矩形翅片椭圆管换热器换热性能的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热交换器作为热量传递中的过程设备,在工业领域中应用极为广泛。伴随着各种能源日益紧缺的局面,热交换器的合理设计、运转和改进对于节省资金、材料、能源和空间而言是十分重要的。翅片管换热器作为一种紧凑式换热器,在动力、化工、制冷等工业领域中有广泛的应用,并有很高的换热效率,通常情况下,其基管为圆管,经研究发现,椭圆管具有更小的阻力损失,因此对于矩形翅片椭圆管的研究将对其在工程中的实用效果有更好的指导意义。
     本文首先采用数值模拟方法对翅片椭圆管的翅片结构进行数值分析及结构优化,通过正交试验组合数据,得出翅片结构的最佳组合为:翅片长度55mm,翅片宽度32mm,翅片厚度0.3mm。
     通过采用数值分析方法,从管排横向间距、纵向间距、翅片间距、空气流速、空气温度、材料方面对4排错排翅片椭圆管束进行结构优化分析,得出:横向管排间距、纵向管排间距增大,综合评价因子提高,并且变化幅度与进口空气流速有很大关系;翅片间距增大,综合评价因子提高,但是当翅片间距增大到一定值时,其增大幅度减小。
     通过采用数值分析方法,从管排横向间距、纵向间距、翅片间距、空气流速、空气温度、材料方面对4排错列翅片椭圆管束进行结构优化分析,得出:当纵向管排间距小于16mm时,Nu/Eu增长幅度较小,且当流速达到7.57m/s时,出现性能下降情况;当纵向管排间距大于16mm时,Nu/Eu逐渐增大。随着横向管排间距的增大,Nu/Eu呈线性递增趋势,当间距达到78mm时,趋于平缓,说明继续增大横向间距对换热性能基本没有影响;当横向管排间距位于66mm-78mm时,Eu较为稳定,Nu/Eu呈增长趋势,所以最优结构尺寸应当为横向间距78mm。随着翅片间距的增大,换热性能减弱,当翅片间距增大到一定值时,翅片间距对换热性能的影响变小。
     入口空气流速的增大可以增强换热,但是阻力增大幅度相对更大;进口空气温度的升高使得换热效果变差,阻力增大;材料的导热系数越好,换热效果越好;入口空气流速一定时,随着管排数的增加,每排管的换热系数是逐渐减小的,随着进口空气流速的增大,整个温度场比较均匀,整体换热效果增强。
     通过采用数值分析方法,对相同体积下两种换热结构的模型的热力性能比较,得出错列翅片椭圆管束的力能系数较大,最大值约高于错排翅片椭圆管束38%左右,并且错列翅片椭圆管束能以较少的金属材料获得较好的换热效果。
As a process equipment of heat transfer, the heat exchanger is widely used in the industry. With the situation of shortage of all the energy, the reasonable design, operation and improvement of heat exchanger is very important for saving money, materials, energy and space. As a kind of compact heat exchanger, the finned tube heat exchanger is widely used in the industry, such as power, chemical industry, and refrigeration industry, and it has a high efficiency of heat exchange. Usually, the base pipe is circle pipe, research shows that the elliptic tubes have smaller resistance losses, so it will have better guidance significance for the study of rectangular finned elliptical tube heat exchanger for its Practical effect in the project.
     In this paper, we had done a numerical simulation and structure optimization on the fin structure of the rectangular elliptical tube, by the combination data of the orthogonal experiment; we concluded that the best combination of the fin structure is fin length for 55mm, fin width for 32mm, and fin thickness for 0.3mm.
     By using the method of numerical analysis, we have done the structure optimization and analysis on a four rows of elliptical tubes with rectangular fin in staggered row arrangement from the tubes horizontal spacing, longitudinal spacing, fins spacing, air velocity, air temperature, and the material aspects. The results show that with the increase of the tubes horizontal spacing and longitudinal spacing, the comprehensive evaluation factors get improved and the extent of improvement has a great relationship with the entry air velocity; as the fin spacing increases, the comprehensive evaluation factors get improved, however, while the fin spacing reaches to a certain value, the increase rate becomes small.
     By using the method of numerical analysis, we have done the structure optimization and analysis on a four rows of elliptical tubes with rectangular fin in staggered column arrangement from the tubes horizontal spacing, longitudinal spacing, fins spacing, air velocity, air temperature, and the material aspects. The results show that while the tubes longitudinal spacing is less than 16mm, the growth rate of Nu/Eu is small, and when air velocity reaches 7.57 m/s, the performance shows descending tendency; when the tubes longitudinal spacing is greater than 16mm, the Nu/Eu is increasing. With the increase of the tubes horizontal spacing, the Nu/Eu shows increscent tendency, but while the tubes horizontal spacing reaches 78mm, it tends towards stability that shows keeping on increasing the tubes horizontal spacing has basically no influence on the heat exchange; when the tubes horizontal spacing is between 66mm and 78mm, Eu is stable, the Nu/Eu is increasing, so the optimization structure size should be 78mm. Along with the increase of the fin spacing, the performance of heat exchange wears off, and while the fin spacing reaches a certain value, the influence of the fin spacing for heat exchange becomes small.
     Although the increase of air velocity of the entrance can enhance the heat transfer, the increase amplitude of resistance is relatively greater. The increase of air temperature of the entrance makes the heat transfer effect poor, and the resistance also increases. The bigger of the thermal conductivity of the materials, the better of the heat exchange effect. While the air velocity is fixed, with the increase of the tube rows, the heat transfer coefficient is decreasing gradually, and as the air velocity increases, the distribution of the temperature of the entire flow field is even, the heat transfer effect of the whole flow field is enhanced.
     By using the method of numerical analysis, this paper made comparisons between the two different structural models in the aspect of thermal performance. The results show that the Eo of staggered column arrangement of the elliptical tubes with rectangular fin is higher relatively, and the maximum is about 38% higher than that of staggered row arrangement of the elliptical tubes with rectangular fin, in addition, the former can get a better heat transfer effect with less metal materials.
引文
[1]史美中,王中铮.热交换器设计与原理[M].南京:东南大学出版社,2009.
    [2]余建祖.换热器原理与设计[M].北京:北京航空航天大学出版社,2006.
    [3]阙光辉.中国能源可持续战略[M].北京:外文出版社,2007.
    [4]Bordalo and Saboya. Experimental determination of pressure drop coefficients in circular and elliptical tubes and plate fin heat exchangers [C]. Proc.13th COBEM, Brazilian Conference on Mechanical Engineering, Belo Horizonte, Brazil (1995) (in Portuguese).
    [5]Brauer. Compact Heat Exchanger [J]. Chemical and Process Engineering,1964, (8):451-460.
    [6]F.J.Schulenbery. Finned Elliptical Tubes and Their Application in Air cooled Heat Exchangers [J]. Trans. Of the ASME Ser.B Journal of Engineering for Industry, 1966,88:179-190.
    [7]CJ. Meyer, D.G. Kroger. Plenum chamber flow losses in forced draught air-cooled heat exchangers [J]. Applied Thermal Engineering,1998, 18(9):875-893.
    [8]C.J. Meyer, D.G. Kroger. Air-cooled heat exchanger inlet flow losses [J]. Applied Thermal Engineering,2001,21(9):771-786.
    [9]L.A.O. Rocha, F.E.M. Saboya, J.V.C Vargas. A comparative study of elliptical and circular sections in one and two row tubes and plate fin heat exchangers [J]. Heat Fluid Flow,1997,18:247-252.
    [10]Jang J.Y. and Yang, J.Y., Experimental and 3-D Numerical Analysis of the Thermal-Hydraulic Characteristics of Elliptic Finned-Tube Heat Exchangers [J]. Heat Transfer Engineering,1998,19(4):55-67.
    [11]M.S. Shoals, J.E.O'Brien. Improving Air-cooled condenser performance using winglets and oval tubesm a geothermal power plant [J]. Geothermal Resources Council Transactions,2001,25:1-7.
    [12]S.M. Saboya, F.E. M. Saboya. Experiments on elliptic sections in one and two row arrangements of plate fin and tube heat exchangers [J]. Experimental Thermal and Fluid Science, Volume 24, Issues 1-2,14 March 2001, Pages 67-75.
    [13]Patankar, S.V. and Spalding, D.B., A Calculation Procedure for the Transient and Steady-State Behavior of Shell and Tube Heat Exchangers [J]. In:Heat Exchangers:Design and Theory Washington, D.C.,1974:155-176.
    [14]Jin-Sheng Liu, Min-Sheng Liu, Jane-Sunn Liaw, Chi-Chuan Wang. A numerical investigation of louvered fin-and-tube heat exchangers having circular and oval tube configuration [J].Heat and Mass Transfer,2001,44:4235-4243.
    [15]R.S. Matos, J.V.C. Vargas, T.A. Laursen, A. Bejan. Optimally staggered finned circular and elliptic tubes in forced convection [J]. International Journal of Heat and Mass Transfer, Volume 47, Issues 6-7, March 2004, Pages 1347-1359.
    [16]S. Tiwari, D. Maurya, G. Biswas, V. Eswaran. Heat transfer enhancement in cross-flow heat exchangers using oval tubes and multiple delta winglets [J]. International Journal of Heat and Mass Transfer, Volume 46, Issue 15, July 2003, Pages 2841-2856.
    [17]Mators, R.S., Laursen, T.A., Vargas, J.V.C., Bejan. A.. Three-dimensional optimization of Staggered finned circular and elliptic tubes in forced convection [J]. International Journal of Thermal Sciences,2004,43:477-487.
    [18]M.S. Mon, U.Gross. Numerical study of fin-spacing effects in annular-finned tube heat exchangers [J]. International Journal of Heat and mass transfer,2004, 47:1953-1964.
    [19]Aytunc Erek, Bans Ozerdem, Levent Bilir, Zafer Llken. Effect of geometrical parameters on heat transfer and pressure drop characteristics of plate fin and heat exchangers [J]. Applied Thermal Engineering,2005,25(14):2421-2431.
    [20]Sahiti.N., Lemouedda.A., Stojkovie.D., Durst.F., Ranz.E., Performance comparison of pin fin In duct flow arrays with various Pin cross sections [J]. Applied Thermal Engineering,2006,26:1176-1192.
    [21]Y.B. Tao, Y.L. He, Z.G. Wu, W.Q. Tao. Three-dimensional numerical study and field synergy principle analysis of wavy fin heat exchangers with elliptic tubes [J]. International Journal of Heat and Fluid Flow, Volume 28, Issue 6, December.
    [22]Haci Mehrmet Sahin, Ali Riza Dal, Esref Baysal.3-D Numerical study on the Correlation between variable inclined fin angles and thermal behavior in Plate fin-tube heat exchanger [J]. Applied Thermal Engineering,2007, 27(11):1806-1816.
    [23]P. Chu, Y.L. He, Y.G. Lei, L.T. Tian, R. Li. Three-dimensional numerical study on fin-and-oval-tube heat exchanger with longitudinal vortex generators [J]. Applied Thermal Engineering, Volume 29, Issues 5-6, April 2009, Pages 859-876.
    [24]Ch.Veerraju, M.Ram Gopal. Heat and mass transfer studies on plate fin-and-elliptical tube type metal hydride reactors [J]. Applied Thermal Engineering, Volume 30, Issues 6-7, May 2010, Pages 673-682.
    [25]杨金宝,黄素逸.横掠椭圆翅片管的放热[J].流体工程,1987(4).
    [26]黄素逸,寥四清.椭圆矩形翅片管采暖散热器的优化研究[J].华中理工大学 学报,1994,22.
    [27]史佑吉,高伟桐,吴振亚,王允中.矩形翅片椭圆管传热及阻力性能的试验研究[J].电机工程学报,1984,4(1).
    [28]华中工学院,武昌锅炉容器厂;4T/h高效工业锅炉技术鉴定资料,1984年.
    [29]陈坚,董海生,尚希禹,马义伟.几种翅片管单管管外放热及气流阻力的试验研究[J].石油化工设备,1989,18(2).
    [30]杨小琼,李斌,李蕙珍.管排数对叉排翅片管束换热的影响[J].制冷学报,1990(2).
    [31]罗来勤,王启杰,杨小琼,李斌.低Re数流动条件下翅片管束换热及阻力特性的研究[J].西安交通大学学报,1992,26(4).
    [32]涂益新,李斌.扰流孔和片距对矩形翅片椭圆管换热性能的影响[J].动力工程,1992,12(6).
    [33]黄素逸,叶加贵,宋企元,张廷建,杨敏.钢制椭圆管矩形翅片空冷器的研制应用[J].石油化工设备技术,1993,14(6).
    [34]李妩,张春雨.带扰流孔的矩形翅片表面换热机理的实验研究[J].西安交通大学学报,1994,28(6).
    [35]李妩,张春雨.排数对矩形翅片椭圆管束换热的影响[J].华南理工大学学报(自然科学版),1995,23(10).
    [36]张鹏,史佑吉,高伟桐,胡三季.进风角度对钢制椭圆翅片管散热器热力阻力特性的影响[J].热力发电,1997(1):19-21.
    [37]高延福,张秋云.矩形钢翅片椭圆管簇的试验研究[J].热能动力工程,1997,12(2).
    [38]马晓茜,梁淑华.空气横掠二种翅片管冷凝元件的对比实验[J].电站辅机,1997(3).
    [39]徐湘波,黄馄剑.翅片椭圆管簇热交换器在新风机组中的应用[J].设备开发,1998,28(1):30-32.
    [40]屠珊,杨冬,黄锦涛,陈听宽,罗毓珊.椭圆翅片管空冷器流动传热特性的研究[J].热能动力工程,2000,15.
    [41]陈茂波.椭圆矩形翅片管在防止锅炉低温腐蚀上的应用[J].节能技术.2000,18(6).
    [42]陈亚平,孙凤祥.椭圆铝翅钢管空冷器的传热及流阻性能研究[J].热力发电,2003(3).
    [43]莫才颂,李权.椭圆翅片管空冷器在乙烯工业中的应用[J].茂名学院学报,2004,14(4).
    [44]周俊杰,陶文铃.椭圆管开缝翅片换热表面特性的三维数值分析[J].机械工程学报,2005,41(7).
    [45]宋长华,李隆健.矩形翅片的传热分析与数值模拟[J].工业加热,2005(3).
    [46]丁永航,李永光,汪军,张丽华.空气横掠矩形翅片椭圆管束换热规律的数值研究[J].能源研究与信息,2006,22(3):159-164.
    [47]张来.电站直接空冷系统异性管的流动与换热特性[D].北京:华北电力大学,2006.
    [48]李启良,赵兰萍.矩形翅片椭圆管热交换器流动和换热特性的数值模拟[J].流体机械,2006,34(8).
    [49]胡三季,林宝庆,陈胜利,陈玉玲.钢制椭圆管矩形翅片空冷传热元件热力及阻力性能试验研究[J].西安热工研究院有限公司,陕西西安.
    [50]周兰欣,白中华,李富云,付文峰,黄海东.管型和长宽比对空冷散热器换热特性的影响[J].汽轮机技术,2007,49(6).
    [51]段芮,徐之平,马虎根,欧阳新萍.椭圆管散热器传热及阻力性能试验研究[J].能源研究与信息.2007,23(2).
    [52]蒋燕,李永光,丁永航,张丽华,邬振武,吕欣欣,孟军磊.用多孔介质模型对火电厂空冷系统进行整体数值模拟的研究[C].第二十一届全国水动力学研讨会暨第八届全国水动力学学术会议暨两岸船舶与海洋工程水动力学研讨会文集,2008年.
    [53]石磊,邢苍,李国栋,陈俊丽.双排管外空气流动和传热性能的数值研究[J].动力工程,2008,28(4).
    [54]石磊,石诚,刘海峰,黄悦.直接空冷凝汽器三排管外空气流动和传热性能的数值研究[J].1.北京交通大学土木建筑工程学院,北京.2.中国电力工程顾问集团公司,北京.3.中国华电工程(集团)有限公司,北京.
    [55]杨立军,张凯峰,杜小泽.空冷凝汽器椭圆翅片椭圆管束外空气的流动与传热特性[J].动力工程.2008,28(6).
    [56]于洋.矩形钢翅片椭圆管簇的试验研究[J].应用能源技术,2008(8).
    [57]黄维,赵兰萍,茅文焯.矩形翅片椭圆管束性能研究及场协同分析[J].制冷空调与电力机械.
    [58]党艳辉,明廷臻,刘伟,黄素逸.开孔矩形翅片椭圆管流动及传热特性的数值模拟[J].化工学报.2009,60(12).
    [59]明廷臻,党艳辉,刘伟,黄素逸.椭圆管矩形翅片空冷器流体流动与传热特性数值分析[J].化工学报,2009,60(6).
    [60]周兰欣,王智刚,李卫华.空冷凝汽器U型翅片管换热特性研究[J].汽轮机技术,2009,51(6).
    [61]张利,杨昆,刘伟.椭圆形和圆形翅片管流动与传热的数值研究[J].工程热物理学报,2009,30(9).
    [62]冯丽丽,杜小泽,杨勇平,杨立军.椭圆管矩形翅片间空气流动的扰流特征.工程热物理学报,2011,32(1).
    [63]Xueping Du, Min Zeng, Qiuwang Wang, Zhaoyi Dong. Experimental Study on Heat Transfer and Resistance Performance of Elliptical Finned Tube Heat Exchanger with Different Air Entrance Angles. Chemical Engineering Transactions, v25, p 369-374,2011.
    [64]龙天渝,苏亚欣,向文英,河川.计算流体力学[M].重庆大学出版社,2007.
    [65]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2010.
    [66]W.M.凯斯,A.L.伦敦.紧凑式热交换器[M]。科学出版社,1997.
    [67]R.M.Ricardo, M.Sen. Effect of fin spacing on convection in a plate fin and tube heat exchanger[J]. Heat Mass Transfer,2000,43:39-51.
    [68]钱颂文.换热器设计手册[M].化学工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700