木材碎料对撞流干燥特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对撞流干燥技术是一项具有很强干燥能力的新技术,它在粮食及化工等领域已有许多研究和一些工业应用,但它在木材加工领域的研究和应用,目前尚属空白。木材碎料的干燥是人造板生产中能耗很大的工序之一,将对撞流干燥技术应用于这一环节对于生产过程的节能降耗和提高生产效益方面将起到重要作用。因此本项目的研究既有重要的理论价值,更有实际应用的意义。
     本项目首次建立了可用于木材碎料干燥的“垂直---倾斜半环组台式干燥实验装置”,并进行了木材纤维和刨花的干燥实验。分析了各种因素对干燥过程和效果的影响。实验表明:木材纤维初含水率对产品终含水率影响很小,在不同初含水率的情况下均能得到符合生产要求的纤维原料;木材刨花的初含水率对终含水率有较大的影响,当含水率高时无法一次干燥得到符合含水率的原料,必须进行第二次循环干燥。气流温度和流量对提高系统的能力有明显的增强作用,它们是干燥能力改变的重要影响因素;在带载率增加的情况下,干燥后的终含水率略有增加,系统的去水能力随着带载率的提高几乎线性地相应提高。可以适当地加大带载率以提高系统的生产能力。
     本文从微观观察到制成品性能的宏观分析,研究了对撞流干燥对产品质量的影响。研究表明:对撞流干燥技术对木材碎料的干燥,在材料微观结构上没有任何损伤的现象。常规干燥和对撞流干燥的原料在相同条件下制成的产品的性能测试分析显示两者之间没有明显的差别。
     实验中还进行了系统温度分布、物料沿运动方向的含水率变化情况、系统压降等测试,为系统分析和研究提供了第一手资料。研究了各种组合情况下的干燥效果,以及各对撞干燥器所起的作用。实验表明对撞流干燥器和普通气流干燥相比,其能力明显提高,它达到了相同系统参数下常规气流干燥无法达到的效果。
     本文首次通过理论分析和近似实验初步研究了木材干燥过程中的热质耦合现象。修正了木材干燥相关教科书中对于热质传递关系的描述,导出了相应的关系式。文中利用电路电阻的类比分析的方法,推导了木材刨花横向导热系数。取得了经过实验修正的理论公式,计算了16种树种的导热系数,并与公开发表的实验值进行比较。最大误差为8.7%,平均误差4.8%。
    
    摘要
     文中在分析了物料在对撞流干燥系统中的运动学特性、木材内部
    水分分布特性和传热传质特性的基础上,借鉴了当前国内外在木材碎
    料干燥中的最新研究成果,建立了包括对撞流干燥器在内的系统数学
    模型。计算和实验结果对比表明:这一系统模型基本上反映了系统干
    燥的全过程,可以应用于对撞流干燥系统的研究和分析,并可以用于
    指导此类干燥系统的设计一。
Impinging stream drying technology is a new drying technology with, high drying capacity. Many studies have been made on its theory and application on food and chemical industries. However, few have been reported on its study and application in wood industry. Drying of wood particle is the most energy consuming process in whole production of wood-based panel, and impinging stream drying technology will play an important role in energy saving and benefit improvement in the process of drying wood particle. Therefore, the study of this project is of important theoretical value and practical significance.
    To study the applicability of impinging stream drying technology in drying wood particulate, the Vertical-inclined semi-circular Impinging Stream Drying System was built to dry wood particulate materials, and drying trials were done for wood fiber and wood particle respectively. Also effects of various factors on drying process and drying efficiency were examined. These factors include: initial moisture content, airflow temperature and flux, and load. The experience results indicate that there is little effects of the initial moisture content of wood fiber on the final moisture content, i.e., fiber meeting the required final moisture content can be obtained even if materials contain different initial moisture content. However, the initial moisture content of wood particle has greater effect on the final content, and wood particle with high initial moisture content could not reach the required final moisture content through one drying
    
    
    
    process, so that more drying processes may be needed. The results also suggest that only wood particle with moisture content near fiber saturation point can reach the required final moisture content after one drying process, and ail'flow temperature and flux can improve the drying capacity significantly. With the load increasing, the final moisture content goes up slightly, and the ability of system removing moisture rises linearly with the increasing of load. Therefore, raising load is an effective way to improve system throughput.
    As a new high speed drying technology, the wood particulate quality through impinging stream drying system is the most concern. In the thesis, both microscopic inspection and product properties were analyzed. The results indicate that no scathes are found in microscopic structure of material dried under impinging stream drying system. F-test shows that there are no significant differences between the properties of products produced under same conditions but materials dried under different systems, i.e., impinging stream drying system and conventional drying system. Therefore, we may draw conclusion that impinging stream drying technology may be employed to effectively dry wood particulate with less energy consummation and no negative effects on product quality.
    Also tested were temperature distribution, changes of moisture content along the direction of material movement, pressure drops of system, drying effects of various parameter combinations. Test outcomes demonstrate that drying capacity of impinging stream drying system is considerably higher than that of conventional airflow drying system.
    Impinging drying of wood is a process of moisture removal with high speed and efficiency, so that moisture diffusion and movement, heat transfer from drying media to
    
    
    material are very prompt. As a result, the coupling effect of heat and moisture might affect drying process. The thesis testified the existence of such a coupling effect theoretically and nearly experimentally, and revised the description of the heat transfer and mass diffusion in related textbooks, and educed the relationship formula about relationship of heat transfer and mass diffusion during the wood being dried. In order to examine the characteristics of heat transfer in wood particle, an analogy approach of computing resistance of electro-circuit was employed in deriving transversal heat conductivity of wood particulate. The correction coefficients for uneven material distrib
引文
1.王志魁主编·化工原理[M].北京:化学工业出版社,1998:276-279.
    2.王国恒 张德元 干燥过程分析与数学模型方法96干燥学术研讨会1996:125~130
    3.王佩卿,等.木材化学[M].北京:中国林业出版社,1990:78-85.
    4.白丁荣,金涌.垂直气固两相流系统中颗粒群之间的相互作用,化工学报,1991(6);
    5.叶超群 带固体循环系统气流干燥器的停留时间分布[J]高校化学工程学报,1993,7(4):337~343
    6.伍沅 干燥技术的进展和应用[J]化学工程Vol.23,No.3,1995:47~56
    7.Tamir,A.,著 撞击流反应器.原理和应用[M]伍沅泽 北京 化学工业出版社 1996
    8.朱政贤 木材干燥(第二版)中国林业出版社 1992:310~320;
    9.许秀雯主编.纤维板生产工艺与技术[M].哈尔滨:东北林业大学出版社,1988,190—195.
    10.成俊卿主编.木材学.北京:中国林业出版社,1985,496、497、501
    11.李成植 刘登瀛 徐成海等 垂直-倾斜半环组合对撞流干燥的实验研究[J]东北大学学报 Vol.22,No.1,2001:47~50
    12.李成植 刘登瀛 徐成海等,对撞流干燥的传热传质模型[J],化工进展2000年增刊
    13.严家碌等.湿空气和烃燃气热力性质图表,高等教育出版社 1989;
    14.沈明启 马淑珍 周志远 气流干燥变径管处流动场的积屑现象分析及数值模拟[J] 森林工程Vol.16,No.5,2000:30~32
    
    
    15.张阳 曹崇文 对撞流干燥散粒状物料的试验研究[J]农业工程学报 Vol.16,No.3,2000:84~87
    16.张阳 曹崇文 同轴对撞流干燥过程的传热研究[J]农业机械学报 Vol.29,No.2,1998:62~67
    17.张阳 同轴对撞流干燥的理论和试验研究[D]北京:中国农业大学,1998
    18.张岩 栾明川 宋洪波等 同轴水平对撞流干燥器的设计方法[J]莱阳农学学报 Vol.18,No.1,2001:74~77
    19.张岩 栾明川 宋洪波 小米对撞流干燥特性的试验研究[J]莱阳农学学报 Vol.17,No.3,2000:229~232
    20.郑娆 顾芳珍 干燥过程模型化[J]Vol.13,No.1,1996:5~7
    21.金涌 俞燕青等 并流下行快速流态化气固两相流动模型的研究第五届多国流态化会议文集134~138
    22.周力行 湍流两相流动与燃烧的数值模拟[M]清华大学出版社 1989:106~120
    23.周力行 湍流气粒多相流数值模型理论的最新进展[J]燃料科学与技术 Vol.1,No.1,1995:1~5
    24.岑可法 樊建人 工程气固多相流动理论及计算[M]浙江大学出版社,1999:20~40
    25.杨庆贤 木材横纹导热系数的半经验理论公式《力学与实践》 Vol.15,No.2,1993:50~55
    26.杨庆贤 木材干燥过程中热分子压力对热传导的影响《新学科研究》北京中国科学技术出版社,1993:130~131
    27.杨庆贤.木材弦向导热系数的理论研究.南京大学学报,1997,33(3):84~87
    28.杨庆贤.木材径向导热系数的物理力学研究.应用科学学报,1999,17(3):366-370
    
    
    29.杨庆贤.木材干燥过程中热质迁移交互作用的研究.浙江大学学报,1998,32(4):304-308
    30.张进疆 胡光华 垂直对撞流干燥的试验研究[J] 农业工程学报 Vol.17,No.4,2001:91~94
    31.张璧光 从国际干燥动态看我国干燥技术发展趋势 林产工业 2002.27(3):86~89
    32.张璧光 中国木材干燥技术的创新途径与发展前景 中国林业.中国木业专刊 2001.(5):14~16
    33.杨强生.对流传热与传质.北京.高等教育出版社,1985.7,p216-245.
    34.郑国生 曹崇文 散粒物料气流干燥中的传热特性 北京农业工程大学学报[J]Vol.14,No.1,1994:54~61
    35.郑国生 气流干燥机的性能分析[J] 上海水产大学学报 Vol.6,No.1,1997:25~30
    36.周继珠等,工程热力学,国防科技大学出版社,长沙,1999;
    37.周筠清,传热学,冶金工业出版社,北京,1999;
    38.S.V帕坦卡.传热与流体流动的计算.北京.科学出版社,1984.9,p91-110.
    39.J.R.威尔蒂著,任泽霈等译,工程传热学,人民教育出版社,北京,1983;
    40.胡学功 垂直对撞流干燥机流动与干燥特性的实验研究[D]北京:中国科学院工程热物理研究所,1996:15~17
    41.侯祝强.木材导热系数的的研究.林业科学,1992,28(2):153~160
    42.淮秀兰 刘登瀛 半环对撞流干燥的流动与传热传质分析[J]农业机械学报 Vol.30,No.5,1999:41~47
    43.淮秀兰 刘登瀛 吴涛 半环对撞流干燥的实验研究[J]工程热物理学报 Vol.20,No.2,1999:199~203
    
    
    44.淮秀兰 刘登瀛 半环对撞流干燥的流动流体动力学分析[J]农业工程学报 Vol.16,No.1,1998:67~72.
    45.高瑞堂等.木材热学性质与温度关系的研究.东北林业大学学报,1985,13(4):24
    46.夏诚意 化学世界 No.8,1965:373~375
    47.夏诚意 郭宜祜 王喜忠 化学工程手册——第16篇 干燥1989:19~29
    48.章梓雄 董曾南,粘性流体力学[M] 北京:清华大学出版社 1999
    49.斯米尔诺夫著,孙念增译.高等数学教程(第二卷第二分册).北京:高等教育出版社,1956,150-169
    50.曹崇文,朱文学.农产品干燥工艺过程的计算机模拟,中国农业出版社,2001;
    51.曹崇文,逆流式谷物干燥机性能的研究.北京农机学院学报 1989,9(3);
    52.普里高京,不可逆过程热力学导论,科学出版社,北京,1960;
    53.谢拥群,张璧光.气流干燥中粘壁和沉底问题的理论探讨[J].福建林学院学报,2002,(1)4—8.
    54.谢拥群,张璧光.中密度纤维板干燥系统的模拟计算[J].木材工业,2002,5
    55.谭天思,麦本熙,丁惠华·化工原理[M].北京:化学工业出版社,1998:60—63.
    56.窦国仁 紊流力学,人民教育出版社,北京,1983;
    57.潘永康 等编著,现代干燥技术[M] 北京:化学工业出版社 1998:621~636
    58.中华人民共和国林业部科技司编·人造板标准汇编[M].北京:中国林业出版社,1993:155-175
    
    
    59. Abraham Tamir, Isakk Elperin, Kfir Luzzatto. Drying in a new two impinging streams reactor. Chemical Engineering Csience, Vol.39, No.l, 1984:139~146
    60. Bramhall G.. Sorption diffusion in wood. Wood Science. 1979. 12 (1)
    61. Bruce D. M. Exposed layer barley drying: Three models fitted to new data up to 150℃. J. Agric. Engngres., Vol.32, 1985:337~347
    62. Christen Skaar. Water in Wood. Syracuse University Press 1972;
    63. Dengying Liu, Xiulan Huai. Experimental Investigation on Combined Impinging Stream Drying. Chemeca'99 26-29 Sep., 1999, Newcastle, Australia;
    64. Dzhunisbekov, M. Sh. "Modelling and optimizing of multipurpose apparatus with impinging swirling streams" Phd Thesis, Moscow, 1983
    65. Dzyadzio, A. M. and Kemmer, A. S. "Pneumatic Transport in Grain Processing Manufactures. "Kolos, Moscow, 1967:295
    66. Elperin, I.T., "Heat and mass transfer in impinging streams" Inzhenerno-Fizicheski Zhurnal, 1961 (6): 62~68, 1961
    67. Elperin, I.T., Meltser, V. L., Pavlovskij, L. L. and Enyakin, Yu. P. "Transfer Phenomena in Impinging Streams of Gaseous Suspensions" Minsk, Tekhnika, 1972: 216
    68. Elperin, I.T., Enyakin, Yu. P. and Meltser, V. L. "Experimental Investigation of Hydrodynamics of Impinging Gas-solid Particles streams" In: Heat and
    
    Mass Transfer eds. Luikov, A. V. and Smolsky, B. M. Minsk, 1968:454~468
    69. F.W. Sears, M.W.Zemansky and H.D.Young. University Physics. Fifth Edition. Addison-wesley Pulbishing Company, 1979, 446、480
    70. Filippov V.A. Apparatus and technology of coal drying. Moscow, 1975 (in Russian)
    71. Hu Xuegong, Liu Dengying, Zhang Changmei Experimental investigation on the flow and drying characteristics of a vertical impinging stream dryer. The 11th Internation Heat Transfer Conference, Korea No.5, 1989:427~432
    72. Hu Xuegong, Liu Dengying. Experimental Investigation on Flow and Drying Characterastics of A Vertical and Semi-Cyclic Combined Impinging Stream Dryer. Drying Technology, 17(9), 1879-1892(1999);
    73. Huai Xiulan, Liu Dengying etc., Experimental and Theoretical Investigation on The Impinging Stream Drying, First International Conference on Engineering Thermophsics (ICET' 99) Aug. 18-21,1999,Beijing, China.
    74. George Tsoumis, Wood as raw material, Pergamon Press, 1968, New York.
    75. Gorbis, Z. R. and Spokoyny, F. E, Momentum and Heat Transfer, in Turbulent Gas-Solid Flows, Begell House, Inc., NY. 1995
    76. Gorbis, Z. R., Heat transfer and Mechanics of Through Disperse Flows, Energiya Publishing House, Moscow. 1970
    77. J. F. Siau. Transport processes in wood. Springerverlag, New York. 1984. 132~150
    
    
    78. Keey, P. B. Drying Principles and Practice, Pergamon, Oxford, UK. 1972;
    79. Kitron, Y. and Tamir, A. "Performance of a Coaxial Gas-solid Two-Impinging-Streams (TIS) Reactor: hydrodynamics, Residence Time Distribution and Drying Heat Transfer". Ind. Eng. Chem. Res27, 1988:1760~1767
    80. Kitron, y., and Tamir, A., "Characterization and Xtale-up of Co-axial Impinging Stream Gas-Solid Contactors" Drying Technology. Vol.8, No.4, 1990" 781~810
    81. Kollman F P.et al. Principles of wood science and technology. Vol.1. Solid wood. Berlin Springer-verlarg, 1968, 247、250
    82. Ktiron Y, Tamir A. Characterization and Scale-up of Co-axial Impinging Stream. Gas-Soilid Contactors. Drying Technology, 1990,8(4);
    83. Kudra, T., Mujumdar, etc., Handbook of Industrial Drying, 1995;
    84. Kudra and A. S. Mujudar "Impinging Stream Dryers" Drying Technology, Vol.7, No.2, 1989: 219~266
    85. Kuts, P. S., Tutova, E. G., Grinchik, N. N. and Zavadski, V. A. "Investigation of particale motion in the impingement zone of swirling jets." Journal of Eng. Phys. Vol.30, No.2, 1976: 146
    86. Lague C. Modeling pre-harvest stress-cracking of rice kernels. Part 2: Implementation and use of mode 1. Trans. ASAE, Vol.34, No.4, 1991: 1797~1811
    87. Liu Dengying, Hui Xiulan ect., Experimental Investigation on The Flow and Drying Characterstics of
    
    Two-Stage Semi-Circular Impinging Stream Drying. The first Drying Conference in Asia-Australia, 24-27 Oct., 1999,Bali, Indonesia;
    88. Meltser, A. L., "scientific Principles and Application of Enhanced Processes in Impinging Streams". ITMO, Minsk, Bielorussia.
    89. Meltser, V. L., Gurevich, G. L., Starovoitenko, E. I. And Deryugin A. I., "The Calculation Method of Thermal Processing of wet Parteles in Reversive Gas-Solid Streams" In" heat heat and Mass Transfer Investigations in Drying and Thermal Processing of Capillary-Porous Materials, ITMO AN BSSR, MINSK, 1985: 131~138
    90. Meltser, V. L., and Pisarik, N. K. "Interphase heat Transfer in impinging single and Two-Phase Streams". Proc. Ⅺ All Russian Conference on Heat and Mass Transfer, Minsk, Vol. Ⅵ, part 1, 1980: 132~135
    91. Michael ides, E. E and Lasek, A., Fluid-solids flow with thermal and hydrodynamic nonequilibrium, Inc. J. Heat Mass Transfer, 1987, Vol. 30, No. 12, pp. 2663-2669
    92. N. M. Ozisik. Basic Heat Transfer. McGraw-Hill Book Company, New York, 1997.
    93. Pang, S. External heat and mass transfer coefficients for kiln drying of softwood timber. Drying Technology-An International Journal, 1996, Vol. 14, No. 3&4, p10. 859-871
    94. Pang, S. Mathematical modeling of MDF fiber drying" drying Optimization. Drying Technology-An International, Vol. 18, No. 7
    95. Perry, Chilton. Chemical Engineers' Handbook, fifth edition. McGRAW-WILL Book Company, 1973;
    
    
    96. Perry, R. H and Green, D. W., Preey Chemical Engineers' Handbook, 6th Edition, 1984,
    97. Perry J. H. Chemical engineers handbook. 5th Edn.McGraw-hill, Wew York, 1973
    98. R.B.Keey, Drying of Lose and Particulate Materials,Hemisphere Publishing Corporation, 1992;
    99. Romankov P. G., Rashkovskaya N. B., drying in suspended bed. Leningrad 1968 "Chemistry" (in Russian)
    100. Strumillo, C. Drying" principles, Applications and Design, Gordon and Breach, New York. 1986;
    101. Tamir, A. and Kitron, Y. "Vertical Impinging-Streams and Spouted-Bed Dryers: Comparison and Performance Characteristics" Drying Technology Vol.7, No.2, 1989" 183~204
    102. Tamir, A "Impinging-Stream Reactors. "Elsevier Science Publishers, Amsterdam, 1994
    103. Taubman, V. A., Gornev, B. L., Meltser, V. L., Pastushenko, B. L. and Savinkin, V. I. "Contact heat Exchangers" Khimia, Moscow, 1987:252
    104. Xiulan Huai, Dengying Liu. Numerical Simulation of Semi-Circular Impinging Stream Drying. The first Drying Conference in Asia-Australia, 24-27 Oct., 1999,Bali, Indonesia;
    105. Yang Qing-xian(杨庆贤) Theoretical expressions of thermal conductivity of wood. J.Forestry Research, 2001, 12(1): 43~46
    106. Yang Qingxian Study of the specific heat of wood by statistical thermodynamics 《Chemical Abstracts》 Vol.l17, 1992
    
    
    107. Zogzas NP, Effective moisture diffusivity estimation from drying data, A comparison between various methods of analysis. Drying Technology, 1996(7-8);

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700