SF_6高压断路器介质恢复特性数值模拟耦合计算及相关问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SF_6高压断路器作为最重要的一类电器设备,它既承担着开断和关合输电线路的正常电流,也承担着在规定时间内开断输电线路中故障电流的任务。因此,开断特性是衡量SF_6高压断路器产品性能的最基本和最重要的技术指标。而SF_6高压断路器在开断过程中的介质恢复特性又是衡量其开断特性的重要依据之一,因而成为对SF_6高压断路器产品考核及现代化产品设计的重要组成部分。
     SF_6高压断路器开断过程中的介质恢复特性取决于液压操动机构的输出特性、灭弧室内电场、气流场的分布以及电弧等离子体能量的输运过程。传统的方法对介质恢复特性的数值模拟是将决定介质恢复强度的上述几部分分别计算,然后求出介质强度的恢复特性。本论文将机构动力学、电场、磁场及气流场的数学模型通过介质恢复特性联系起来,开展了介质恢复特性耦合数值模拟及其相关问题的研究。
     在操动机构与灭弧室更加理想配合的仿真研究方面:分析了储压筒、缓冲机构及液压缸的动力输出特性,研究了分闸速度与触头不同分断行程的关系。以分闸速度特性为目标函数,将操动机构输出特性与灭弧室触头运动位置联系起来,对液压操动机构的分闸速度特性进行了优化仿真,实现了液压操动机构与灭弧室之间更为合理的配合。
     在空载开断介质恢复特性的数值模拟方面:根据确立的机构动力学、电场以及气流场的耦合关系,建立了以介质恢复强度为联系纽带的数学模型;研究了电场和气流场剖分网格的耦合方法,使在介质恢复强度的数值模拟中,电场和流场的数值计算能够采用同一套剖分网格,在输入已知数据后,可实现介质恢复特性的全自动数值模拟;为了提高计算效率,开展了介质恢复特性数值模拟的并行计算及可视化研究。
     考虑到灭弧室内喷口对吹弧气体的控制作用,研究了喷口型面、结构对介质恢复特性的影响;根据激波形成理论,研究了利用激波提高介质强度恢复速度的喷口型面结构。
     在短路开断介质恢复特性的数值模拟方面:建立了短路开断下的机构动力学、电场及磁流体动力学的数学模型,确立了对短路开断介质恢复特性进行数值模拟的耦合关系。在输入已知数据后,可实现短路开断介质恢复特性全自动耦合数值模拟;分析和比较了Lorentz力对电弧形态及介质恢复特性的影响。
As a kind of the most important electrical apparatus, high voltage circuit breaker is indispensable in power system. It not only takes switched normal current but also takes breaking fault current of power system in the appointed time. Its interrupting characteristics are the most important and essential technical performance to high voltage SF_6 circuit breaker. The Dielectric Recovery Property of high voltage SF_6 circuit breaker during the course of interrupting is one of very important criterion for measuring its interrupting characteristics. So it is an important content for modern product design of high voltage SF_6 circuit breaker.
     The numerical simulation of the dielectric recovery property for SF_6 high voltage circuit breaker depends on the output dynamic characteristics of hydraulic actuator, the distribution of flow field, electric field and the transportation of magneto hydrodynamics (MHD) in the arc quenching chamber. The conventional way for numerical simulation of dielectric recovery property is to calculate those three parts separately, then using numerical results to calculate dielectric recovery property. In this dissertation, the output dynamic characteristics of hydraulic actuator, the distribution of the electric field, magnetic field and flow field in the arc quenching chamber are linked through calculating the dielectric recovery strength, the investigations of coupled numerical simulation for dielectric recovery property and correlated problems have been done.
     In the aspect of investigation for the best match between actuator and arc quenching chamber:
     The output chatacteristics of pressure reservoir, buffer gear and hydraulic cylinder have been analyzed, the relation between breaking velocity and movable contact position has been researched. The objective function for velocity performance of hydraulic actuator has been established, the output characteristics of hydraulic actuator and the movable contact position have been related, and optimization design for the breaking velocity of SF_6 circuit breaker has been carried out in the dissertation. The more reasonable match between hydraulic actuator and arc quenching chamber has been achived.
     In the aspect of numerical simulation of no load dielectric recovery property:
     The mathematics model of mechanical kinetic, electric field and flow field related by the dielectric recovery property was established according to their coupled relations; the coupled method of subdivision grid for electric field and flow field had been investigated, and the same grid for the simulation of electric field and flow field was used during the course of computation dielectric recovery strength. The figure of numerical simulation for dielectric recovery strength was auto displayed after the given data were inputted to the program. The parallel method and the visualized technology have been researched in order to accelerate compute efficiency.
     Considering the controlling effect of arc nozzle on gas flow property during the breaking process, the influences to dielectric strength recovery properties by contour and dimension of arc nozzle were researched. According to the theory of shock wave, the contour of arc nozzle was also researched by using the shock wave to improve the recovered speed of dielectric strength.
     In the aspect of numerical simulation of short circuit dielectric recovery property:
     The arc mathematics model between the interacting electric field and flow field has been put forward, and the mathematics model of mechanism kinetic, electric field and MHD has been set up, then the coupled relation was ascertained. The figure of short circuit numerical simulation for dielectric recover strength was auto displayed after the given data inputted to the program. The influence of arc shape and dielectric recovery property by Lorentz force was analyzed.
引文
[1]张冠生.电器理论基础.北京:机械工业出版社,1980.
    [2]Gregory,G.D.North American and IEC standards for circuit breakers.Industry Applications Magazine,IEEE,2001(7):64-71.
    [3]Dufournet,D.Willieme,J.M.Recent developments in circuit breakers.Transmission and Distribution Conference and Exhibition 2002.Asia Pacific.IEEE/PES,2002(1):88-92.
    [4]Liu Donghui,Wang Jimei,Wang Zhongyi,Gu Peiji.Study on development of circuit breaker in China.Discharges and Electrical Insulation,2002(5):13-17
    [5]Dufournet,D.Recent evolution of high-voltage SF6 circuit-breakers.Physics of Power Interruption,IEE Colloquium,1995(4):31-33
    16]郭剑波.我国电力科技现状与发展趋势.电网技术,2006,11(6):1-7.
    [7]李建基.高中压开关设备实用技术.北京:机械工业出版社,2001.
    18]中国电能成套设备公司,中国电力科学研究院.1997~2005年全国电力系统开关设备运行情况调查[R].2006.
    [9]曹荣江,顾霓鸿.高压交流断路器的运行条件.北京:北京工业大学出版社,1999.
    [10]苑舜.高压断路器液压操动机构.北京:机械工业出版社,2000.
    [11]断路器操动机构的种类和动作,(日)原载电气计算,40卷15号,1972.
    [12]Salinas,A.R.,Pruente,J.Enhancing circuit breaker reliability through effective mechanism maintenance and lubrication.Transmission and Distribution Conference and Exposition,IEEE/PES,2001(1):578-587.
    [13]Fletcher,P.L.,Degen,W.A summary of the final results and conclusions of the second international enquiry on the reliability of high voltage circuit-breakers,Reliability of Transmission and Distribution Equipment,1995,(29):24-30.
    [14]徐国政,张节容.高压断路器原理和应用.北京:清华大学出版社,2000.
    [15]J.Y.Trepanier,X.D.Zhang,H.Pellegrin,R.Camarero.Application of computation fluid dynamics tools to circuit breaker flow analysis,IEEE Transactions on Power Delivery,1998,10(4):111-134
    [16]赵露泽.高压SF_6断路器气流场与电场并行求解技术的研究:(硕士学位论文).沈阳:沈阳工业大学,2005.
    [17]Hesselle M D,Trepanier J Y.Comparison of CFD Tools for SF_6 Self-Blast Circuit Breaker Development.IEEE transactor on power delivery.2003,18(2):468-474.
    [18]Yan J D,Fang M T C,Hall W.The Development of PC Based CAD Tools for Auto-Expansion Circuit Breaker Design.IEEE Transactions on Power Delivery.1999,14(1):176-181.
    [191 Li Erping,P.M.McEwan.Analysis of A Circuit Breaker Actuator System Using the decoupled CAD-FE-Integral Technique.IEEE Transaction on Magnetics,1992,28(2):1279-1282.
    [20]王福军.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社,2004
    [21]KOPPLINJ-I,Study of the Arc and of the Interaction Between Arc and Operation Mechanism in SF_6 puffer Breakers,IEEE TRANSA CTIONS ON PLASMA SCIETNCE,1980,8(4):331-337
    [22]Z.Ren and A.Razek.A Strong Coupled Model for analysing Dynamic Behaviours of Non-linear Electro-mechanical Systems.IEEE Transaction on Magnetics,1994,30(5):2352-3255
    [23]Ukeguchi.N,et.al.On the Numerical Analysis of Compressible Flow-Problems by the Modified FLIC Method,Computers and Fluids.1980(8):251-254.
    [24]Zhang J L,Yan J D,Fang M T C.Electrod Evaporation and Its Effects on Thermal Arc Behavior.IEEE Transactor on Plasma Science.2004,32(3):1352-1361.
    [25]Schade E,Ragaller K.Dielectric Recovery of an Axially Blown SF_6 Arc after Current Zero.Part 1Experimental Investigation.IEEE Trans.On Plasma Science,1982,10(3):141-147.
    [26]Park K Y,Guo X J,Fang M T C.Mathematical Modeling of SF6 Puffer Circuit Breakers Ⅱ:Current Zero Region.IEEE Transactor on Plasma Science.1997,25(5):967-973.
    [27]徐建源,王其平.喷口电弧二维动态数学模型及其应用.电工技术学报,1993,(2):50-55.
    [28]Lowke J J,Ludwig H C.A Simple Model for High Current Arc Stabilized by Forced Convection.J.Appl.phys,1975,46(12):3325-3329
    [29]Park K Y,Fang M T C.Mathematical Modeling of SF_6 Puffer Circuit Breakers Ⅰ:High Current Region.IEEE Transactor on Plasma Science.1996,24(2):490-502.
    [30]T.-H.Shih,W.W.Liou A.Shabbir,J.Zhu.A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows Model Development and Validation.Computers Fluids,1995,24(3):227-238
    [31]J.Y.Trepanier,M.Reggion,Y.Lauze et al.Analysis of the Dielectric Strength of an SF_6 Circuit Breaker.IEEE Transactions Power Delivery,1991(4):2-6.
    [32]Swindler,D.L.Schwartz,P.Hamer,P.S.Lambert,S.R.Transient recovery voltage considerations in the application of medium-voltage circuit breakers.Industry Applications,IEEE Transactions,1997,33(2):383-388
    [33]Zhang H X,Zhang F G.NND Schemes and Their Application to Numerical Simulation of Two and Three Dimensional Flows.Advances in Applied Mechanics,1992(2):193-197
    [34]Kuwahara H,Tanabe T,Ibuki K et al.New Approach to Analysis of Arc Interruption Capability by Simulation Employed in the Development of SF_6 GCB Series with High Capacity Interrupter.IEEE Trans.On Power Apparatus and Systems,1983,10(2):2262-2268.
    [35]S.Chakravorti,H.Steinbigler.Boundary element studies on insulator shape and electricfield around hv insulators with or without pollution.IEEE Transactions on dielectrics and electrical insulator.2000,7(2):169-176.
    [36]M.Okamoto,M.Ishikawa,K.Suzuki et al.Computer Simulation of Phenomena Associated with Hot Gas in Puffer-Type Gas Circuit Breaker.IEEE Transaction on Power Delivery,1991,6(2):315-318.
    [37]F.A.Fouad,T.W.Nehl,N.A.Demerdash.Magnetic Field Modeling of Permanent Magnet Type Electronically Operated Synchronous Machines Using Finite Elements.IEEE Transaction on Power Apparatus and Systems,1981,(9):4125-4135
    [38]A.Skopec,J.G.Wankowicz and B.Sikorski.Electric field calculation for an axially-symmetric insulator with surface contamination.IEEE Trans.on Dielectrics and Electrical Insulator,1994,1(2):332-339.
    [39]Yan J D,Fang M T C.Visualization of Arcing Process in an Auto-Expansion Circuit Breaker.IEEE Transactor on Plasma Science.1999,27(5):794-981.
    [40]Zhang J L,Yan J D,Hall W,Fang M T C.Computational Investigation of Arc Behavior in an Auto-Expansion Circuit Breaker Contaminated by Ablated Nozzle Vapor.IEEE Transactor on Plasma Science.2002,30(2):706-719.1
    [41]王其平.电器电弧理论.北京:机械工业出版社1982.
    [42]佟立柱,王其平,王尔智.用FLIC法对SF_6断路器灭弧室气流场的计算分析.高压电器,1995,6:11-16.
    [43]黄建华,王其平.气吹式灭弧室喷口中动态气流场的数值计算.电工技术学报,1987(3):37-41.
    [44]王其平.超高压SF_6断路器开断过程的数值分析.高压电器,1997(4):7-13.
    [45]佟立柱,王其平,王尔智.SF_6断路器无载开断过程中气流特性的计算机模拟.电工技术学报,1996,11(3):16-20.
    [46]李小滨,王其平.SF_6压气式灭弧室冷态气流场与介质恢复强度计算.西安交通大学学报,1996,30(12):1-7.
    [47]佟立柱,王其平,王尔智.SF_6断路器灭弧室介质强度恢复过程的数值分析.西安交通大学报,1997,17(2):1-5.
    [48]王其平,胡万平,刘亚芳.SF_6与其混合气体中电弧动态特性和应用.西安:西安交通大学出版社,1997.
    [49]L.Z.Tong,Q.P.Wang.Investigation of the Dielectric Recovery Characteristics of SF_6 Circuit Breaker.Proc.11 th I.C.on Gas Discharges and Their Applications,Tokyo,Japan,1995(6):414-417
    [50]杨武,荣命哲,王小华.考虑电动力效应的高压断路器动力学特性仿真分析.中国电机工程学报,2003,23(5):103-107.
    [51]杨武,荣命哲,王小华.结合机构动力学特性仿真将ANN用于高压断路器机构状态识别初探.中国电机工程学报,2003,23(6):128-131.
    [52]娄建勇,荣命哲等.单线圈单稳态永磁式接触器机构动力学特性仿真分析.中国电机工程学报,2004,24(4):120-124.
    [53]林莘,钟建英.自能式断路器灭弧室气流场计算的一种新思路.中国电机工程学报,2003.23(10):164-168.
    [54]李俊民,林莘,徐建源.自能式SF_6断路器小电流开断过程中气流特性的数值分析.电工技术学报,2001.16(1):30-34.
    [55]Liu Xiaoming,Wang Erzhi,Cao Yundong.Dynamic Arc Modeling Based on Computation of Couple Electric Field and Flow Field for High Voltage SF_6 Interrupter.IEEE TRANSACTIONS ON MAGNETICS,2004,40(2):601-604
    [56]曹云东,王尔智.高压断路器气流有限体积及TVD格式的研究.电工技术学报,2002,22(6):68-73.
    [57]王尔智,陶瑞民.求解非定常可压缩流动问题的边界元法研究.中国电机工程学报,2006,26(8):70-76.
    [58]刘晓明,王尔智,曹云东.高压SF_6断路器电弧动态模型研究.中国电机工程学报,2004,24(2):102-106.
    [59]刘晓明,曹云东,王尔智.高压SF_6断路器电弧与气流相互作用的研究.中国电机工程学报,2005,25(7):151-155.
    [60]王尔智,陶瑞民.SF_6断路器吹弧气体流动的边界元数值计算中基本解的求取.中国电机工程学报,2006,26(1):46-150.
    [61]曹云东,王尔智,姜毅.高压SF_6断路器总变差减小方法流场求解研究.中国电机工程学报.2001,21(11):9-23.
    [62]佟立柱,刘晓明,曹云东,王尔智.SF_6断路器中气体放电过程的计算机模拟.高电压技术,2000,26(2):20-21.
    [63]王尔智,赵中原,曹云东SF_6断路器灭弧室内粘性流场求解的一种新方法.中国电机工程学报,2000.20(9):9-12.
    [64]SF_6断路器安装使用说明书.沈阳高压开关厂,1999.
    [65]焦德林.LW-252SF_6断路器液压操动机构特性的计算与分析,沈阳工业大学硕士学位论文,2002
    [66]张传敏,徐树龙.LW6系列六氟化硫断路器。高压电器,1989,25(6):3-8
    [67]刘绍峻.开关电器机构,北京:机械工业出版社,1963.
    [68]施文耀.开关液压机构.北京:机械工业出版社,1990
    [69]楼家法,宋宝韫.高压开关机构设计.北京:机械工业出版社,1981.
    [70]官忠范.液压传动系统.北京:机械工业出版社,1981.
    [71]盛敬超.液压流体力学.北京:机械工业出版社,1980
    [72]宋鸿尧,丁忠尧.液压阀设计与计算.北京:机械工业出版社,1979.12.
    [73]张明新.高压断路器的液压机构的液压系统状态参数计算.高压电器,1984(2):18-25.
    [74]张炳文.油缓冲器的设计计算.高压电器,1979(6):15-28
    [75]张荣耀.液压机构机械特性设计计算中的几个问题.高压电器,1987(4):26-32
    [76]楼家法.高压开关机构设计.北京:机械工业出版社,1981.
    [77]张明新.断路器液压操动机构压力系统得整定与监视.高压电器,1985(3):23-19.
    [78]施文耀.压气式SF_6断路器动态运动特性的研究.高压电器,1983,20(1):19-23
    [79]中华人民共和国机械部标准,JB5871-1991交流高压断路器线路充电电流开合试验。北京:国家质量技术监督局.
    [80]国家标准,GB1984交流高压断路器.
    [81]浦其革.LW4-220型断路器压气特性优化设计及分析.高压电器,1988(3):7-15
    [82]施文耀.中压SF_6断路器灭弧室压力特性的计算.高压电器,1986(6):39-49
    [83]黎斌.SF_6高压电器设计.北京:机械工业出版社,2003.
    [84]孟庆龙.电器制造技术手册.北京:机械工业出版社,1999.
    [85]施文耀.断路器最大刚分速度的论证及其影响因素的分析.高压电器,1985,21(4):18-24
    [86]楼家法.从速度特性寻求断路器设计的准则.高压电器,1989(2):10-13
    [87]楼家法.断路器的操作和机械特性.西安:西安高压开关厂情报室,1990
    [88]中华人民共和国国家标准.GB1984-89交流高压断路器.北京:国家质量技术监督局.
    [89]徐黎明,陈晓宇,马志瀛.六氟化硫断路器无载介质恢复特性计算.中国电机工程学报,1998,18(5):315-318.
    [90]唐锡宽等.机械动力学.北京:高等教育出版社,1984.
    [91]宋俊,殷庆文等.液压系统理论.北京:机械工业出版社,1996.
    [92]陶瑞民.SF_6高压断路器灭弧室电场与气流场数值计算的边界元方法的研究:(博士学位论文).沈阳:沈阳工业大学,2004.
    [93]王歇成,邵敏编.有限元法基本原理和数值方法.北京:清华大学出版社,1997.
    [94]曹云东,高压SF_6断路器介质恢复特性的计算与分析,沈阳工业大学博士学位论文,2001
    [95]王承尧,王正华,杨晓辉.计算流体力学及其并行算法.长沙:国防科技大学出版社,2000.2
    [96]朱自强等.应用计算流体力学.北京:北京航空航天大学出版社,1998.
    [97]Yoshioka.Y.,施文耀译,压气式SF_6断路器负载压力上升理论计算方法和应用.高压电器译众,1981(1):12-28
    [98]李一滨,王其平,杨涌.喷口电弧二维磁流体动力学(MHD)数学模型.西安交通大学学报,1998,32(6):1-4.
    [99]李一滨,杨涌,李小滨,于其平.SF_6气流中电弧热边界区的数值分析.高压电器,1997,2:3-7.
    [100]李一滨,王其平.SF_6喷口电弧磁流体动力学力效应的研究.高压电器,1998,6:10-15.
    [101]刘晓明.高压SF_6断路器电弧动态数学模型及喷口结构优化设计.沈阳工业大学博士学位论文,2003.
    [102]Frost L S,Liebermann R W.Composition and Transport Properties of SF_6 and Their Use in a Simplified Enthalpy Flow Arc Model.Proceedings of The IEEE,1971,59(4):474-485.
    [103]Liebermann R W,Frost L S.Radiation emission coefficients for sulfur hexafiuoride arc plasmas.Quant Spectors.Radiat.Transfer,1976,16:253-264.
    [104]Chervy B,Gleizes A,Razafinimannana M.Thermodynamic Properties and Transport Coefficients in SF_6-Cu Mixtures at Temperatures of 300-30000K and Pressures of 0.1-1MPa.J.Phy.D:Appl.Phys,1994,27:1193-1206.
    [105]Gleizes A,Gonzales J J,Liani B.Calculation net emission coefficient of thermal plasmas in mixtures gas with metallic vapours.J.Phy.D:Appl.Phys,1993,26:1280-1291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700