膛口流场动力学机理数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
枪炮发射时,高温、高压火药燃气出口后快速膨胀形成复杂的膛口流场,并产生一系列危害现象,如膛口冲击波、膛口焰以及气流对弹丸运动的干扰等。研究膛口流场的动力学机理及影响因素对提高武器性能、减小气流危害等具有重要的应用价值。
     以数值计算为主并结合实验,开展了膛口流场的冲击波与化学反应现象及其影响因素的研究。流场的基本方程采用含化学反应的ALE形式Navier-Stokes方程,计算网格为分区贴体结构化网格。采用有限体积法离散方程,对流项和时间项分别采用AUSM+格式和Runge-Kutta法求解,湍流模型为k-ε模型,化学反应机理采用C-H-O-N9组分12步基元反应,并使用MPI方法进行分区并行计算。
     (1)在膛口射流与冲击波的研究中,不考虑湍流和化学反应的影响,数值模拟了包含高速运动弹丸和初始射流的膛口流场,分析了初始流场对火药燃气流场的影响。结果表明,初始流场超音速核心区域的方向性导致了火药燃气流出膛口后在各个方向上具有不同的膨胀特性,其在轴向上的膨胀速度大于侧向的膨胀速度,从而生成了冠状冲击波。此外,初始流场的存在提高了近膛口区域气体的滞止压力。
     (2)通过改变装药量、弹丸质量和口径等发射条件,计算了9种条件下后效期内膛口射流对弹丸速度的扰动。结果表明弹丸在后效期内的增速最大可达3%以上,最大速度出现在弹丸越过马赫盘后;改变发射药装药量对弹丸后效期增速率的影响较小;在一定范围内,增速率随弹丸质量的增加而线性减小
     (3)对膛口反应流的形成机理及膛口装置的影响进行了分析。在本文计算条件下,膛口流场化学反应的分为两个阶段:第一阶段内化学反应现象主要发生在两侧涡环内;第二阶段内,射流边界向轴线收缩并与外部涡环脱离,在双剪切层作用下射流边界失稳并发生弯曲和破碎,射流边界中的空气被卷入马赫盘下游轴线附近的高温火药燃气区域内,并在该区域内发生化学反应。筒形和锥形喷管对膛口反应流的影响主要表现为:一方面火药燃气在喷管内膨胀并加速,膛口马赫盘减弱,火药燃气穿过马赫盘后的温度相对降低;另一方面射流边界的稳定性得到提高,火药燃气和空气的混合作用被抑制。
     (4)在高空环境下的膛口冲击波场变化规律研究中,实验和数值结果都表明,在一定范围内,膛口冲击波场的超压峰值随着膛口环境压力的变化近似线性降低。有超音速来流时,膛口冲击波影响范围为锥形区域,且影响范围内的超压值比无来流时更大。膛口化学反应现象在高空条件下也得到了抑制。
During the gun firing process, a complicated muzzle flow field will be formed after the high-pressure and high-temperature propellant gas exits the muzzle. A series of harmful phenomena occur throughout development of the muzzle flow, such as muzzle blast and flash, the perturbation of the projectile velocity. The dynamics process and affecting factors of muzzle flow need to be studied in order to improve the weapon performance and control the hazards.
     The numerical and experimental methods are employed to study the complex phenomenon of muzzle flow and its affecting factors. Time-dependent Navier-Stokes equations with chemical reaction, which were cast in the Arbitrary Lagrangian-Elerian (ALE) framework, are used in the numerical investigations. Finite volume method is used for space discretization. The flux across the cell interface is calculated by using AUSM+scheme, solutions are advanced in time by explicit two step Runge-Kutta method, and the C-H-O-N reaction mechanism with9components and12elementary reactions is performed to solve the reacting source terms, and MPI method is used for the parallel computing.
     1) The effect of precursor flow on the propellant flow field is investigated based on the numerical results. It shows that, the bow shock is produced because of the directivity of precursor flow. The propellant gas expanding velocity in the axial direction is much higher than in the radial direction in the early stage. And the maximal stagnation pressure in the area near the muzzle withe considering the precursor flow increases by twice more than that without considering the precursor flow.
     2) Perturbation of the projectile velocity in the after effect period is calculated under different conditions. The results indicate that the velocity reaches the maximum value after the projectile crosses the Mach disk, which could be increased more than3%on the muzzle velocity. The charge weight exerts little effect on the rate of velocity change, and the projectile mass scale is almost linear with the rate of velocity change.
     3) Under the calculation condition, there are two stages for the chemical reaction in the muzzle flow. In the first stage, the reaction takes place in the vortex rings in the side of the jet flow. In the second stage, the boundary layer separates from the vortex ring and the K-H instability is caused by the shear layer, and the reaction area moves to the downstream of the Mach disk which is near the axis. Nozzle has two effects on the muzzle reacting flow:first, the strength of Mach disk is decreased with reduction of gas temperature after the expansion in the nozzle; second, the jet contact surface is more stable, which suppresses the mixing of propellant gas and air in some extent.
     4) Based on the experimental and numerical results, the investigation on the overpressure of muzzle blast with different ambient pressure is performed. Both of them reveal that the overpressure of the muzzle blast is almost linear with the ambient pressure within a certain range. When the gun is in supersonic incoming flow, the muzzle shock wave is limited in a cone-shape area, and the overpressure value in this area is much higher than that in the static environment.
引文
[1]兵器工业科学技术辞典编辑委员会.兵器工业科学技术辞典:弹道学.北京:国防工业出版社,1991.
    [2]李鸿志,高树兹.带膛口装置的膛口冲击波机理.兵工学报.1979(1).
    [3]Fansler K. S., Schmidt E. M. Trajectory Perturbations of Asymmetric Fin-Stabilized Projectiles Caused by Muzzle Blast. Journal of Spacecraft and Rockets.1978,15:62-64.
    [4]Schmidt E. M., Kahl G. D., Shear D. D. Gun Blast-its Propagation and Determination. 1980
    [5]李鸿志,尤国钊.炮口冲击波的形成和分布规律以及减小炮口冲击波途径分析.南京理工大学学报.1977,1(1):26-48.
    [6]Schmidt E. M. Muzzle Flow Gasdynamics. Gun Propulsion Technology.1988,109: 161-181.
    [7]Erdos J. I., Guidice D. Gas Dynamics of Muzzle Blast. Palo Alto, Calif:7th American Institute of Aeronautics and Astronautics, Fluid and Plasma Dynamics Conference, 1974.
    [8]Love E. S., Grigsby C. E., Lee L. P., et al. Experimental and Theoretical Studies of Axisymmetric Free Jets.,1959.
    [9]Glass I. I. Shock Waves and Man. Toronto:University of Toronto Institute for Aerospace Studies,1974.
    [10]Schmidt E. M., Shear D. D. Optical Measurements of Muzzle Blast. Aiaa Journal.1975, 13(8):1086-1091.
    [11]M S. E., E G. R., S F. K. Interaction of Gun Exhaust Flowfields. Aiaa Journal.1984, 22(4):516-517.
    [12]Schmidt E. M., Fansler K. S., Shear D. P. Trajectory Perturbations of Fin-Stabilized Projectile Due to Muzzle Blast. Journal of Spacecraft and.1977,14(6):339-344.
    [13]Fansler K. S., Schmidt E. M. The Relationship Between Interior Ballistics, Gun Exhaust Parameters and the Muzzle Blast Overpressure.1982
    [14]Fansler K. S. Dependence of Free-Field Impulse On the Decay Time of Energy Efflux for a Jet Flow. Washington, DC:1986:203-212.
    [15]李鸿志,高树滋.带膛口装置的膛口流场与冲击波形成机理.南京理工大学学报(自然科学版).1979(2):1-26.
    [16]李鸿志,刘晓利.膛口变能量冲击波特性分析——弹道初始参量的影响.兵工学报.1993(3):17-21.
    [17]李鸿志,马大为.膛口冲击波的远场传播规律.弹道学报.1992(1):25-29.
    [18]李鸿志,崔东明.冲击波与射流理论.南京:华东工学院,1989.
    [19]Klingenberg G., Heimerl J. M. Gun Muzzle Blast and Flash. Progress in Astronautics and Aeronautics.1992,139.
    [20]Klingenberg G., Mach H. Investigation of Combustion Phenomena Associated with the Flow of Hot Propellant Gases-I:Spectroscopic Temperature Measurements Inside the Muzzle Flash of a Rifle. Combustion and Flame.1976,27:163-176.
    [21]Klingenberg G., Schroder G. A. Investigation of Combustion Phenomena Associated with the Flow of Hot Propellant Gases-Ii:Gas Velocity Measurements by Laser-Induced Gas Breakdown. Combustion and Flame.1976,27:177-187.
    [22]Klingenberg G. Investigation of Combustion Phenomena Associated with the Flow of Hot Propellant Gases. Iii:Experimental Survey of the Formation and Decay of Muzzle Flow Fields and of Pressure Measurements. Combustion and Flame.1977,29:289-309.
    [23]Merlen A., Dyment A. Similarity and Asymptotic Analysis for Gun-firing Aerodynamics. Journal of Fluid Mechanics.1991,225:497-528.
    [24]Merlen A. Generalization of the Muzzle Wave Similarity Rules. Shock Waves.1999, 9(5):341-352.
    [25]Heiney O. Ballistics Applied to Rapid-Fire Guns. New York:AIAA,1979.
    [26]Schmidt E. M. Secondary Combustion in Gun Exhaust Flows.1981.
    [27]Klingenberg G. Gun Muzzle Blast and Flash. Propellants, Explosives, Pyrotechnics. 1989,14(2):57-68.
    [28]何正求.几种消焰器的消焰原理分析.弹道学报.1990(02):14-19.
    [29]Carfagno S. P. Handbook On Gun Flash. Franklin Institute, Philadelphia, Pa.1961.
    [30]May I. W., Einstein S. I. Prediction of Gun Muzzle Flash.1980.
    [31]Yousefian V. Muzzle Flash Onset. Aerodyne Research, Inc.1982,45.
    [32]许厚谦.膛口焰的形成及其抑制.南京理工大学学报(自然科学版).1985(S1):14-23.
    [33]许厚谦.炮口二次燃烧的正激波点火模型.爆炸与冲击.1990(1):63-67.
    [34]Cooke C. H., Fansler K. S. Tvd Calculations of Blast Wave From a Shock Tube and 105Mm Howitzer. Proceedings of the 9th international symposium on ballistics, American Defense Preparedness association,1986.
    [35]Carofano G. C. Blast Computation Using Harten's Total Variation Diminishing Scheme. 1984.
    [36]Cler D. L., Chevaugeon N., Shephard M. S., et al. Cfd Application to Gun Muzzle Blast-a Validation Case Study.2003
    [37]马大为.含复杂波系膛口非定常流场的数值研究.南京:华东工学院,1991.
    [38]马大为.内含运动物体的非定常流场计算.爆炸与冲击.1991,11(1):31-36.
    [39]Jiang Z., Takayama K., Skews B. W. Numerical Simulations of Two Blasts by a Supersonic Projectile Discharged From a Tube. Berlin, Germany:Springer-Verlag,1998: 61-66.
    [40]Jiang Z., Takayama K. Shock Wave Flows Driven by Supersonic Projectiles Moving in Shock Tubes.1997.
    [41]Jiang Z. Wave Dynamic Processes Induced by a Supersonic Projectile Discharging From a Shock Tube. Physics of Fluids.2003,15(6):1665.
    [42]Watanabe R., Fujii K., Higashino F. Three-Dimensional Flow Computation Around a Projectile Overtaking a Preceding Shock Wave. Journal of Spacecraft and Rockets.1998, 35(5):619-625.
    [43]Cayzac R., Carette E., de Roquefort T. A., et al. Intermediate Ballistics Computations and Validations.1998
    [44]Cayzac R., Carette M. E., de Roquefort P. T. A. Intermediate Ballistics Unsteady Sabot Separation:First Computations and Validations.2001:297-305.
    [45]Gopalapillai R., Kim H. D., Setoguchi T., et al. On the Near-Field Aerodynamics of a Projectile Launched From a Ballistic Range. Journal of Mechanical Science and Technology.2007,21(7):1129-1138.
    [46]Florio L. A. Effect of Vent Opening Area and Arrangement On Gas Flow Field as Gas Propelled Cylinder Exits a Flow Tube. Meccanica.2009,45(4):475-501.
    [47]Dayan Y., Touati D. Simulation of Unsteady Muzzle Flow of a Small-Caliber Gun. Advances in Fluid Mechanics.2006,52:165-171.
    [48]姜孝海,范宝春,李鸿志.高速运动弹丸诱导的瞬态流场研究:第八届全国爆炸力学学术会议.中国江西吉安:2007458-463.
    [49]Xiaohai J., Zhihua C., Hongzhi L. Numerical Investigation On the Interaction of Cylinder and Shockwave Based On the Immersed Boundary Method. Modern Physics Letters B.2009,23(3):317-320.
    [50]Jiang X., Chen Z., Fan B., et al. Numerical Simulation of Blast Flow Fields Induced by a High-Speed Projectile. Shock Waves.2008,18(3):205-212.
    [51]姜孝海,范宝春,李鸿志.基于ALE方程的动网格膛口流场数值研究.计算力学学报.2008(04):563-567.
    [52]姜孝海,范宝春,李鸿志.膛口流场动力学过程数值研究.应用数学和力学.2008(03):316-324.
    [53]Chevaugeon N., Xin J., Hu P., et al. Discontinuous Galerkin Methods Applied to Shock and Blast Problems. Journal of Scientific Computing.2005,22(1):227-243.
    [54]乐贵高,马大为,冯勇,等.某火炮膛口流场数值仿真.兵工学报.2004,25(1):19-22.
    [55]张焕好,陈志华,姜孝海,等.膛口装置三维流场的数值模拟及制退效率计算.兵工学报.2011,32(5):513-519.
    [56]张辉.复杂流场数值方法研究及在炮口制退器设计中应用.南京理工大学,2009.
    [57]Cayzac R., Carette E., de Roquefort T. A., et al. Computational Fluid Dynamics and Experimental Validations of the Direct Coupling Between Interior, Intermediate and Exterior Ballistics Using the Euler Equations. Journal of Applied Mechanics-Transactions of the Asme.2011,78(6).
    [58]Aibarow A. V., Babayev D. B., Mironov A. A. Numerical Simulation of 3D Muzzle Brake and Missile Launcher Flow Field in the Presence of Movable Objects.2002: 225-232.
    [59]孙磊.含动边界的燃气射流数值模拟.南京:南京理工大学,2006.
    [60]代淑兰.复杂化学反应流并行数值模拟.南京:南京理工大学,2008.
    [61]代淑兰,许厚谦,王兵.含高速运动弹丸的膛口二次燃烧并行数值模拟.弹道学报.2009,21(1):83-86.
    [62]代淑兰,贺增弟,肖忠良.负氧平衡发射药膛口燃烧流场的数值模拟.火炸药学报.2011,34(03):69-71.
    [63]Jiang X., Li H., Guo Z., et al. Numerical Investigations On Muzzle flow Under Approaching Real Shooting Conditions. Manchester:28th International Symposium on Shock Waves,2012.
    [64]Mcbride B. J., Gordon S. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, Ii. Users Manual and Program Description. Nasa Reference Publication.1996,1311:84-85.
    [65]Stull D. R., Prophet H. Janaf Thermochemical Tables (2Nd Edn. Ed.). Nbs, Washington. 1971.
    [66]Radhakrishnan K., Hindmarsh A. C., Aeronautics U. S. N., et al. Description and Use of Lsode, the Livermore Solver for Ordinary Differential Equations. National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program,1993.
    [67]Liou M. S., Steffen C. J. A New Flux Splitting Scheme. Journal of Computational Physics.1993,107(1):23-39.
    [68]Liou M. S. Progress Towards an Improved Cfd Method- Ausm+.1995:606-625.
    [69]Liou M. S. A Sequel to Ausm:Ausm. Journal of Computational Physics.1996,129(2): 364-382.
    [70]Wada Y., Liou M. S. A Flux Splitting Scheme with High-Resolution and Robustness for Discontinuities. Special Publication of National Aerospace Laboratory.1994,1: 117-122.
    [71]阎超.计算流体力学方法与应用.北京:北京航空航天大学出版社.
    [72]Nirschl H., Dwyer H. A Chimera Grid Scheme for the Calculation of Particle Flows. 1994
    [73]都志辉.高性能计算之并行编程技术——MPI并行程序设计.北京:清华大学出版社,2001.
    [74]桑钊,张君毅,贺占庄.基于CC-NUMA的多处理器系统研究.现代电子技术.2009(02).
    [75]Turner, Hu H., Edward. Parallel Cfd Computing Using Shared Memory Openmp. London:ICCS'01 Proceedings of the International Conference on Computational Sciences,2001.
    [76]Gropp W. Mpich2:A New Start for Mpi Implementations. Recent Advances in Parallel Virtual Machine and Message Passing Interface.2002:37-42.
    [77]Van Dyke M. An Album of Fluid Motion. Standord,California:Parabolic Press,1982.
    [78]Lin Calvin, Snyder Lawrence.并行程序设计原理.陆鑫达,林新华.北京:机械工业出版社,2009.
    [79]李鸿志,崔东明,范宝春.连续介质中的激波.北京:兵器工业出版社,1995.
    [80]Jet A. I. S. Steady-State Jets. Los Alamos Science.1985:47.
    [81]尤国钊,许厚谦,杨启仁.中间弹道学.北京:国防工业出版社,2003.
    [82]Settles G. S. Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media. Springer,2001.
    [83]Merlen A., Dyment A. Similarity and Asymptotic Analysis for Gun-Firing Aerodynamics. Journal of Fluid Mechanics.1991,225:497-528.
    [84]范文涛.计转数炸点控制技术在W型引信中的应用研究.南京:南京理工大学,2010.
    [85]马少杰,张河.小口径空炸定距引信的定距体制研究.弹箭与制导学报.2004,24(4):338-344.
    [86]许厚谦.膛口二次燃烧点燃的机理研究及数学模拟.南京:南京理工大学,1987.
    [87]Gibeling H. J., Nietubicz C. J. Navier-Stokes Computations for a Reacting, M864 Base Bleed Projectile. ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD, 1995.
    [88]王杨.武器发射时冲击波/噪声的数值模拟方法及其应用.南京:南京理工大学,2012.
    [89]刘听,姜宗林,王春,等.欠膨胀超声速射流不稳定性机理的数值研究.力学学报.2008,40(05):577-584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700