植物性含湿多孔介质在干燥过程中优化传热传质机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题属国家自然科学基金资助项目的一部分,已列入国家“种子工程”计划。本文在综述了植物性含湿多孔介质干燥研究与进展的基础上,结合大量实验与理论分析,进行了物料非稳态干燥动力学特性与物料颗粒内部水分扩散机理的研究,揭示了植物性含湿多孔介质优化传热传质的机理,发展了优化干燥理论,并为蔬菜种子干燥新机型的开发与研制提供了可靠的理论依据与技术基础。文中的主要工作如下:
     1.实验研究:根据物料特点,研制并改进了固定床与振动床干燥实验系统,以谷物、中草药与蔬菜种子为代表性物料,应用学科交叉的研究方法分别以不同的干燥方式进行了物料的干燥动力学特性对比实验与同步种子生理实验,为进一步的理论研究与数学模型分析提供了可靠的基础,也是新型干燥机型研制的基础。
     2.干燥理论模型:提出了由物料干燥过程非稳态干燥动力学方程、物料颗粒内部水分扩散模型、干燥系统运行特性分析的多项式模型组成的干燥机制模型体系,描述了从物料与干燥介质热质传递、物料内部水分输运,一直到干燥系统运行特性的过程特征。研究表明:干燥动力学方程的分析指明了优化传热传质的方向,物料颗粒内部水分扩散模型的数值计算揭示了优化传热传质的机理,以此为基础可以确定合理的干燥系统,组织优化的干燥工艺过程,而多项式模型分析了干燥系统的运行特性,是具体干燥系统进行优化控制的基础。
     3.非稳态干燥力学方程的理论计算:结合蔬菜种子的对比干燥实验,应用方程定量分析了不同参数(如含水率、料层厚度、干燥介质温度、升温速率、振动参数)对干燥速率的影响,进行了优化变温干燥工艺的模拟与分析。研究表明:干燥动力学方程的形式(3—29)能够描述物料整个干燥过程的特征;升温速率是影响干燥过程的重要因素之一;优化的变温干燥工艺与恒温工艺脱去同样的水分,虽然干燥周期相同,但干燥进程不同,变温使物料在整个干燥过程中的平均料温较低,特别是物料在高温期的时间较短,有利于物料品质的保证与节约能源。
     4.物料颗粒内部水分扩散模型的理论计算:采用有限差分法通过求解物料内部水分的扩散方程,模拟分析了蔬菜种子的脱水过程。通过边界条件的处理把反映物料干燥过程动态特性的实验含水率曲线与物料颗粒内部水分扩散有机地结合起来;提出了一种较准确地确定物料颗粒在非稳态脱水过程中内部水分扩散系数和分析内部水分分
This project has been supported by the National Science Foundation, and placed on "Seed Engineering". Based on the comprehensively description of the biological wet porous material drying study and development, a lot of experimental data obtained and theoretical analysis, engineering practice, this paper has researched the unsteady drying dynamic characteristics, the internal moisture diffusion in the drying process of biological wet porous material. The purpose is to reveal the mechanism of the optimizing heat and mass transfer, develop optimized drying theory, and supply reliable theoretical and technological basis for the design and manufacture of a new type of dryer for industrial use. The main efforts have been concentrated on the following aspects:
    1. Experimental study: in accordance with the material characteristics, a set of new type of drying experimental facilities has been developed and improved, which consists of a multifunctional fixed bed and a spiral promotion vibrated fluidization bed. By applying different subject intersection, selecting grain, Chinese herb and vegetable seed as typical materials to be dried, this paper has carried out the contrast experiments on the material drying dynamic characteristics and the seed physiology test simultaneously. All these work has supplied the reliable basis of further theoretical study and mathematical model analysis, and the design of a new type of dryer.
    2. Drying theoretical model: a set of drying theoretical model has been put forward, which consists of the unsteady drying dynamic equation and the internal moisture diffusion model, the drying system performance polynomial model. This set of mathematical model is to describe the drying process characteristics from the heat and mass transfer between the material and the external drying media, internal moisture diffusion, to drying system operation. And the unsteady drying dynamic equation is to analyze the direction of optimizing heat sand mass transfer, and the internal moisture diffusion model is to investigate the mechanism on optimizing of heat and mass transfer, on which to design the rational drying system and organize optimized drying technological process. The polynomial model is to
引文
[1] 张洪沅,丁绪淮,顾毓珍编著.化学工业过程及设备.北京:高等教育出版社,1957
    [2] 傅家瑞.种子生理.北京:科学技术出版社,1985.317-315
    [3] J. F. M. Velthuis. Simulation Model for Industrial Dryers: Reduction of Drying Times of Ceramics and Saving Energy. Drying'96, 1996, 1323-1328
    [4] M. Yoshida, et al. Estimation of Drying Rate and Determination of Moisture Diffusivity for NonHygroscopic Porous Material Based on the Characteristic Function for the Regular Regime. Drying'92, 1992, 243-252
    [5] A.Belhamri, et al. The Wet Surface Reduction during the First Drying Period. Drying'92, 1992, 353-363
    [6] A. Wolny, et al. Effect of Electric Field on Drying Kinetics of Ceramic Mass. Drying'96, 1996, 1319-1322
    [7] 胡松涛,廉乐明等.粘土制品干燥敏感性系数与毛细管力关系的研究.见:‘96干燥学术研讨会论文集(国家自然科学基金委员会材料与工程学部),北京,1996.245-251
    [8] 胡松涛,廉乐明等.粘土制品干燥收缩现象的实验分析.见:‘96干燥学术研讨会论文集(国家自然科学基金委员会材料与工程学部),北京,1996.252-257
    [9] 褚治德等.升温速率对木材红外干燥影响的实验研究.红外研究,1990,9(5):377-383
    [10] 褚治德等.非稳态干燥动力学优化实验.天津大学学报,1993,(3):106-111
    [11] CHU Zhide, et al. Experiment Research on Optimizing Drying of Biological Material. Drying'92, 1992, 1729-1738
    [12] CHU Zhide, et al. Infrared Thermal Radiation of Wood. Drying of Solids. Oxford and IBH Publishing Co. Pvt. Ltd., 1992
    [13] Pand Shusheng, et al. Modeling the Temperature Profiles within Boards during the HighTemperature Drying of Pinus Radiate Timber. Drying'92, 1992, 417-432
    [14] C. Bonazzi, et al. Moisture Diffusion in Gelatin Slabs by Modeling Drying Kinetics. Drying'96, 1996, 235-242
    [15] 张壁光等.木材干燥的节能研究—除湿干燥与太阳能干燥.南京林业大学学报,1997,21:189-193
    [16] 褚治德等.木材内部水分迁移规律与优化干燥实验研究.南京林业大学学报,1997,21:178-182
    [17] 褚治德等.中草药饮片工业生产热风与红外干燥工艺基础数据研究.中药公司七五技术攻关项目(I88-1-01),1991
    [18] 褚治德等.中草药红外辐射与对流干燥的实验研究.天津大学学报,1991,(4):96-102
    [19] T. Rocha, et al. Effect of Drying Conditions and of Blanching on Drying Kinetics and Color of Mint (Mentha Spicata Huds) and Basil (Ocimum Basilicum). Drying'92, 1992, 1360-1369
    [20] C.K. Sankat, et al. The Drying Behavior and Quality of the Herb, Shado Benin. Drying'96, 1996, 1077-1084
    [21] G. Wisniewski. Drying of Medicinal Plants with Solar Energy Utilization. Drying'96, 1996, 1121-1128
    [22] K J. Park, et al. The Drying Parameters to Obtain Red Dry Ginger (Dried Sho-ga). Drying'96, 1996,??1009-1015
    [23] K.B. van Dalfsen, et al. Influence of Airflow, Loading Rates and Size Sorting on the Drying of American Ginseng. Drying'92, 1992, 1370-1378
    [24] K.J. Park, et al. Desorption Isotherms of Red Ginger (Sho-ga): Experimental Determination and Evaluation of Mathematical Models. Drying'96, 1996, 1023-1028
    [25] 褚治德,杨俊红等.中药槟榔的红外辐射振动流化干燥动力学实验研究.见:中国工程热物理学会传热传质学学术会议论文集(下册),北京,1996,Ⅹ-37-76
    [26] D. J. M. Sartori, et al. Drying of Seeds in Cross-Flow Moving Bed: Mechanical Effect and Air Humidity. Drying'92, 1992, 1524-1623
    [27] W. Ptasznik, et al. Development of a Drying Procedure Following Matricondition of Snap Bean Seeds. Drying'92, 1992, 1341-1349
    [28] M.A.S. Barrozo, et al. Simultaneous Heat and Mass Transfer during the Drying of the Soybean Seeds in a Cross-flow Moving Bed. Drying'96, 1996, 873-880
    [29] Wlozimierz Ptasznik, et al. Drying Process and Heat Resistance of Cockfoot Seeds with Heated Air. Drying'94 1994, 849-856
    [30] J.Z. Pang, et al. Drying of Vegetable Seeds in Vibrated Fluid Bed. Drying'96, 1996, 997-1000
    [31] M.B. Stack, et al. Experimental Investigation of Heat and Mass Transfer during Poppy Seed Drying in a Vibrofluidized Bed. Drying'96, 1996, 1085-1092
    [32] 杨俊红,褚治德等.蔬菜种子的强化传热传质机理与综合干燥技术研究.见:全国种子工程技术与加工设备学术研讨会论文集,天津,1996.13-17(农业机械学报,1998.1)
    [33] 杨俊红,褚治德等.蔬菜种子干燥中种皮的效应与优化传热传质机理.工程热物理学报,1997,18(6):721-724
    [34] 赵丽娟,潘永康.植物性物料的最侍佳干燥条件与质量保护.南京林业大学学报,1997,21:152-155
    [35] Y. K. Pan, et al. Effect of a Tempering period on Drying of Carrot in a Vibro-fluidized Bed. Drying'96, 1996, 1016-1022
    [36] J. Canellsa, et al. Conservation of High-Moisture Dried Apricots. Drying'92, 1992, 1446-1455
    [37] M. Moursa; et al. Drying of Corn Kernels in a Flotation Fluidized Bed Influence of the Operation Conditions of Product Quality. Drying'92, 1992, 1456-1464
    [38] L.Gothandapani, et al. Evaluation of Different Methods of Drying on the Quality of Oyster Mushroom. Drying'96, 1996, 1449-1456
    [39] D. Witrowa-Rajchert, et al. The Influence of Osmotic Pretreatment on Carrot Reconstitution Properties. Drying'96, 1996, 847-854
    [40] D.Luo, et al. Retention of Vitamin C in Dried Guava. Drying'96, 1996, 1101-1106
    [41] [苏]金兹布尔格 AC.著,高奎元译.食品干燥原理与技术基础.北京:轻工业出版社,1986
    [42] D. R. McGaw, et al. The Drying Characteristics of Pigeon Peas (Cajuns Cajun). Drying'96, 1996, 973-980
    [43] S. Yamaguchi, et al. Calculation of Stress in Brown Rice Kernel during Drying and Moisture Adsorption Processes. Drying'96, 1996, 957-964
    [44] W. A. M. McMinn, et al. Quality and Physical Structure of Dehydrated Starch-based System. Drying'96, 1996, 981-988
    [45] C.K. Sankat, et al. Factors Influencing the Drying Behavior of Copra. Drying'92, 1992, 1436-1445[46] Z. Zdrojewski, et al. Changes in Dimensions of Corn During Drying. Drying'96, 1996, 1129-1134
    [47] D. Piotrowski, et al. The Influence of Temperature's Sudden Changes on the Drying Kinetics of Bananas. Drying'96, 1996, 1037-1044
    [48] T. N. Tulasidas, et al. Effect of Bed-Height on Drying of Shelled Corn in a Two-dimensional Spouted Bed Equipped With Draft Plates. Drying'92, 1992, 1564-1570
    [49] T. Szentmarjay, et al. Product Quality and Operational Parameters of Drying. Drying'96, 1996, 839-846
    [50] P. P. Lewieki, et al. Computer Image Analysis of Shrinkage During Food Dehydration. Drying'96, 1996, 793-800
    [51] Q. Zhang and J. B. Litchfield. An Optimization of Intermittent Corn Drying in a Laboratory Scale Thin Layer Dryer. Drying Technology, 1991, 9(1): 233-244
    [52] J. Saastamoinen, et al. Drying of Biomass Particles in Fixed and Moving Beds. Drying'96, 1996, 349-356
    [53] V. R. Elenkov, et al. Rotating-Pulsed Fluidized Bed Dryer for High-Moisture Content Bioproducts. Drying'92, 1992, 1636-1641
    [54] S.J. Rossi, et al. Thermodynamics and Energetic Evaluation of a Heat Pump Applied to the Drying of Vegetables. Drying'92, 1992, 1475-1484
    [55] J.R.D. Finzer, et al. Drying Coffee Beans in Vibrated Trays Dryer. Drying'96, 1996, 950-956
    [56] L.S. Alsina, et al. Studies on the Performance of a Spouted Bed Dryer for the Dehydration of West India Cherry Pulp. Drying'96, 1996, 865-872
    [57] P. I. Alvarez, et al. Heat Transfer Coefficient in Constant Rate Drying of FishMeals with Superheated Stream. Drying'96, 1996, 743-748
    [58] I. Mrani, et al. Shape Evolution and Drying Stresses in a Product for a Quality Objective. Drying'96, 1996, 1508-1515
    [59] J.B. Soares, et al. Grain Drying Optimization at Low Temperatures. Drying'96, 1996, 1401-1408
    [60] L.G.S. Vasconcelos, et al. Drying Simulation of"Carioca" Beans in Cross-Flow. Drying'92, 1992, 1500-1507
    [61] D. R. McGaw, et al. The Effect of Drying Conditions on the Quality of West India Nutmegs. Drying'96, 1996, 1482-1486
    [62] N. Wang and J. G. Brennan, et al. Effect of Water Binding on the Drying Behavior of Potato. Drying'92, 1992, 1350-1359
    [63] 四川省农业机械研究所.四川省农副产品干燥设备发展预测.四川省软科学研究课题,1987,编号:(87)3031
    [64] 陈芳.种子工程总体发展几个主要问题探讨.见:全国种子工程技术与加工设备学术研讨会论文集,天津,1996.2-3
    [65] 张广泉.红外加热节能技术的现状与发展前景.红外技术,1991,13(5):25-29
    [66] [苏]列维金著,俞福堂等译.红外技术在国民经济中的应用.上海:上海科学技术出版社,1985
    [67] 南京农学院,华南农学院主编.植物学.上海:上海科学技术出版社,1981.5-11,191
    [68] 潘瑞炽,董愚得编.植物生理学(上册).北京:人民教育出版社,1979.6-7,153
    [69] 山东农学院,西北农学院编.植物生理学实验指导.济南:山东科学技术出版社,1980
    [70] 朱广廉,钟文海等.植物生理学实验.北京:北京大学出版社,1990
    [71] 华东师范大学等编.植物学.北京:高等教育出版社,1988[72] 邵文华.我国农产品干燥事业持续发展的思考.中国农机化,1997,151:7-11
    [73] 卢良恕.二十一世纪农业科技发展趋势.中国农机机械学会动态,1997,(4):1-7
    [74] 褚治德,杨俊红等.红外辐射加热干燥进展.见:‘96干燥学术研讨会论文集(国家自然科学基金委员会材料与工程学部),北京,1996.10-19
    [75] 褚治德等.红外辐射加热干燥原理与应用.北京:机械工业出版,1996,80-114
    [76] 卢英林等.振动干燥机的发展及展望.见:‘96干燥学术研讨会论文集(国家自然科学基金委员会材料与工程学部),北京,1996.30-40
    [77] 潘永康.干燥过程特性和干燥技术的研究策略.见:‘96干燥学术研讨会论文集(国家自然科学基金委员会材料与工程学部),北京,1996.3-9
    [78] 刘登瀛等.多层流化床传热传质的基础研究及其在干燥领域中的应用.80-91
    [79] 施明恒等.高效节能干燥新的探索与实践.见:‘96干燥学术研讨会论文集(国家自然科学基金委员会材料与工程学部),北京,1996.74-79
    [80] 和俊民,刘登瀛等.物料在多层流化床内非稳态干燥的实验研究.见:中国工程热物理学会传热传质学学术会议论文集(下册),北京,1996,Ⅶ-33-8
    [81] 杨俊红,褚治德等.谷物的红外辐射振动流化强化传热传质机理研究.工程热物理学报,1996,17(4):452-456
    [82] C. T. Kiranoudis, et al. Comparison of various types of Industrial Dryers: Design and Operation. Drying'96, 1996, 463-469
    [83] H. Groenewold, et al. A New Model for Fluid Bed Drying. Drying'96, 1996, 315-322
    [84] G. Donsi, et al. Modeling of Two-Component Fluid Bed Dryers: An Approach to the Evaluation of the Drying Time. Drying'92, 1992, 493-502
    [85] M.A. Boizan Justix, et al. Mathematical Modeling of Fluidized Bed Drying with Superheated Vapor. Drying'92, 1992, 464-472
    [86] A. Szalay, et al. Studies on the Kinetics of Drying in Aero-Vibrofluidized Bed. Drying'92, 1992, 1623-1630
    [87] I. Borde, et al. Investigation of Drying a Multistage Dryer with a Vibrofluidized Bed. Drying'96, 1996, 398-404
    [88] Mujumdar A. S. Drying Technologies of the Future. Drying Technology, 1991, 9(2): 325-347
    [89] A.S. Ginzburg. Present Problems and Tasks of Development of Drying Science. Drying Technology, 1985, 3(3): 445-457
    [90] 施明恒,虞维平,王补宣.多孔介质传热传质研究的现状与展望.东南大学,1994,11(24):1-7
    [91] 虞维平,王补宣,施明恒.多孔介质非饱和渗流的阈梯理论.工程热物理学报,1992,13(1):74-76
    [92] O. A. Plumb, et al. Microscopic Model for the Study of Drying of Capillary Porous Media. Drying'92, 1992, 397-406
    [93] 付丰等.多孔介质传热传质研究.工程热物理学报,1988,9(3):274-277
    [94] 王补宣,虞维平.热线法同时测定多孔介质导热系数与导温系数.工程热物理学报,1986,7(4):381-386
    [95] 王补宣等.含湿毛细多孔介质的传热与传质和热湿迁移特性测定方法的探讨.工程热物理学报,1985,6(1):60-62
    [96] 王补宣等.在第三类边界条件下测定含湿多孔介质热湿迁移特性的方法.工程热物理学报,??1987,8(4):363-369
    [97] 李杰芬主编.植物生理学.沈阳:东北师范大学出版社,1987
    [98] 方建平,曹崇文.专家系统在谷物干燥领域的发展现状.中国农机化,1997,151:12-17
    [99] 曹崇文.过热蒸汽的现状与发展综述.中国农机化,1997,151:30-39
    [100] 连国政,曹崇文.干燥过程的强化分析.中国农机化,1997,151:44-47
    [101] 朱文学,曹崇文.玉米应力裂纹的分形模拟.中国农机化,1997,151:48-54
    [102] 郑国生,曹崇文.气流干燥的数学模型.中国农机化,1997,151:55-63
    [103] 曹崇文等.脉管式气流干燥的实验研究.中国农机化,1997,151:98-104
    [104] 李笑光等.多槽多段换向通风横流式谷物烘干机的研究设计.中国农机化,1997,151:114-117
    [105] 李业波,刘登瀛等.农产物料在干燥过程中的内部传热传质研究.中国工程热物理学会传热传质学学术会议论文集(下册)宜昌1995,Ⅶ-119-7
    [106] X. Dong, Y. K. Pan, et al. Effect of Vibration on the Drying Rate During the Falling Rate Period. Drying Technology, 1991,9(3):723-733
    [107] 叶金生,赵丽娟,潘永康.蔬菜种子在振动流化床中干燥的研究.南京林业大学学报,1997,21:111-113
    [108] Stoyan L. Nevenkin. Life Dedicated to the Process of Drying. Drying Technology, 1991, 9(1): 281-290
    [109] 金克普利斯·J著.传递过程与单元操作.清华大学化学工程系传递组译.北京:清华大学出版社,1985
    [110] 潭天恩等编著.化工原理(下册).北京:化学工业出版社,1984
    [111] 天津大学化工原理教研室编.化工原理(下册).天津天津科学技术出版社,1986
    [112] Blagojevie, et al. Coupling the Dynamics and Drying Technologies in Reaching the Optimal Drying Process. Drying'96, 1996, 1377-1384
    [113] V. Morey, et al. The Present Status of Grain Drying Situation. ASAE(America Society of Agricultural Engineers) Paper 78-3009,1978
    [114] L. Parry. Mathematical Modeling and Computer Simulation of Heat and Mass Transfer in Agricultural Grain drying: A Review. J. agic. Engng Res.(1985)32,1-29
    [115] W. Bakker-Arkema et al. MSU Grain Drying Models. ASAE Paper NO.70-832 1970
    [116] Robert M. Peart, et al. Simulation of a Computerized Grain Drying Decision Support System. ASAE Paper No. 85-3104 1985
    [117] M. Zhang, et al. Thin Layer Airflow Drying of Sword Bean After Pretreatment. Drying'92, 1992, 1544-1548
    [118] O. C. Motta Lima, et al. Parameter Estimation in Cross-Flow Sliding Bed Drying. Drying'96, 1996, 283-290
    [119] K. Toyoda, et al. Study on Drying Characteristics of Rough Rice by Two-Tank Model. Drying'92, 1992, 1426-1435
    [120] C. Carrere-Gee, et al. Parameter Estimation in Convective Drying of Cocoa Beans. Drying'96, 1996, 1499-1507
    [121] S. Yamaguchi, et al. Temperature-and Moisture-Dependent Diffusivity of Moisture in Rice Kernel. Drying'92, 1992, 1389-1398
    [122] I. Sanchez and J. Cervantes. Infrared Thermal Radiation Drying of Coffee beans. Drying'86 1986, 537-541[123] [美]施天谟著,陈越南等译.计算传热学.北京:科学技术出版社,1987
    [124] 卢英林.振动技术在干燥机中的应用.见:94’全国干燥技术研讨会论文集,1994.6-18
    [125] 侯彩云等.振动流化干燥技术及其研究.见:全国农产品干燥技术研讨会论文,1989
    [126] 李汝辉编著.传质学基础.北京:北京航空学院出版社,1987
    [127] 杨世铭编.传热学(第二版).北京:高等教育出版社,1989
    [128] 郭宽良编著.数值计算传热学.合肥:安徽科学技术出版社,1987
    [129] 贝文顿 P.R.著,仇维礼等译.数据处理与误差分析.北京:知识出版社,1986
    [130] 彭长清编著.误差与回归.北京:兵器工业出版社,1991
    [131] 熊洗允等编著.应用数学基础(下册).天津:天津大学出版社,1994
    [132] 诸凯.红外辐射双循环振动流化蔬菜种子的干燥实验研究.[硕士论文],天津:天津大学1997,33-35
    [133] I. Farkas, et al. Intermittent Drying of Agricultural Materials. Drying'96, 1996, 905-912
    [134] Rami Y. Jumah and Arun S. Mujumdar. A PC Program for Preliminary Design of a continuous Well-Mixed Fluid Bed Dryer. Drying Technology, 1993, 11(4): 831-846
    [135] 赵玉珍等.空气的含湿量和湿球温度的计算式.见:高校工程热物理学会论文集,杭州,1992.17-20
    [136] R. G. Bosisio, et al. Surface Wave Applicator as a Tool for Microwave Drying of Particulate. Drying'92, 1992, 1485-1492
    [137] U. S. Shivhare, et al. Application of Response Surface Methods in Grain Drying Research. Drying'92, 1992, 1549-1563
    [138] J. Beke, A. S. Mujumdar, et al. Some Features of Microwave Drying of Corn and Potato Samples. Drying'96, 1996, 888-896
    [139] X. D. Liu, et al, Protection of Thermo-and Xero-labile Materials During Thermal Drying. Drying'96, 1996, 1237-1244
    [140] A. A. Dolinski, et al. Intensification of Drying of Thermosensitive Materials. Drying'96, 1996, 1516-1517
    [141] Alan Mccullogh,高国龙译.用于提高能源效率的新型敏感器.红外,1996,(12):1-3
    [142] 宋宝荣等.新型节能“PTC”加热器.红外技术,1996,(7):38-40
    [143] 莫特等著.材料—微观结构及物理性能概述.北京::科学技术出版社,1975.36-40
    [144] 张进.陶瓷传感器元件的开发和应用.河北陶瓷,1995,23(1):22-25
    [145] A. Rosenthal, et al. Nutritional Evaluation of a Fresh Sweet Corn Drum-Drying Presses. Drying'92, 1992, 1419-1425
    [146] B. Heyd, et al. Modeling of Drum Drying Using Neutral network and Polynomial Model. Drying'96, 1996, 323-330
    [147] 林瑞泰著.多孔介质传热传质引论.北京:科学出版社,1995
    [148] 诸凯,褚治德,杨俊红等.利用热象与生理实验法研究种子的优化传热传质.工程热物理学报,1998(已录取)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700