珠制备近红外反射材料[J].中南大学学报(自然科学版),2004,35(5):56-64
    [136]杨富民.红外隔热功能复合材料的研究[D].北京:北京工业大学,2002,6:76-86
    [137]Bach Wolfgang, Assfalg Alfons. Materials for multispectral camouflage in the visual IR and micro/millimeter-wave range [P]. DE Pat,3606691.1987
    [138]Biby, Gerald, Hanna. Water-resistant degradable foam and method of making the same [P]. US Pat,6184261.2001
    [139]张树华.聚氨酯硬泡外墙隔热保温技术[J].2006,7:62-65
    [140]倪星元,张志华,黄耀东.SiO2纳米多孔材料制备及其保温隔热特性研究[J].原子能科学技术2004,7,38卷:129-132
    [141]李延升.反射近红外辐射涂料的研究[M].中南大学2004.4:67-70
    [142]杨德,何敏婷,郝智平.钢材构件专用隔热防火涂料(非膨胀型)的研制[J].有机硅材料2003,17(5):15-17
    [143]余丽蓉,陆春华,高树军.隔热功能涂料的研究与发展趋势[J].材料导报2006年10月第20卷第10期:52-55
    [144]付善菊,韩哲文,吴平平.聚硅氧烷热稳定性研究进展[J].高分子通报2001年2月:40-46
    [145]洪晓,朱长林.耐高温隔热保温涂料的研制[J].河南化工2008年第25卷:29-31
    [146]张文娟,陈剑华.耐高温有机硅涂料及粘接剂[J].有机硅材料2002,16(3):28-31
    [147]孔荣贵,戴英华,刘胜峰等.硅聚合物耐热耐水涂料.涂料工业[J],1995,6(2):1
    [148]邱军,黄裕杰,胡友慧.耐高温梯形聚甲基倍半硅氧烷的合成研究.功能高分子学报[J],1999,11(2):173-175
    [149]付善菊,韩哲文,吴平平.聚硅氧烷热稳定性研究进展.高分子通报[J],2001(1): 40-45
    [150]张心亚,蓝仁华,陈焕钦.水性涂料用苯丙微乳液的合成[J].石油化工,2003,32(5):410-413
    [151]牛福生.利用粉煤灰和泡沫塑料等废弃物制备防水隔热保温材料的研究[D].北京:北京科技大学,2005,5:67-78
    [152]姜洪义,殷仲海.无机胶粉料聚苯乙烯颗粒保温隔热材料的研究[J].武汉理工大学学报,2002,24(3):1-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700