大片刨花板热压过程中温度、气压和含水率变化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大片刨花板具有较好的物理力学性能和价格优势,与普通刨花板和胶合板相比,是一种性价比很高的板材,应用领域广泛,市场空间巨大。因此,进行大片刨花板成型机理和制造工艺技术的研究十分必要。
     热压过程是大片刨花板生产的关键环节,而热压过程中板坯的温度、湿度和压力场的分布对于成板的物理力学性能有着重要影响。因此,研究热压过程中热质传递规律、探索板坯内部热质传递与成板性能的关系,对于深入理解刨花板成型机理、合理制定热压工艺、缩短热压时间、提高生产效率具有重要意义。
     论文采用自行研制的实验测试系统,对大片刨花板热压过程中板坯内的温度、气压和含水率进行了实时连续、自动测量。根据测试结果和理论分析,得出了温度、压力和含水率在板坯内部随时间变化的分布规律、影响因素和三者之间的关系。论文研究结果如下:
     1、热压过程中板坯内部温度变化规律的研究
     (1)板坯内部温度梯度变化规律
     热压过程中,板坯纵截面上始终存在着温度梯度,热压开始时温度梯度最大,随着热压的进行,温度梯度逐渐减小;板坯横截面上各点的温度几乎相同,温度梯度很小,可以将横截面看作为等温面。由此可知,可认为同一时刻板坯各纵截面的温度梯度相同。
     (2)由施胶与未施胶板坯的热压实验对比实验结果分析可知,胶粘剂对热压过程中大片刨花板内部温度分布的影响可以忽略不计。
     (3)热压过程中,大片刨花板的温度变化可以分为两个阶段:快速升温阶段和慢速升温阶段。目标厚度、热压温度、目标密度和含水率等因素对升温速率的影响在两个阶段中表现不同:
     ①在快速升温阶段:目标厚度和热压温度对单位厚度的板坯升温速率有着极其显著的影响,其次是目标密度和含水率的交互作用。目标密度大,板坯的水分含量就大,所以含水率和目标密度的交互作用对板坯升温速率有显著性影响。升温速率随热压温度的提高而增大,目标厚度小的板坯升温快。
Compared with regular particle board and plywood, flakeboard has better physico-mechanical properties and price advantage, which is also a board with high performance price ratio .So it is used widely and has vast market. Therefore, it is essential to study its forming mechanism and manufacturing technology.
     Hot pressing procedure is the key to the flakeboard production. During the process, the physico-mechanical properties of the board are greatly influenced by the distribution of temperature, humidity and pressure in the mat. Thus, in order to thoroughly understand the forming mechanism, establish hot pressing schedule, shorten hot pressing time, and improve the productivity, it is important to study the rule of the heat & mass transfer and explore the relationship between the heat & mass transfer and the properties of board.
     In this paper, the real-time temperature, pressure and moisture content in the mat are measured consistently and automatically with self-designed test system. Based on the test results and academic analysis, we got the distribution rule and influence-factors of them as well as the relationship among them.
     The results are as follows:
     1 The rule of the temperature gradient variation in the mat
     1) The rule of the temperature gradient variation in the mat
     During hot pressing, temperature gradient always exists on the vertical section It is the largest at the beginning and decreases gradually. Unlike the vertical section, the temperature is almost the same over the cross section, and the temperature gradient is quite small, especially for the glued mat. So, the cross section can be viewed as a forisothermal lay. Therefore it was considered that the temperature gradient over the cross sections of the mat is the same.
     2) From hot pressing experiment results of the glued and unglued mat, it can be known that the influence of adhesives on the temperature distribution of flakeboard can be neglected.
     3) During hot pressing, the temperature variation of flakeboard can be divided into rapid increasing stage and slow increasing stage. In the two stages, the influence of aim thickness, hot pressing temperature, aim density and moisture content on temperature increasing velocity is different.
引文
[1] 蔡力平.刨花蒸汽处理提高刨花板尺寸稳定性及板内水分迁移模型的研究[J].东北林业大学学报,1991,(2)2:32-35.
    [2] 常建民.木材对流干燥过程热质传递规律及湿迁移特性[D].哈尔滨:东北林业大学图书馆,1994.
    [3] 常建民.木材对流干燥热质传递模型的研究[J].林产工业,1996, 23(1):15-17.
    [4] 常建民,徐瑞玉,王显茂,等.空气流速对木材干燥速率的影响[J].东北林业大学学报,1994, 22(3): 61-64.
    [5] 成俊卿主编. 木材学[M]. 中国林业出版社,北京,1985.
    [6] 东北林业大学主编.刨花板制造学[M].北京:中国林业出版社,1992.
    [7] 郝广田,郭柏林. 解决胶合板鼓泡问题的措施[J].木材工业,1986(4):29-31.
    [8] 贺微粒. 高性能定向结构板的研究[D]. 南京:南京林业大学图书馆, 1998.
    [9] 洪中立. 国外定向刨花板研究和发展动态[J].世界林业研究, 1995(2):38-45.
    [10]侯祝强,庄作峰.木材流体渗透性研究的发展与趋势[J].世界林业研究,1999,12(2):33-37.
    [11]胡松涛,刘国丹,廉乐明,等.干燥过程中热质传递交叉效应的研究[J].哈尔滨工业大学学报,2002,33(1):35-39.
    [12]胡育辉.定向结构刨花板与其它人造板的比较[J].木材工业,2000(5):27-28.
    [13]胡育辉.中国定向刨花板的现状和发展前景[J].木材工业,2000(3):19-20.
    [14]靖葳,俞昌铭等.木材热压过程热量与含湿量数学模型初探[J]. 木材加工机械,1999(3):5-9.
    [15]李根荣.试论平衡压力对鼓泡的影响[J].木材工业,1986(3):7-9.
    [16]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995.
    [17]刘应安,蔡智勇. 刨花板热压过程中热传导的几个问题[J].林业科技开发,1992(4):43-45.
    [18]刘正添,王洁瑛,于辉. 影响刨花板热压传热过程因素的研究[J].北京林业大学学报,1995(2):64-71.
    [19]陆仁书. 刨花板制造学[M].北京:中国林业出版社, 1992.
    [20]曼坡译.定向铺装刨花板的应用[J].林产工业,1980(3):62-65.
    [21]曼坡摘译.定向铺装刨花板坯的铺装工序[J].林产工业,1980(2):48-51.
    [22]苗平.马尾松木材高温干燥的水分迁移和热量传递[D].南京:南京林业大学,2000.
    [23]南京林业大学定向结构板工程研究中心.定向结构板生产的关键主机[J].木材工业, 1996(3):37-38.
    [24]南京林业大学林工系人造板研究室.刨花(碎料)干燥[J].木材工业,1989(1):39-41.
    [25]南京林业大学人造板研究室. 定向刨花板(OSB)的生产研究[J]. 林产工业, 1989(4):14-15.
    [26]南京林业大学定向结构板工程研究中心.定向结构板概论[J].木材工业,1996(1):37-41.
    [27]南京林业大学定向结构板工程研究中心.定向结构板生产的关键主机[J].木材工业 ,1996(3):37-41.
    [28]聂涛等.一种新型人造板材—定向结构刨花板[J].建筑人造板,1989(4): 19-21.
    [29]普里高京.不可逆过程热力学导论[M].北京:科学出版社,1960.
    [30]钱大威.木质刨花板的刨花形态研究发展概述[J].木材工业,1997, 11(1): 30-32.
    [31]施明恒,王馨.快速干燥过程中多孔介质内部湿分迁移机理的研究[J].工程热物理学报,2000,21(2): 216-219.
    [32]孙光瑞.刨花干燥工序关键含水率的确定[J].木材工业,1996, 10(5): 10-14.
    [33]涂平涛. 浅谈碎料板生产中的强化热压(之一)[J]. 建筑人造板,1991(2):1-4.
    [34]夏元洲. 刨花板热压时间的计算方法和缩短热压时间的基本措施[J]. 湖南人造板,1993.3(1): 17-21.
    [35]肖亦华等译. 木材传热传质过程[M]. 中国林业出版社,1989:86-112,165-181.
    [36]谢力生,喻云水,曹建文等. 常规热压无胶干法纤维板热压传热的研究[J]. 林产工业,2003,30(1):26-28,42.
    [37]谢力生,赵仁杰,张齐生. 常规热压法干法纤维板热压传热的研究—Ⅰ理想条件下板坯中心层达到胶粘剂固化温度所需时间的模型[J].中南林学院学报,2002(2):92-95.
    [38]徐长妍. 喷蒸-真空热压酚醛树脂胶杨木大片刨花板[J]. 南京林业大学博士论文, 2000.
    [39]徐长妍,华毓坤. 喷蒸真空热压刨花板板坯内部的温度场特性[J]. 木材工业,2002(6):13-15.
    [40]王国超. 关于定向刨花板施胶的研究[J]. 林产工业, 1985(3):14-18.
    [41]王进武.木材干燥过程中的温度场和含水率场[J].南京林业大学学报,1991,15(1): 80-83.
    [42]王恺. 木材工业实用大全(刨花板篇)[M].中国林业出版社,1998.
    [43]王洁瑛,刘正添.刨花板喷蒸热压[J].木材工业,1995(2):24-27.
    [44]王绍廷,陈涛编著.动量质量热量传递原理[M].天津:天津科学技术出版社, 1988.
    [45]王馨,王海,施明恒,等.快速干燥过程中多孔介质内部湿分挤压流动的研究[J].应用科学学报,2001, 19(1): 66-69.
    [46]翁金模.定向刨花板在建筑中应用的预测[J].木材加工机械,2000(2):28-29.
    [47]谢拥群.木材碎料对撞流干燥特性的研究[D]. 北京: 北京林业大学图书馆, 2003.
    [48]杨静榕译. 压制单板时板坯中蒸汽气体混合物压力的确定及它的降低方法[J]. 林业建设,1995(5):38-39.
    [49]杨庆贤.木材干燥过程中热质迁移交互作用的研究[J].浙江大学学报,1995, 32(4): 304-308.
    [50]杨世铭,陶文铨. 传热学[M]. 高等教育出版社, 1998.
    [51]杨世铭编著.对流传热与传质[M].北京:高等教育出版社,1985.
    [52]伊松林. 木材浮压干燥过程的传热传质[D]. 北京: 北京林业大学图书馆, 2002.
    [53]张壁光,乔启宇. 热工学[M]. 中国林业出版社, 1988.
    [54]李启岭,张帝树,杨梅仙. 杨木薄板快速干燥工艺的研究[J]. 北京林业大学学报,1995,17(3):63-66.
    [55]张远君,王平,韩振兴等. 流体力学大全. 北京:北京航空航天大学出版社,1991.
    [56]郑国生,曹崇文.散粒物料气流干燥中的传热特性[J].北京农业工程大学学报, 1994, 14(1): 54-61.
    [57]周定国等. 刨花机械定向方法的研究[J]. 南京林学院学报, 1985(2):79-84.
    [58]朱谷君主编.工程传热传质学[M].北京:航空工业出版社,1989.
    [59]朱益民译. 刨花板喷蒸热压研究[J]. 湖南人造板,1996,6(2):45-47.
    [60]朱政贤. 木材干燥[M]. 中国林业出版社,1992: 309-313.
    [61]中华人民共和国林业部科技司编.人造板标准汇编[S].北京:中国林业出版社,1993.
    [62] А.Н.ОВЛИВИН,А.К.ВОСКРЕСЕНСКИЙ,Ю.Л.СЕМЕНОВ,ТЕПЛО-МАССОЛЕРЕНОС ВПРОИЗ ВОДСТВЕДРЕВБСНО-СТРУЖЕ ЧНЫǔ ПЛИТ,МОСКВАИЗ ДАТЕЛЪСТВО, 1978.
    [63] Balaze G. Zombori, Frederick A. Kamke and Layne T. Watson. Simulation of the internal conditions during the hot-pressing process. Wood and Fiber Science, 2003, 35(1): 2-23.
    [64]BEECH. J. C. The thickness swelling of wood particleboard. Holzforschung,1975, 29: 11-18.
    [65] Bolton. A.J. and P.E. Humpgrey.1988. The hot pressing of dry formed wood-based composite. PartⅠ. A review of the literature, identifying the primary physical process and the nature of their interaction. Holzforshung 42(6): 403-406.
    [66] Bolton. A.J. and P.E. Humpgrey.1994. The permeability of wood-based composite materials. PartⅠ. A review of the literature, identifying the primary physical process and the nature of their interaction. Holzforshung 48: 95-100.
    [67] Bolton. A.J.,P.E. Humpgrey and P.K.Kavvouras.1989a. The hot pressing of dry formed wood-based composite. PartⅢ.Predicted vapor pressure and temperature variation with time, compared with experimental data for laboratory boards. Holzforshung 43(4): 265-274.
    [68] Bolton. A.J.,P.E. Humpgrey and P.K.Kavvouras.1989b. The hot pressing of dry formed wood-based composite. PartⅣ.Predicted variation of mattress moisture content with time. Holzforshung 43(5): 345-349.
    [69] Bolton. A.J.,P.E. Humpgrey and P.K.Kavvouras.1989c. The hot pressing of dry formed wood-based composite. PartⅥ.The importance of stresses in the pressed mattress and their relevance to the minmization of press time, and the variability of board properties.. Holzforshung 43(6): 406-410.
    [70] Bowen, M.E. 1970. Heat and transfer in particleboard during hot pressing. Ph.D. dissertation , Colorado State University. Fort Collins, Co.
    [71] Carvalho, L.M.H., and C.A.V. Costa. 1998. Modeling and simulation of the hot pressing process in the production of medium density fiberboard (MDF). Chen.Eng. Comm. 1701-1721.
    [72]Chen Y, Choong E T. Evaluation of diffusion coefficient and surface emission coefficient by an optimization technique. Wood and Fiber Sci, 1995,27(2):178-182.
    [73]Chunping Dai, Paul R. Steiner. Compression behavior of randomly formed wood flake mats. Wood and Fiber Science, 1993, 25(4): 349-358.
    [74] D.Martinovic, I.Horman, I.Demirdzic. Numerical and experimental analysis of a wood drying process. Wood Science and Technology, 2001,35: 143-156.
    [75] Dai, C., C. Yu, and P.Hubert. 2000. Modeling vertical density profile in wood composite during hot-processing. Proc. 5th Annual Pacific Rim Bio-Based Composites Symposium, Canberra, Australia.
    [76] Extra capacity adds to pricing problems. Wood Based Panels, 2002 (1): 11-13.
    [77]Frederick A. Kamke, etal. Effects of wood-based panel characteristic on thermal conductivity. Forest Products Journal, 39(5): 19-24.
    [78] Gibson, L.J. 1989b. Modeling the mechanical behavior of cellular materials. Mat. Sci. Eng. A110 (1989)1-36.
    [79] Gibson, L.J., and M.F. Ashby. 1988. Cellular solids: Structure and properties. Pergammon Press, New York, NY.
    [80]Grasser. B.. Temperaturverlauf in industrill gefertigten Spanplatten w?hren des Pressvorgangs. Holz-Zbl. 1962, 88: 137.
    [81]Gurr C G. Movement of water in soil due to a temperature gradient. Soil Sci,1952 ,74:335-345.
    [82] Harless, T.E.G. , E.G. Wagner, P.H., Short, R.D., Swale. P.H. Mrichell., and D.S. Ladd. 1987. A model to predict the density profile of particleboard. Wood Fiber Sci. 19(1):81-92.
    [83] Hata.T. 1993. Heat flow in particle mat and properties of particleboard under steam injection pressing. Wood Research. Bull Wood Research Inst. Kyoto University. 80: 1-47.
    [84] Humphrey, P.E., and H. Thoemen. 2000. The continuous pressing of wood-based panel: An analytical simulation model. Its validation and use. Proc. 5th Annual Pacific Rim Bio-Based Composites Symposium, Canberra. Austrilia.
    [85] Humphrey, P.E.; Bolton. A.J. 1989: The hot pressing of dry formed based composite. PartⅡ. A simulation model of for heat and moisture transfer and typical results. Holzforschung 43(3):199-206.
    [86]HUMPHREY. P. E. AND A. J. BOLTON. The hot pressing of dry-formed wood-based composites. Part Ⅱ. A simulation model for heat and moisture transfer. and typical results. Holzforschung, 1989, 43(3): 199-206.
    [87] J.Irudayaraj, K.Haghighi and R.L.Stroshine. Nonlinear finite element analysis of coupled heat and mass transfer problems with an application to timber drying. Drying Technology, 1990,8(4): 731-749.
    [88] Jianghua P, R.C.Tang, Eddie.P. The effect of hot and humid environmental conditions on the creep behavior of commercial structure oriented strandboards. Forest Products Journal, 42: 11-12.
    [89]Kamke F A, Casey L J. Gas pressure and temperature in the mat during flakeboard manufacturing. Forest Products Journal, 1998, 38(3): 41-43.
    [90] Kamke, F.A., and L.J. Casey. 1988b. Fundamentals of flakeboard manufacture: internal mat conditions. Forest Prod. J. 38(6): 38-44.
    [91] Kayihan, F., and A. Johnson. 1983. Heat and moisture movement in wood composite material during the pressing operation----A simplified model. Pages511-531 in R.W. Lewis. K. Morgan, and B. A. Schrefler, eds. Numerical methods in heat transfer. Vol. Ⅱ. John Wiley&Sons. Ltd.
    [92] Kelley, M.W. 1977. Critical literature review of relationships between processing parameters and physical properties of particleboard. General Technical Report EPL-10. USDA Forest Serv. Forest Prod. Lab.
    [93]Kollmann F, Malmquist L. Untersuchungen über das Strahlungsverhalten trockener H?lzer. Holz Roh-Werkst,1956, 14: 201-204.
    [94]Lars W. Surface mass transfer coefficient for wood. Drying Tech, 1993, 11(6): 1127-1249.
    [95]Liu J Y, Cheng S. Solution of Luikov equations of heat and mass transfer in capillary-porous bodies. Int J Heat and Mass Trasfer,1973,16(5): 985-990.
    [96]Liu. J. Y.. and J. D. MCNATT. Thickness swelling and density variation in aspen flakeboards. Wood Sci. Technol, 1991, 25: 73-82.
    [97]Luikov A V, Mikhailov Y A. Application of irreversible thermodynamics methods to investingation of heat and mass transfer. Int J Heat and Mass Transfer,1966,9(1):15-23.
    [98] M.W.Musial, Poznan, Poland. A non-destructive method for determining the degree of flake orientation in OSB. Wood Science and Technology,1988,22: 371-378.
    [99]Maclean J. D. Method of computing the rate of temperature change in wood and plywood panels when the two opposite surfaces are maintained at different temperature, 1943.
    [100] Maclean J. D. The rat of temperature change in wood panels heated between hot plates, 1942.
    [101] Maku. T.R., Hamada and H. Sasaki. 1959. Studies on the particleboard. Report 4: Temperatureand moisture distribution in particleboard during hot-pressing. Wood Research Kvoto University. Pp.934-946.
    [102] Meineke, E.A., and R.C. Clark. 1973. Mechanical properties of polymeric foam. Technomic, Westport, CT.
    [103] Nelson R M. Heats of transfer and activation energy for water diffusion in wood. Wood Sci Tech,1991,25:193-202.
    [104] P.R. Steiner and C. Dai 1993. Spatial structure of wood composites in relation to processing and performance characteristics. Wood Sci. Technol. 28:45-51.
    [105] Philip J R, Devries D A. Moisture movement in porous materials under temperature gradients. Trans of American Geo Union, 1957,38(2): 222-232.
    [106] Positive thinking. Wood Based Panels International USA, 2002(2):8-2.
    [107] SMITH. D. C. Waferboard press closing strategies. Forest Prod. J. 1980, 32(3): 40-45.
    [108] Stanish, M.A., G.S. Schajer, and F Kayihan. 1986. A mathematical model of drying for hygroscopic porous media. AIChE Journal 32(8): 1301-1311.
    [109] Strickler, M.D. 1959. Effects of press cycle and moisture content on properties of Douglas-fir flakeboard. Forest Prod. J. 9(7):203-215.
    [110] Suchsland. O. Hygroscopic thickness swelling and related properties of selected commercial particleboards. Forest Prod. J. 1973, 23(7): 26-30.
    [111] Suchsland. O. The density distribution in flake boards. Michigan Quarterly Bulletin, 1962, 45(1): 104-121.
    [112] T. Hata et al. Production of particleboard with steam-injection Ⅱ. Temperature behavior in particle mat during hot-pressing and steam-injection pressing. Wood Science and Technology, 1989, 23: 361-369.
    [113] T. Hata, S. Kawai and H. Sasaki. Production of particleboard with steam-injection. Wood Science and Technology, 1990, 24: 65-78.
    [114] T.Nishimura, M.P.Ansell, N.Ando. Evalution of the arrangement of wood strands at the surface of OSB by image analysis. Wood Science and Technology.
    [115] T.Nishimura, M.P.Ansell, N.Ando. The relationship between the arrangement of wood strands at the surface of OSB and the modulus of rupture determined by image analysis. Wood Science and Technology,2001,35: 555-562.
    [116] T.Nishimura, M.P.Ansell. Fast fourier transform and filtered image analyses of fiber orientation in OSB. Wood Science and Technology, 2002,30: 287-307.
    [117] Warren, A.W, et al, Apparatus for orienting wood strands, U.S. Patent, 1974,3, 807, 937.
    [118] Warren, W.E., and A.M. Kraynik. 1987. Foam mechanics: The linear elastic response of two-dimension spatially periodic cellular materials. Mech. Mater. 6:27-37.
    [119] Whitaker S. Simultaneous heat, mass and momentum transfer in Pporous media. A Theory of Drying. Adv Heat Transfer,1977(13):119-203.
    [120] Wolcott, F.A. Kamke, and D. A. Dillard. 1990. Fundamentals of flakeboard of manufacture: Viscoelastic behavior of the wood component. Wood Fiber Sci. 22(4): 345-361.
    [121] WOLCOTT, M. P.. Modelling viscoelastic cellular materials for the pressing of wood composite. Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA , 1990.
    [122] Wolcott. M.P. 1989. Modeling viscoelastic cellular materials for the pressing of wood composites. Ph.D. dissertation. Virginia Polytechnic Inst. and State Univ., Blacksburg VA.
    [123] Yang Q X. Theoretical expressions of thermal conductivity of wood. J Forestry Research, 2001,12(1):43-46.
    [124] Zombori, G. B., F.A. Kamke, and L.T. Watson. Simulation of the mat formation process. Wood Fiber Sci, 2001,33(4):564-579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700