用户名: 密码: 验证码:
滑动弧放电等离子体降解气相及液相中有机污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑动弧放电是一种大气压下非热等离子体,该技术产生的基本原理是在一对电极间加上电压并通过气流,在电极之间最窄处形成放电弧,利用气流来推动电弧,使它向下游移动同时电弧的长度随着电极间距离的增大而增加,当电弧长度达到临界值时消失,同时在电极最窄处形成新的电弧,重复上述过程形成放电。滑动弧放电的主要特点是:兼具热等离子体和非热等离子体的特性;滑动弧放电装置和电源结构简单、价格低廉、操作和维护费用比较;电极不需要冷却,并且能够自清洁,不易腐蚀和消蚀,使用寿命长;电能直接进入反应区域,产生一个充满活性粒子的非平衡态等离子体反应环境,超过80%的电能直接被化学反应吸收;进气不需要预处理,可以用多相体(气液混合相、气固混合相、气液固混合相)反应。本文主要开展了滑动弧放电等离子体降解气相及液相中有机污染物的研究。
     首先,设计了气相滑动弧放电发生器和气液两相滑动弧放电发生器,对它们进行了电信号测量、图像测量和温度测量。根据电参数、图像分析结果及Elenbass-Heller方程建立了滑动电弧等离子体通道Elenbass-Heller模型,并计算了电场强度和电子密度等参数。根据滑动放电等离子体的化学特性,研究并总结了湿空气低温等离子体和气液两相滑动弧放电等离子体化学反应动力学模型。分析了自由基氧化有机物的机理,并通过烷烃、醛和酸等实例加以说明。
     利用实验室规模的气相滑动弧放电反应器探讨了操作参数变化对低温等离子体系统的影响。在去除甲苯的实验中发现:许多操作参数会影响低温等离子体对挥发性有机物的去除率,其中,去除率随施加电压、输入体积能耗、氧气含量、水汽浓度、气流温度及停留时间的增加而增大,随初始浓度的增加而减小。当电压升到10kV时,甲苯的去除率达到90%;分析了~·OH、O_2、NO和O_3等活性粒子氧化甲苯的路径。在脱除烟气中多环芳烃和碳黑颗粒的过程中发现:滑动弧放电可有效同时脱除PE和PVC焚烧烟气中的PAHs和碳黑颗粒;烟气经过滑动弧放电处理后,PAHs达到最高脱除率74.4%,碳黑达到最高脱除率为89.3%;分析了PAHs和碳黑颗粒的降解路径。并根据滑动弧放电等离子体适于降解高浓度有机物废气的特性,结合活性炭吸附法,提出了吸附器的吸附浓缩和热脱附一等离子体净化技术。
     利用气液两相滑动弧放电Ⅰ型反应器开展了降解200mg/1苯酚模拟废水的初
The gliding arc (glidarc) discharge is considered to be a non-thermal plasma. Gliding discharge is produced between at least two diverging electrodes and across the flow, self-initiated in the upstream narrowest gap, the discharge forms the plasma column connecting the electrodes. This column is dragged by the flow towards the diverging downstream section. The discharge length grows with the increase of inter-electrode distance until it reaches a critical value. After this point, the discharge extinguishes but momentarily reignites itself at the minimum distance between the electrodes and a new cycle starts. The main advantages of gliding arc discharge are: having a dual character of thermal and non-thermal plasma; inexpensive both from capital and operating costs; The electrodes do not need to be cooled, the discharges perform their own maintenance on the electrodes, preventing chemical corrosion and erosion; the electrical energy is directly introduced into the reaction volume to create a non-equilibrium and very reactive environment for promoting the chemical transformations of interest; any gas, gas-liquid, gas-solid or gas-liquid-solid can be directly processed; any initial gas temperature can be accepted. This paper presents experimental results on the degradation of organic contaminations from gas and liquid phase using gliding arc discharge plasma
    Firstly, two plasma generators (gas and gas-liquid gliding arc) are designed in our laboratory with the aim to obtain the physical and chemical characteristics, several diagnostic methods are used (high speed photography with a CCD camera, electric measurements, temperature measurements). Based on physical experimental results and Elenbass-Heller equation, a simple theoretical plasma channel model of gliding arc is given which enables determination of the electronic density and electric field strength. Based on the chemical characteristics of gliding arc discharge and the model of Peyrou R., the chemical kinetics of humid air and gas-liquid gliding arc discharges is modeled. The degradation mechanisms of hydrocarbons with polyfunctional groups like carboxyl-, aldehyde-, ketone- or alkanol- groups are introduced.
    Laboratory-scale gas glidarc reactors are constructed and used to investigate the effects of operational parameters on volatile organic compounds (VOCs) removal efficiencies. Experimental results of toluene removal indicate that many factors will
引文
[1] 中国清洁生产.http://www.chinacp.org.cn/
    [2] 董志权.工业废气污染控制与利用.北京:化学工业出版社,1998
    [3] Harold J. Rafson. Odor and VOC control handbook. New York : McGraw-Hill, 1998
    [4] 吴忠标.大气污染控制工程.北京:化学工业出版社,2001
    [5] Stanley E.. Environmental Chemistry. CRC Press LLC, 2000
    [6] 聂勇.冲放电等离子体治理有机废气放大试验研究.浙江大学博士学位论文,2004
    [7] 《工业企业设计卫生标准》,TJ36,1979
    [8] 《恶臭污染物排放标准》,GB14554,1993
    [9] 《大气污染物综合排放标准》,GB16297,1996
    [10] 《中华人民共和国大气污染防治法》,2000
    [11] 朱世勇.环境与工业气体净化技术.北京:化学工业出版社,2001
    [12] 周兴求.大气污染控制设备.北京:化学工业出版社,2004
    [13] 叶天齐.三废处理工程技术手册—废气卷.北京:化学工业出版社,1999
    [14] 郑铭.环保设备—原理.设计.应用.北京:化学工业出版社,2001
    [15] Paige Hunter. Control of volatile organic compound emissions: conventional and emerging technologies. New York: John Wiley & Sons, 2000
    [16] 张旭东.工业有机废气污染治理技术及其进展探讨.环境研究与监测,2005,18(1):24-26
    [17] 姚恕.液体吸收法处理喷漆尾气的研究.环境污染与防治,1984,6(4):22-26
    [18] 李湘凌,林岗.复方液吸收法处理低浓度苯类废气.合肥工业大学学报:自然科学版, 2002,25(5):794-796
    [19] 苏建华.液体吸收—活性炭吸附净化苯乙烯废气.环境科学,1993,14(3)36-38
    [20] 高尚愚,陈维.活性炭基础与应用.北京:国国林业出版社,1984
    [21] 郏其庚.活性炭的应用.上海:华东理工大学出版社,2002
    [22] 梁宁元.空气污染控制理论.冶金工业出版社,1985
    [23] Cha J. S., et aL Removal of VOCs from waste gas streams by permeation in a hollow fiber permeator. J. Mem. Sci., 1997, 128: 195-211
    [24] Ronald M. Heck, Robert J. Farrauto. Catalytic air pollution control: commercial technology. New York: Wiley-lnterscience, 2002
    [25] 何毅,王华,李光明.有机废气催化燃烧技术.江苏环境科技,2004,17(1):35-38
    [26] 牛学坤.流向变换催化燃烧空气净化过程的模型化研究.北京化工大学硕士学位论文,1999
    [27] 陈魁学,尹维东.FCJ型有机废气净化设备.设备管理与维修,1998,8:21-21
    [28] 欧海峰,林金画.活性炭纤维吸附—催化燃烧装置处理有机废气.环境污染与防治, 2002,24(2):85-86
    [29] 陈泽枝,李泽清.有机废气净化处理设备.专利CN2579505,2003
    [30] 乔惠贤,尹维东,袁义胜.有机废气净化处理系统.专利CN2537454,2003
    [31] Weber R., Sakurai T.. Low temperature decomposition of PCB by TiO_2-based V_2O_5/WO_3 catalyst: evaluation of the relevance of PCDF formation and insights into the first step of oxidative destruction of chlorinated aromatics. Appl. Catal. B: Environ., 2001, 34: 113-127
    [32] Weber R., Plinke M., Xu Z., Wilken M.. Destruction efficiency of catalytic filters for polychlorinated dibenzo-p-dioxin and dibenzofurans in laboratory test and field operation-insight into destruction and adsorption behavior of semivolatile compounds. Appl. Catal. B: Environ., 2001, 31: 195-207.
    [33] Kurihara K., Kaneko M., Tsukamoto K.. Method and apparatus for treating combustion exhaust gases. Patent US6027697, 2000
    [34] 陈蓉,廖强,朱恂.生物膜滴滤塔的废气净化效率.工程热物理学报,2005,26(1):122-124
    [35] 王丽燕,王爱杰,任南琪.有机废气(VOC)生物处理研究现状与发展趋势.哈尔滨工业大学学报,2004,36(6):732-735
    [36] 张国财.生物滤床法处理光电产业挥发性有机废气之研究.中国台湾:国立中兴大学博士学位论文,2003
    [37] 彭峰,任艳群.TiO_2光催化降解气相有机物的研究进展.化工进展,2003,22(1):39-42
    [38] 赵化桥.等离子体化学与工艺.合肥:中国科学技术大学出版社,1993
    [39] 高树香.气体导电.南京:南京工学院出版社,1988
    [40] 徐学基.气体放电物理.上海:复旦大学出版社,1996
    [41] Ponder W. H., Abbott J. H.. Corona destruction: a innovative control technology for VOCs and air toxics. J. AWMA, 1993, 43, 242-247
    [42] Fridman A.. Plasma Physics and Engineering. Taylor & Francis, 2004
    [43] Hnatiuc Eugen. Procedes electriques de mesure et de traitement des polluants. TEC&DOC, 2002
    [44] 李灏铭.以低温电浆去除挥发性有机物之研究.中国台湾:国立中央大学博士学位论文,2001.1
    [45] Chang, J. S.. Recent development of plasma pollution control technology: a critical review. Sci. Tech. Adv. Mater, 2001, 2(3-4): 571-576
    [46] Urashima K., Chang J. S.. Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology. IEEE. T. DIELECT. EL. IN., 2000, 7(5): 602-614
    [47] Bernie M. P.. Non-thermal plasma techniques for pollution control. New York: Springer-erlag, 1993
    [48] E. M. van Veldhuizen. Electrical discharges for environmental purposes: fundamentals and applications. New York: Nova Science Publishers, 2000
    [49] Penetrante B. M.. Electron Beam and Pulsed Corona Processing of Volatile Organic Compounds Gas Stream. Pure & Appl. Chem., 1996, 68(5): 1083-1087
    [50] Ohdubo T., Chang J. S.. Timee dependence of NOx removal rate by a corona radical shower system. IEEE. IAS, 1994, 30: 856-891
    [51] 周勇平.直流电晕放电诱导自由基簇射治理VOCs试验研究.浙江大学硕士学位论文,2003
    [52] Hyun-Ha Kim. Nonthermal plasma processing for air-pollution control: a historical review, Current Issues, and Future Prospects. Plasma Process. Polym., 2004, 1(2): 91-110
    [53] Yamamoto T.. Control of volatile organic compounds by an ac energized ferroelectric pellet reactor and a pulsed corona reactor. IEEE. Trans. On Ind. Appl., 1992, 28(3): 528-533
    [54] Kirkpatrick M. J.. Plasma-catalyst interactions in treatment of gas phase contaminants and in electrical discharge in water. USA: The Florida State University, Doctor thesis, 2004
    [55] 黄立维.高压脉冲电晕法治理有机废气技术研究.浙江大学博士学位论文,1996.12
    [56] 张昱.等离子体环境下有机化学物质的状态及其对生物体的作用研究.浙江大学博士学位论文,2001
    [57] 冯春杨.脉冲电晕技术处理挥发性有机化合物的应用研究.中国工程物理研究院硕士学位论文,2000
    [58] Kalashnikov, N. Y.. Non-equilibrium gliding arc and corona discharges for abatement of volatile organic compounds. USA : University of Illinois at Chicago, Doctor thesis, 2002
    [59] Chang M. B., Chang C. C.. Destruction and removal of toluene and methyl ethyl ketone from gas streams with silent discharge plasmas. AIChE J., 1997, 43(5): 1325-1330
    [60] 蒋洁敏.DBD—催化协同降解苯的研究.复旦大学硕士学位论文,2003
    [61] 侯惠奇,刘先年.低温等离子体工业废气处理装置.专利CN97242752.X,1999
    [62] Yamamoto T., Ramanathan K.. Control of volatile organic compounds by an AC energized ferroelectric pellet reactor and a pulsed corona reactor. IEEE Trans. On Industry Appl., 1992, 29(4): 528-534
    [63] Kalpathi V.. Destruction of volatile organic compounds in a dielectric barrier discharge plasma reactor. India: Oklahoma State University, Master thesis, 2005
    [64] 李明波.直流电晕放电诱导自由基簇射治理有机废气的实验研究.浙江大学硕士学位论文,2005.5
    [65] Yamamoto T., et al. Catalysis-assisted plasma technology for carbon tetrachloride destruction. IEEE Trans. On Industry Appl., 1996, 32(1): 100-105
    [66] 晏乃强.电晕—催化法治理有机废气的技术研究.浙江大学博士学位论文,1999.3
    [67] 梁亚红.气体放电—光催化净化含苯废气的研究.西安建筑科技大学博士学位论文,2005.7
    [68] 王晓云.脉冲电晕-吸收法治理有机废气实验研究.浙江工业大学硕士学位论文,2004
    [69] 钱易.水体颗粒物和难降解有机物的特性和控制技术原理.北京:中国环境科学出版社,2000
    [70] 金相灿.有机化合物污染化学.北京:清华大学出版社,1990
    [71] 王绍文.高浓度有机废水处理技术与工程应用.北京:冶金工业出版社,2003
    [72] 《污水综合排放标准》,GB 8978,1996
    [73] 崔玉川,傅涛.我国水污染及引用水源中有机物污染的危害.城市环境与城市生态, 1998,11(3):23-25
    [74] 祁鲁梁.水处理工业与运行管理实用手册.北京:中国石化出版社,2002
    [75] 王宝贞.水处理治理新新技术-新工艺、新概念、新理念.北京:科学出版社,2004
    [76] 毛绍春, 姚文华.高浓度有机废水处理技术的研究进展.云南化工,2004,31(3):27-30
    [77] 陈华, 严莲荷,等.难降解有机废水的高效优势菌的研究进展.工业水处理,2005, 25(4):17-21
    [78] 唐其铮.用物理化学处理法回用制浆造纸工业中的废水.国际造纸,2004,23(4):12-14
    [79] 赵毅,朱法华,等.高浓度有机废水处理技术.电力环境保护,2003,19(3):46-48
    [80] 汪勤.有机废水生物处理技术研究进展.能源研究与信息,2000,16(2):25-32
    [81] 汪严明,陆金仁,等.环境污染治理技术与设备,2004,5(11):65-78
    [82] 任小玲,周迟骏.废水生物处理技术发展浅谈.化工时刊,2004,18(2):32-33
    [83] 赵庆祥,孙贤波.废水生物处理技术的研究动向.苏州科技学院学报 (工程技术版), 2003,16(2):4-8
    [84] 黎阳,孙世栋.焚烧法处理高浓度有机废水.化学工程须,2003,94(1):56-57
    [85] Ivancev-Tumbas I., Dalmacija B., et al. Reuse of biologically regenerated activated carbon for phenol removal. Water Res., 1998, 32:1085-1094
    [86] 孙德智.环境工程中的高级氧化技术.北京:化学工业出版社,2002
    [87] 雷乐成.水处理高级氧化技术.北京:化学工业出版社,2001
    [88] 曹兰花,潘新明. 高级氧化法处理难降解有机废水技术.甘肃科技,2003 19(10):47-48
    [89] 吴慧芳,黄文宜,等.难降解有机废水的高级氧化技术.南京工业大学学报(自然科学版),2003,25(3):83-88
    [90] 李文书,李咏梅,顾国维.高级氧化技术在持久性有机污染物处理中的应用.工业水处理,2004,24(1):9-12
    [91] 方宗堂, 王宏,等.多相催化湿式氧化法处理高浓度难降解有机废水的研究.化工环保,2005,25(1):8-11
    [92] 乔彤森,黎海山,曹兰花.催化氧化法处理高浓度难降解有机废水的中试研究.甘肃科技,2005,(21)3:130-131
    [93] 王志平,井立强,等.废水中难降解有机物的高级氧化技术.化工环保,2001,21(5):264-269
    [94] 徐新华.水与废水的臭氧处理.北京:化学工业出版社,2003
    [95] 童少平.臭氧及相关高级氧化技术降解有机污染物的研究.浙江大学博士后论文,2004
    [96] 赵伟荣.阳离子红X-GRL染料的UV、O_3、O_3/UV氧化处理研究.浙江大学博士学位 论文,2004
    [97] 申浩民.以臭氧/UV处理印刷电路板业废水之研究.中国台湾:国立台湾大学硕士学位论文,2003
    [98] 蔡河山,徐文彬,曾敏.TiO_2光催化氧化法处理有机废水实验分析与改进.环境技术, 2004,22(4):23-28
    [99] 陆文明.H_2O_2/Fe~(2+)光催化氧化法去除活性染料废水色度的研究.浙江树人大学学报,2001,1(4):65-67
    [100] Butler Zlizabeth C., Davis Alen P.. Photocalytic oxidation in aqueous titanium dioxide suspensions: the influence of dissolved transition metals. Photochem. Photobiol., 1993, 70(3): 273-283
    [101] Swallow K. C., Killilea W. R.. Comment on phenol oxidation in supercritical water: formation dibenzfuran, dibenzo-p-dioxin and related compounds. Environ. Sci. Tech., 1992, 26:1849-1850
    [102] 刘碧云,周培疆,吴振斌.超临界水氧化技术处理有机废水的研究.环境科学与技术, 2004,27(z1):156-158
    [103] 王相承.超临界水氧化技术研究及进展.工业消息理,2001,21(11):5-7
    [104] 朱昌平,何世传,等.超声技术在废水处理中的应用与研究进展.计算机与应用化学,2005,22(1):28-32
    [105] 李春喜,王京刚,等.超声波技术在污水处理中的应用与研究进展.环境污染治理技术与设备,2001,2(2):64-69
    [106] Clements J. S., Sato M., Davis R. H.. Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high voltage discharge in water. IEEE. Trans. On Ind. Appl., 1987, IA-23(2): 224-235
    [107] Hochemer R. H.. Degradation of organic compounds by acoustic cavitation and pulsed-power discharges. USA: California Institute of Technology, Doctor thesis, 1996
    [108] Lukes P.. Water Treatment by Pulsed Streamer Corona Discharge. Czech Republic: Institute of Chemical Technology, Doctor thesis, 2001
    [109] Hoeben W. F. L. M.. Pulsed corona-induced degradation of organic materials in water. Netherlands: Technische Universiteit Eindhoven, Doctor thesis, 2000
    [110] David R. Grymonpre.. An experimental and theoretical analysis of phenol degradation by pulsed corona discharge. USA: The Florida State University, Doctor thesis, 2001
    [111] Yee D. Cheon-Yuen.. Bioremediation of chlorinated organics using streptomyces lignin peroxidase, pseudomonas strains, and pulsed-electric discharge. USA: University of California, Irvine, Doctor thesis, 1997
    [112] 叶齐政,万辉,等.放电等离子体水处理技术中的若干问题.高电压技术,2003,29(4):32-34
    [113] 叶齐政.混合两相体放电及其在水处理中应用的研究.华中科技大学博士学位论文,2001
    [114] 黄兴华.脉冲电压处理染料废水的研究.清华大学硕士学位论文,2002
    [115] 卞文娟.高压脉冲液相放电技术处理水中难降解有机污染物的研究.浙江大学博士 学位论文。2005
    [116] 杨彬.高压脉冲放电降解染料废水的研究.浙江大学硕士学位论文,2004
    [117] 文岳中.高压脉冲放电降解水中有机污染物及转化CO_2为CO的研究.浙江大学博士学位论文,2000.12
    [118] 朱承驻.等离子体技术降解水相中有机污染物的机理研究.复旦大学硕士学位论文,2002
    [119] 张若兵.双向窄脉冲放电染料废水脱色技术研究.大连理工博士学位论文,2005
    [120] 靳承铀.介质阻挡放电反应器在水处理中的实验研究.大连理工硕士学位论文,2003
    [121] 陈银生.高压脉冲放电等离子体降解酚类废水的研究.华东理工大学博士学位论文,2003
    [122] 蒲陆梅.低温辉光放电等离子体技术在水体中酚类降解的应用.西北师范大学博士学位论文,2005.6
    [123] 孙明.放电极雾化低温等离子体净水技术的研究.东北师范大学硕士学位论文,2001
    [124] 郑红艾.高压电晕和臭氧联用处理难降解有机废水的研究.浙江工业大学硕士学位论文,2004
    [125] Moussa D., Brisset J. L.. Disposal of spent tributylphosphate by gliding arc plasma. J. Hazard. Mater., 2003, B102: 89-200
    [126] Hashirnoto S., Miyata T., Kawakami W.. Radiation-induced decomposition of phenol in flow system. Radia. Phys. Chem., 1980, 16(1): 59-62
    [127] Kurucz C.. The miami electron research facility: a large scale wastewater treatment application. Radia. Phys. Chem., 1995, 45(2): 299-308
    [128] 王艳丽,吴明红.电子束辐照降解氯苯类废水.精细化工,2005,22(1):53-55
    [129] 李道棠,晏乃强,田扬捷.核辐射技术在环境污染治理中的应用.上海环境科学, 2002,21(9):557-561
    [130] 高锦章,俞洁,等.辉光放电等离子体技术处理印染废水的研究.环境化学,2005, 24(2):183-185
    [131] 俞洁.辉光放电等离子体降解水体中的有机污染物.西北师范大学硕士学位论文,2005
    [132] 吴彦,张若兵,许德玄.利用高压脉冲放电处理废水的研究进展.环境污染治理技术与设备,2002,3(3):51-55
    [133] Muhammad A. M., Abdul G., et al. Water purification by electrical discharge. Plasma Sources Sci. Technol., 2001, 10: 82-91
    [134] Locke B. R., Sato M., et al. Electrohydraulic discharge and nonthermal plasma for water treatment. Ind. Eng. Chem. Res., 2006, 45: 882-905
    [135] Sunka P., Clupek P., et al. Generation of chemically active species by electrical discharges in water. Plasma Chem. Plasma Process., 1999, 8(2): 258-265
    [136] Sun B., Sato M., et al. Non-uniform pulse discharge -induced radical production in distilled water. J. Electrost., 1998, 43(2): 115-126
    [137] 卞文娟,杨彬,雷乐成.液电等离子体处理有机废水.环境污染治理技术与设备, 2003,4(5):80-81
    [138] 卞文娟,张轶,雷乐成,等.高压脉冲气.液同步放电降解甲基红.浙江大学学报(工学版),2004,38(11):1520-1525
    [139] Sano N., Kawashima T., et al. Decomposition organic compounds in water by direct contact of gas discharge: influence of discharge condition. Ind. Eng. Chem. Res., 2002, 41: 5906-5911
    [140] 文岳中,姜玄珍,等.高压脉冲放电降解水中苯乙酮的研究.中国环境科学,1999, 19(5):406-409
    [141] Birmingham, J. G., Hammerstro D. J.. Bacterial decontamination using ambient pressure nonthermal discharges. IEEE Tran. On Plasma Sci., 2000, 28(1): 51-55
    [142] Akiyama H.. Streamer discharges in liquids and their applications. IEEE Tran. On Dielect. El. In., 2000, 7(5): 646-653
    [143] Sano N., Tamon H., et al. Removal of the chlorofluorocarbon 1,1,2-trichloro 1,2,2-trifluoroethane in gas by a corona-discharge reactor. Ind. Eng. Chem. Res., 1998, 37: 1428-1434
    [144] Sano N., Fujikawa J., et al. A kinetic model of degradation of phenol in water by direct contact of gas nonpulsed corona dsicharge. Chem. Eng. Technol., 2004, 27(5): 548-552
    [145] Sano N., Yamamoto D., Kanki T.. Decomposition of phenol in water by a cylindrical wetted-wall reactor using direct contact of gas corona discharge. Ind. Eng. Chem. Res., 2003, 42: 5423-5428
    [146] 王万林.脉冲放电等离子体同时处理焦化废水和烟道气的研究.华中科技大学硕士学位论文,2003
    [147] 张越非.气液混合两相体放电处理味精废水的研究.华中科技大学硕士学位论文,2003
    [148] 巩建英.放电等离子体技术处理垃圾渗滤液的研究.华中科技大学硕士学位论文,2003
    [149] 万辉.气液混合两相电流体直流电晕放电处理垃圾渗滤液的研究.华中科技大学硕士学位论文,2003
    [150] 杨长河.混合两相体电晕放电处理垃圾渗滤液的研究.华中科技大学硕士学位论文,2002
    [151] Yee D. C., Chauhan S., et al. Degradation of perchloroethylene and dichlorophenol by pulsed-electric discharge and bioremediation. Biotechnol. Bioeng., 1998, 59: 438-44
    [152] Willberg D. M., Lang P. S.. Degradation of 4-chlorophenol, 3,4-dichloroaniline, and 2,4,6-trinitrotoluene in an electrophydraulic discharge reactor. Environ. Sci. Technol., 1996, 30:2526-2534
    [153] Lang P. S., Ching. W-K, et al. Oxidative degradation of 2,4,6-trinitrotoluene by ozone in an electrohydraulic discharge reactor. Environ. Sci. Technol., 1998, 32:3142-3148
    [154] 李杰,吴彦.脉冲放电等离子体诱导光催化处理有机废水方法及装置.专利CN1594120.2005
    [155] 马腾才,伊瓦洛夫斯基.一种短高压脉冲介质阻挡放电等离子体水处理方法和设备. 专利CN1513772,2003
    [156] Bubnov A. G., Grinevich V. I., et al. The kinetics of plasma-induced degradation of organic pollutants in sewage water. High Ener. Chem., 2004, 38(1): 44-49
    [157] Lesueur H., Czernichowski A.. Device for generating low-temperature plasmas by formation of sliding electric discharges. Patent FR2639172, 1990
    [158] Czernichowski A.. Gliding arc applications to engineering and environment control. Pure Appl. Chem., 1994, 66(6): 1301-1310
    [159] Mutaf-Yardimci O.. Plasma catalysis in hydrocarbon processing by using non-equilibrium plasma discharges. USA: University of Illinois at Chicago, Doctor thesis, 2001
    [160] Fridman A., Chirokov A., Gustol A.. Non-thermal atmospheric pressure discharges. J. Phys. D: Appl. Phys., 2005, 38: R1-R24
    [161] Krawczyk K., Ulejczyk B. Decomposition of chloromethanes in gliding discharges. Plasma Chem. Plasma Process., 2003, 23(2): 265-281
    [162] Ferenc Z., Wandrasz J. W.. Use of glidarc reactor for decomposition of toluene vapours in hot exhausts. High Temp. Material Processes, 2004, 8: 31-37
    [163] 林烈,吴承康.磁驱动滑动弧放电大气压非平衡等离子体.核聚变与等离子体物理, 2000,20(2):121-124
    [164] Antonius I., Jae-wook C., et al. Treatment of CCI_4 and CHCI_3 emission in a gliding-arc plasma. Plasma Devices Open, 2006, 14(1): 1-14
    [165] Czemichowski A.. System and method for ignition and reignition of unstable electrical discharges. Patent US20020093294A1, 2002
    [166] Cormier J. M., Rusu I.. Syngas Production via methane steam reforming with oxygen: plasma reactors versus chemical reactors. J. Phys. D: Appl. Phys., 2001, 34:2798-2803
    [167] 李磊.磁驱动非热电弧的研究.中国科学技术大学硕士学位论文,2003.6
    [168] 林烈,张秀杰.磁驱动高压非平衡等离子体产生方法及装置.专利CN1204939,1999
    [169] Rusu I., Cormier J. M.. Study of a rotarc plasma reactor stability by means of electric discharge frequency analysis. Int. J. Hydrogen Energy, 2003, 28(10): 1039-1043
    [170] Chiranjeev S. K., Mikhail K., et al. Electrical discharges in the reverse vortex flow-tornado discharges. Proc. 16th Int. Symp. On Plasma Chemistry, Taormina, Italy, 2003
    [171] Czernichowski A. Nassar H., et al. Spectral and electrical diagnostics of gliding arc. Acta Phys. Pol., 1996, 89(5-6): 595-603
    [172] Pawelec E., Simek M., et al. Temperature measurements in non-equilibrium "ferroelectric" plasma. Acta Phys. Pol., 1996, 89(4): 503-507
    [173] Academician V. D., Rusanow A. S., et al. Possibility of maintaining a highly nonequilibrium plasma in an arc discharge at atmospheric pressure. Phys. Dokl., 1993, 38(9): 398-340
    [174] Fridman A., Nester S., Kennedy L.. Gliding arc gas discharge. J. Prog. Energy and Comb. Sci., 1999, 25: 211-231
    [175] Mutaf-Yardimci O., Saveliev A. V., et al. Thermal and nonthermal regimes of gliding arc arc discharge in air flow. J. Appl. Phys., 2000, 87(4): 1632-1641
    [176] Richard F., Cormier J. M., et al. Physical study of a gliding arc discharge. J. Appl. Phys., 1996, 79(5): 2245-2250
    [177] Richard F.. Etude et caracterisation d'une de, charge electrique glissante dans I'air a pression atmospherique. Prance: Orleans University, Doctor thesis, 1995
    [178] 林烈,吴承康.大气压非平衡等离子体中非平衡度的探讨.核聚变与等离子体物理, 1998,18(2):57-60
    [179] Czernichowski A.. Destruction of waste or toxic gases and vapours in gliding arc reactor, Destruction of Waste and Toxic Materials Using Electric Discharges, IEE Colloquium on, London, 1992, 4/1-4/5
    [180] Dalaine V. ,Cormier J. M., Lefaucheux P.. A gliding discharge applied to H_2S destruction. J. Appl. Phys., 1998, 83(5): 2435-2442
    [181] Dalaine V., Cormier J. M., et al. H2S destruction in 50 Hz and 25 kHz gliding arc reactors. J. Appl. Phys., 1998, 84(3): 1215-1222
    [182] Czernichowski A.. Plasmas pour la destruction de I'H2S et des mercaptans. Oil & Gas Sci. Technol., 1999, 54(3): 337-355
    [183] Czernichowski A., Lesurur H.. Sulphur and nitrogen conversion from oxide to elemental form. Patent FR2698090, 1993
    [184] Krawczyk K., Mlotek M.. Combined plasma-catalytic processing of nitrous oxide. Appl. Catal. B: Environ., 2001, 30(3-4): 233-245
    [185] Krawczyk K., Mlotek M.. Conversion of N_2O in gliding arc discharges, Przemysl Chem., 2003, 82(10): 1387-1390
    [186] Krawczyk K., Mlotek M.. Oxidation and decomposition of N_2O by gliding discharge combined with a bed of catalyst. High Temp. Material Processes, 2001, 5(3): 349-353
    [187] Czernichowski A.. Czernichowski P., Electrically assisted partial oxidation of light hydrocarbons by oxygen. Patent FR2768424, 1999
    [188] Meguernes K., Chapelle J., Czernichowski A.. Valorization of methane in electric arcs and high pressure cold discharges. High Temp. Material Processes, 2001, 5(3): 363-374
    [189] Czemichowski A.. GlidArc assisted preparation of the synthesis gas from natural and waste hydrocarbons gases. Oil & Gas Sci. Techn., 2001, 56(2): 181-98
    [190] Czemichowski A.. Electrically assisted conversion of natural gas into syngas. Karbo-Energochem.-Ekol, 1998, 43(11): 359-369
    [191] Czernichowski A., Czernichowski P., Ranaivosoloarimanana A.. Plasma pyrolysis of natural gas in gliding arc reactor. Proc. 11th World Hydrogen Energy Conference, Stuttgart, 1996, 661-666
    [192] Schmidt-Szalowski K., Krawczyk K., Ruszniak J.. Processing of methane by gliding arc discharges. Proc. 15th Int. Symp. on Plasma Chemistry, Orleans, 2001
    [193] Czernichowski A., Wesolowska K.. GlidArc-assisted production of synthesis gas through partial oxidation of natural gas. First International Conference on Fuel Cell Science, Engineering and Technology, New York, 2003, 181-185
    [194] Meguernes K., Chapelle J., Czernichowski A.. Oxidization of CI-I4 by CO_2 in an electric arc and in a cold discharge. Proc. 11th Int. Syrup. on Plasma Chemistry, Loughborough, England, 1993, 710-715
    [195] Meguernes K., Czernichowski A., Chapelle J.. Oxidation of CH_4 by H_2O in gliding electric arc. VDI Berichte, 1995, 1166: 495-500
    [196] Lesueur H., Czemichowski A.. Electrically assisted partial oxidation of methane. Int. J. Hydrogen Energy, 1994, 19:139-144
    [197] Mutaf-Yardimci O., Saveliev A. V., et al.. Hydrogen production using non-equilibrium plasma reformers. Int. Conf. on Energy and environment, Shanghai, China, 1998
    [198] http://perso.wanadoo.fr/albin.czernichowski/ECP
    [199] Janca J., Czernichowski A.. Wool treatment in the gas flow from gliding discharge plasma at atmospheric pressure. Surf. Coat. Tech., 1998, 98(1-3): 1112-1115
    [200] Janca J.. Process for bleaching and improvement in the behaviour of dyes on organic materials. Patent FR2711680, 1994
    [201] Benstaali B., Addou A., Brisset J. L.. Electrochemical and X-ray investigation of austenitic 304L and 316L stainless steels treated by a gliding arc in humid air. Mater. Chem. Phys., 2003, 78(1): 214-221
    [202] Bellakhal N., Dachraoui M.. Study of the benzotriazole efficiency as a corrosion inhibitor for copper in humid air plasma. Mater. Chem. Phys., 2004, 85(2-3): 366-369
    [203] http://www.coronalab.net/
    [204] Czernichowski A., Ranaivosoloarimanana A.. Zapping VOCs with discontinuous electric arc. Chemtech, 1996, 26(4): 45-49
    [205] Krawczyk K., Ulejczyk B.. Influence of water vapor on CCl_4 and CHCl_3 conversion in gliding discharge. Plasma Chem. Plasma Process, 2003, 24(2): 155-167
    [206] Opalinska T., Opalska A.. Gliding-discharge CF_2Cl_2 and CHF_2Cl decomposition in reducing conditions. Proc. 16th Int. Syrup. On Plasma Chemistry, Taormina, Italy, 2003
    [207] Czemichowski A., Labbe P.. Plasma-assisted cleaning of flue gas from a sooting combustion. Emerging Technologies in Hazardous Waste management, Washington, 1995, 144-154
    [208] Benataali B., Addou A., Brisset J. L., Moussa D.. Plasma treatment of aqueous solutes: some chemical properties of a gliding arc in humid air. Fur. Phys. J. AP, 1998, 4: 171-179
    [209] Benstaali B., Belhakem M., Addou A.. Electronic collisions in a non thermal plasma of humid air. ⅩⅩⅢ international conference on photonic, electronic, and atomic collisions, Stockholm, Sweden, 2003
    [210] Moras E, Brisset J.L.. Pollutants removal from aqueous solutions by gliding arc treatment in humid air. Proc ofHakone Ⅵ, Cork, Ireland, 1998
    [211] Moussa D., Brisset J. L.. Disposal of spent tributylphosphate by gliding arc plasma. J. Hazard. Mater. B, 2003, 102:189-200
    [212] Moussa D., Brisset J. L.. Gliding arc treatment of aqueous solutions: acid and oxidising effects of an humid air treatment. Proc of Hakone V,, Milovy, Czech Republic, 1996, 165-169
    [213] Moussa D., Brisset J. L.. Spent extraction solvents removing by a gliding discharge plasma. Proc. 16th Int. Syrup. On Plasma Chemistry, Taormina, Italy, 2003
    [214] Abdelmalek F., Gharbia S., et al. Plasmachemical degradation of azo dyes by humid air plasma: Yellow Supranol 4 GL, Scarlet Red Nylosan F3 GL and industrial waste. Water Res, 2004, 38(9): 2339-2347
    [215] Abdelmalek F.. Plasmachimie des solutions aqueuses. Application a la degradation de composes toxiques. France: Rouen University, Doctor thesis, 2004
    [216] Fanmoe J., Kamgang J. O., et al. Application of the slipping arc to the treatment of industrial solvents: case of 1,1,1-trichloroethane. Phys. Chem. News, 2003, 14:1-4
    [217] 严建华,等.一种滑动弧放电等离子体有机废水处理装置.专利CN2672046,2005
    [218] Dalaine V., Cormier J. M.. Study and modelling of a 50 Hz gliding discharge. OPTIM,. Proc. 6th. Int. Conference on, 1998, 1: 161-166
    [219] 于冰.霓虹灯原理与制造技术.北京:中国轻工业出版社,1993
    [220] 甄立新.霓虹灯及其控制技术.北京:人民邮电出版社,1998.1
    [221] Pellerin S., Cormier J. M., et al. Determination of working parameters of bi-dimensional DC glidarc. Proc. 14th Int. Symp. On Plasma Chemistry, Prague, Czech Republic, 1999, 1009-1014
    [222] Fridman A., Nester S., et al. Gliding arc plasma instability. Proc. 13th Int. Symp. On Plasma Chemistry, Beijing, China, 1997, 819-824
    [223] Pellerin S., Cormier J. M., et al. Investigation and modeling of a cold arc discharge: chemistry applications. Proc. 13th Int. Symp. On Plasma Chemistry, Beijing, China, 1997, 813-818
    [224] Mutaf-Yardimci O., Fridman A., et.. An investigation of non equilibrium gliding plasma discharge. Proc. 14th Int. Syrup. On Plasma Chemistry, Prague, Czech Republic, 1999, 997-1002
    [225] J.R.罗思.工业等离子体工程第Ⅰ卷基本原理.北京:科学出版社,1998
    [226] 过增元.电弧和热等离子体.北京:科学出版社,1986
    [227] Bazelyan E.M. Spark discharge.CRC Press,New York,1998
    [228] 顾炳武.管状电弧加热器中影响弧根位置的气动和电磁因素的研究.中国科学院力学研究所博士论文,1989
    [229] 杜百合.大尺度磁旋转电弧等离子体发生器研究.中国科学技术大学硕士论文,2005
    [230] 李辉.电弧等离子体中的阴极区模型及辅助加热电弧等离子体发生器的研究.中国科学技术大学博士论文,2001
    [231] Raizer Y. P.. Gas discharge physics. Springer Verlag, 1991
    [232] Pellerin S., Cormier J. M., et at. Determination of the electrical parameters of a bi-dimensional d.c. Glidarc. J. Phys. D: Appl. Phys., 1999, 32:891-897
    [233] Bacri J., Raffanel S. D.. Transport coefficients of air plasma. Internal report, Paul Sabatier University, Toulouse, France, 1986
    [234] Pellerin S., Richard F.. Heat string model of bi-dimensional dc Glidarc. J. Phys. D: Appl. Phys., 2000, (33): 2407-2419
    [235] Delair J., Brisset J. L., Cheron B. G. Spectral electrical and dynamical analysis of a 50 Hz air gliding arc. High Temp. Material Processes, 2001, 5: 381-403
    [236] 陈杰珞.低温等离子体化学及其应用.北京:科学出版社,2001
    [237] 李学丹.低温等离子体化学.化学通报,1991,5:17-19
    [238] 王稳定.光化学与微波放电等离子体自由基反应机理研究.中国科学院化学研究所博士学位论文,1990.5
    [239] 宏民.等离子体化学处理及其应用.等离子体应用技术快报,1995,1:1-3
    [240] 侯仲轲,黄明智.现代化学新技术.等离子体化学.世界农药,2001,23(6):12-14
    [241] 白敏东.常压非平衡等离子体化学的应用研究.大连理工大学博士论文,1997.6
    [242] 白希尧,白敏冬.非平衡等离子体化学研究进展.中国基础科学,2003,6:30-37
    [243] Benstaali B., Boubert P., Cheron B.G., et al. Spectral investigation of a gliding arc in humid air: a key for chemical applications. Proc. 14th Int. Syrup. On Plasma Chemistry, Prague, Czech Republic, 1999, 939-944
    [244] Benstaali B., Boubert P., Cheron B.G.. Density and rotational temperature measurements of the OH and NO radicals produced by a gliding arc in humid air. Plasma Chem. Plasma Process., 2002, 22(4): 553-571
    [245] Benstaali B., Moussa D., Addou A.. Plasma treatment of aqueous soluetes: Some chemical properties of a gliding arc in humid air. Eur. Phys. J. AP., 1998, 4:171-179
    [246] Moras F., Abdelmalek F., et al. Oxidation of organic solutes in aqueous medium by a gliding arc discharge in an oxygen containing gas. Proc. 14th Int. Symp. On Plasma Chemistry, Prague, Czech Republic, 1999, 2709-2714
    [247] Simek M.. A spectroscopic study of dc gliding discharge in nitrogen. Proc. 14th Int. Symp. On Plasma Chemistry, Prague, Czech Republic, 1999, 1045-1050
    [248] Simek M., Clupek M., et al. Efficiency of ozone production by non-thermal electrical discharges in synthetic air-comparative study. Proc. 16th Int. Symp. On Plasma Chemistry, Taormina, Italy, 2003
    [249] Benstaali B., Moussa D., et al. Oxidizing species created by a gliding arc plasma in air, Fundamental and engineering concepts for ozone reactor design. Int. specialized Symposium, Toulouse, France., 2000
    [250] Doubla A., Abdelmalek F., Khelifa K.. Post-discharge plasma-chemical oxidation of Iron(Ⅱ) complexes. J. Appl. Electrochem., 2003, 33 (1): 73-76
    [251] Janca J., Kuzmin S., Maximov A.. Investigation of the Chemical Action of the gliding and "Point" arcs Between the Metallic Electrode and Aqueous Solution. Plasma Chem. Plasma Process., 1999, 19(1):53-67
    [252] Green D. S., Herron J. T., et al. Characterization of chemical processes in humid air and humid air/toluene plasmas. Proc. 14th Int. Symp. On Plasma Chemistry, Prague, Czech Republic, 1999, 2359-2364
    [253] Allen N. L., Coxen P., Peyrous R.. A note on the creation of condensation nuclei by negative corona discharges in air at low pressure. J. Phys. D: Appl. Phys., 1981, 14(12): L207-L209
    [254] Pignolet P., Hadj-Ziane S., et al. Ozone generation by point to plane corona discharge. J. Phys. D: Appl. Phys., 1990, 23(8): 1069-1072
    [255] Peyrous R., Pignolet P., Held B.. Kinetic simulation of gaseous species created by an electrical discharge in dry or humid oxygen. J. Phys. D: Appl. Phys., 1989, 22(11): 1658-1667
    [256] Peyrous R., Millot R-M.. Ozone generation in oxygen by corona discharges in a point-to-plane gap subjected to a chopped DC positive voltage. J. Phys. D: Appl. Phys., 1981, 14(12): 2237-2242
    [257] Zhuangjie L.. Kinetic study of OH radical reactions with volatile organic compounds using relative rate/discharge fast flow/mass spectrometer technique. Chem. Phys. Lett., 2004, 383: 592-600
    [258] Moras F., Abdelmalek F., et al, Oxidation of organic solutes in aqueous medium by a gliding arc discharge in an oxygen containing gas. Proc. 14th Int. Symp. On Plasma Chemistry, Prague, Czech Republic, 1999, 2709-2714
    [259] Kohno H., Berezin A. A., et al. Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor. IEEE. Trans. On Ind. Appl., 1998, 35(5): 953-966
    [260] Seinfeld J. H.. Atmospheric chemistry and physics: from air pollution to climate change. John Wiley&Sons, Inc, New York, USA, 1997
    [261] Andino J. M., Smith J. N., et al. Mechanism of atmospheric photooxidation of aromatics : a theoretical study. J. Phys. Chem., 1996, 100: 10967-10980
    [262] Atkinson R.. Atmospheric chemistry of VOCs and NOx. Atmos. Environ., 2000, 34: 2063-2101
    [263] 何彦刚,黎钢.甲醛分解的研究新进展.河北化工,2005,28(1):1-3
    [264] Moussa David. Destruction du tributylphosphate par effluvage electrique. Utilisation d'un reacteur a decharges glissantes. France: Rouen University, Doctor thesis, 1996
    [265] 王静,苏锋.非平衡等离子体作用下低碳烷烃无氧烯烃化反应研究.大连大学学报, 2004,25(6):32-34
    [266] 穆光照.自由基反应.北京:高等教育出版社,1985
    [267] 穆光照译.自由基化学.上海:上海科学技术出版社,1983
    [268] 张桂秋,张昌言.芳香族碳氢化合物等离子体化学反应的研究.山东师大学报(自然科学版),1990,5(3):43-48
    [269] Tuazon E. C., Aschmanrt, S. M., et al. The reactions of selected acetates with OH radical in the presence of NO: Novel rearrangement of alkoxy radicals of structure RC(O)OCH(O)R. J. Phys. Chem. A, 1998, 102: 2316-2321
    [270] 国家环境保护总局.空气和废气检测分析方法第四版.北京:中国环境科学出版社, 2003
    [271] Viden I., Janda V., Pospisil M., et al. GC-MS Analysis of Products from Degradation of Toluene Vapors by Electrical Discharge. 23rd International Symposium on Capillary Chromatography, Riva del Garda, 2000
    [272] 曹志勇.燃烧过程中多环芳烃类污染物排放特性及其催化分解实验研究.浙江大学硕士学位论文,2004
    [273] Weber R., Sakurair T.. Low temperature decomposition of PCDD/PCDE chlorobenzenes and PAHs by TiO_2-based V_2O_5-WO_3 catalysts. Appl. Catal. B: Environ. 1999, 20(4): 249-256
    [274] 文晟,赵进才,等.菲在TiO_2催化下的光降解研究.感光科学与光化学,2002,20(6):405-410
    [275] 马正月,陈皓侃.烟气中多环芳烃吸附脱除的研究.燃料化学学报,2004,32(5):526-560
    [276] 王文兴,束勇辉.煤烟粒子中PAHs光化学降解的动力学.中国环境科学,1997,17(2):97-100
    [277] 王连生,孔令仁.17种多环芳烃在水溶液中的光解.环境化学,1991,10(2):15-20
    [278] 潘相敏,祁士华.气溶胶中多环芳烃的光降解研究.复旦学报:自然科学版,1999, 38(1):119-122
    [279] 刘坚,赵震,徐春明.柴油车排放碳黑颗粒消除催化剂的研究进展.催化学报,2004, 25(8):673-680
    [280] Higashi M., Uchida S., et al. Soot elimination and NOx and SO_2 reduction in diesel-engine exhaust by a combination of discharge plasma and oil dynamics. IEEE Tran. Plasma Sci., 1992, 20(1): 1-12
    [281] Poschl U,, Letzel T., et al. Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with benzo[a]pyrene: O_3 and H_2O adsorption, benzo[a]pyrene degradation, and atmospheric implications. J. Phys. Chem. A, 2001, 105: 4029-4041
    [282] Esteve W., Budzinski H.. Relative rate constans for the heterogeneous reactions of OH, NO_2 and NO radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part Ⅰ: PAHs adsorbed on 1-2μm calibrated graphite partcles. Atmos. Environ., 2004, 38: 6036-6072
    [283] Robert S., Genet F., et al. Depollution processes in non-equibibrium plasmas. Sixth European conference o thermal plasma processes, Strasbourg, France, 2000, 803-810
    [284] 尤孝方,李晓东,严建华,等.流化床焚烧塑料垃圾多环芳烃的生成特性.燃烧科学与技术,2003,9(4):376-380
    [285] Dorai R., Hassouni K., Kusher M.J.. Interaction between soot particles and NOx during dielectric barrier discharge plasma remediation of simulated diesel exhaust. J. Appl. Phys., 2000, 88(10): 6066-6071
    [286] Shawcross J. T., Martin A. R., Whitehead J. C.. The oxidation of carbon soot in a non-thermal, atmospheric pressure plasma: experiment and modeling. J. Adv. Oxid. Technol., 2005, 8(2): 126-132
    [287] Wayne W. Brubaker Jr., et al. OH Reaction Kinetics of Polycyclic Aromatic Hydrocarbons and Polychlorinated Dibenzo-p-dioxins and Dibenzofurans. J. Appl. Phys. Chem. A, 1998, 102:915-921
    [288] Chmielewskia A. G., Sun Y. X., Lickib J., Buka S., Kubicac K., and Zimek Z.. NOx and PAHs removal from industrial flue gas by using electron beam technology with alcohol addition. Radia. Phys. Chem., 2003 67: 555-560
    [289] 谢裕坛.活性炭吸附治理多组分有机废气的研究.浙江大学硕士学位论文,2002
    [290] Tezuka M., Iwasaki M.. Plasma induced degradation of chlorophenols in an aqueous solution. Thin Solid Films, 1998, 316(2): 123-127
    [291] Yah J. H., Du Ch. M., et al. Degradation of phenol in aqueous solutions by gas-liquid gliding arc discharges. Plasma Chem. Plasma Process., 2006, 26(1): 31-41
    [292] 国家环境保护总局.水和废水监测分析方法第四版.北京:中国环境科学出版社, 2003
    [293] 郭香会,李劲.脉冲放电等离子体处理硝基苯废水的实验研究.高电压技术,2001, 27(3): 42-44
    [294] Kavitha V., Palanivelu K.. The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere, 2004, 55: 1235-1243
    [295] Kang N., Lee S. D., Yoon J.. Kinetic modeling of Fenton oxidation of phenol and monochlorophenols. Chemosphere, 2002, 47:915-924
    [296] Yan J. H., Du Ch. M., et al. Plasma chemical degradation of phenol in solution by gas-liquid gliding arc discharge. Plasma Sources Sci. Technol., 2005, 4:1-8
    [297] Grymonpre D. R., Sharma A. K., et al. The role of Fenton's reaction in aqueous phase pulsed streamer corona reactors. Chem. Eng. J., 2001, 82:189-207
    [298] 沈拥军,卫忠元,吴向阳.气中电晕放电对水中苯酚的氧化.江苏环境科技,2004, 17(1):4-5
    [299] 陈伟,储金宇,等.等离子体降解苯酚废水的试验研究.高电压技术,2003,29(12):36-36
    [300] Hayashi D., Hoeben W. F. L. M., et al.. Influence of gaseous atmosphere on corona-induced degradation of aqueous phenol. J. Phys. D: Appl. Phys., 2000, 33: 2769-2774
    [301] Hayashi D., Hoeben W. F. L. M., et al. LIF diagnostic for pulsed-corona-induced degradation of phenol in aqueous solution. J. Phys. D: Appl. Phys., 2000, 33: 1484-1486
    [302] Gao J. Zh., Liu Y. J., et al. Oxidative degradation of phenol in aqueous electrolyte induced by plasma from a direct glow discharge. Plasma Sources Sci. Technol., 2003, 12: 533-538
    [303] Kunitomo S., Ohbo T., Sun B.. The effects of using various types of pulsed discharge reactors for phenol removal in waste water. J. Adv. Oxid. Technol., 2003, 6(1):70-74
    [304] 林美强,宋卫锋,倪亚明.电解催化降解有机物机理的高效液相色谱研究(Ⅱ)—动力学解析.环境科学与技术,2004,27(2):27-29
    [305] Singer P. C., Gurol M. D.. Dynamcs of ozonation of phenol-1 Experimental observations. Water Res., 1983, 17(9): 1163-1171
    [306] Ikehata K., Gamal El-Din M.. Aqueous pesticide degradation by ozonation and ozone-based advanced oxidation processes-a review (Part Ⅰ). Ozone: Sci. Eng., 2005, 27(2): 83-114
    [307] Ikehata K., Gamal El-Din M.. Aqueous pesticide degradation by ozonation and ozone-based advanced oxidation processes-a review (Part Ⅱ). Ozone: Sci. Eng., 2005, 27(3): 173-202
    [308] Grmonpre D. R., Finey W. C., Locke B. R.. Aqueous-phase pulsed streamer corona reactor using suspended activated carbon particles for phenol oxidation: model-data comparison. Chem. Eng. Sci., 1999, 54: 3095-3105
    [309] Chert Y. S., Zhang X. S., et al. Pulse high-voltage discharge plasma for degradation of phenol in aqueous solution. Sep. Purif. Technol, 2004, 34:5-12
    [310] Tripathi G. N. R., Yali Su.. The origin of base catalysis in the OH oxidation of phenols in water. J. Phys. Chem. A, 2004, 108(16): 3478-3484
    [311] Schlimm C., Heitz E.. Development of a wastewater treatment process: reductive dehalogenation of chlorinated hydrocarbons by metals. Environ. Prog., 1996, 15(1): 38-41
    [312] 董文博,姚思德,等.水相中OH,H和e_(aq)与2-氛酚反应机理研究.高等学校化学学报, 2002,23(10):1896-1900
    [313] 郑光明,朱承驻,等.平行板双介质阻挡放电处理水相中氯酚的脱氯机理.环境科学学报,2004,24(6):962-968
    [314] 文岳中,姜玄珍,等.高压脉冲放电与臭氧氧化联用降解水中对氯苯酚,环境科学, 2002,23(2):73-76
    [315] Lukes P., Locke B. R.. Degradation of substituted phenols in a hybrid gas-liquid electrical discharge reactor. Ind. Eng. Chem. Res., 2005, 44: 2921-2930
    [316] Lukes P., Clupek M. et al. Non-thermal plasma induced decomposition of 2-chlorophenol in water. Acta Phys. Slovaca, 2003, 53(6): 423-428

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700