滑动弧低温等离子体物理化学特性的数值模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑动弧放电是一种低温等离子体发生方式,由于具有较高的能量利用率,并且同时兼具高非平衡度、高电子密度和电子温度,在环境化工和能源等领域有广泛应用前景。大量的工业应用研究已经尝试中,但是控制滑动弧等离子体发展的物理化学机制尚没有得到准确而系统的描述。基于此背景,本文采用数值模拟并辅助实验的方法来研究滑动弧放电的物理化学特性,主要研究内容如下:
     (1)等离子体的电弧温度场、电场和导电区域尺寸是确定电子温度、电子密度、化学反应速率以及能量效率的重要参数。对气流量为1.43L/min和6.42L/min时50Hz交流滑动弧放电的电参数进行了测量;用瞬态的电弧模型描述滑动弧的能量传递,并用近似的介质电导率和热扩散系数对模型进行简化,解决了由于电弧结构变化所导致的移动边界问题;模拟求得等离子体的电弧结构、电场强度和动态温度场等参数的演化。其中,电弧电场的模拟值与实验值基本吻合,计算得到电弧轴心温度可以达到5700-6700K。研究结果表明,气流直接影响电弧结构和电流密度进而影响电弧电场和温度分布,在一个放电周期中电场呈先减小后增大的趋势。
     (2)将电弧等离子体瞬态Elenbaas-Heller模型与麦克斯韦方程组联立,建立一个描述大气压交流滑动弧等离子体放电的非线性模型。通过分析电参数的变化规律探索交流滑动弧放电的自磁特性。研究结果表明,气流量的增加会改变自磁场的演化。气流和自磁场联合作用决定了弧柱结构的变化。具有较小弧半径和较大轴向曲率的电弧段的局部磁场强度和自磁压力会高于其他弧段,这会加剧等离子体放电的不稳定性。
     (3)滑动弧等离子体的电子温度、电子密度和非平衡度是表征等离子体热力学性质的重要参数。根据较高电流时AlⅠ396.1nm的Stark展宽求得电离子体电子密度沿反应器轴线的分布情况;用瞬态的双温度模型描述等离子体放电的能量传递。模拟条件下电子密度可以达到1021~1022m-3数量级,电子密度变化情况符合实验结果;电子温度在一个放电周期的中间60%时间可以大体保持在1.3-1.8eV,并呈现先减小后增大趋势,与根据文献提供的公式的计算结果一致;等离子体的非平衡度和电子温度与电弧电场强度变化趋势相似,增大气流量并不能显著提高非平衡度。
     (4)在假设的温度分布的基础上建立一个描述气液两相滑动弧反应动力学的数学模型。模拟求得的OH粒子分布规律符合光谱诊断结果;研究结果表明较高的温度适于产生OH,并且OH生成量沿反应器轴线有先增大后减小的趋势;模型能较为准确地预测H2O2和H2的生成量;固定氧气流量时,增大水流量可以提高H2O2和H2的生成量。
     (5)以模拟有机污水正丁酸溶液为研究对象,研究了系统参数对降解效果的影响。并进行了滑动弧等离子体分别与TiO2光催化和H2O2联合降解有机污水的研究。结果表明,较高的氧气流量对降解有促进作用;TiO2含量为0.5mg/L时,协同效果最明显;提高H2O2投加量并拉长放置时间,会提高降解效果。
Gliding arc discharge is a low-temperature plasma with high energy efficiency, electron temperature and density and has broad application prospects in the field of environment and energy. Although numerous industrial applications have been attempted, the physical and chemical mechanisms governing the gliding arc evolution are not yet accurately and comprehensively understood. In this dissertation the physical and chemical properties of gliding arc are researched based on numerical simulation and experiments. The main objectives of the current research included as following:
     (1) The arc temperature field, electric field and size of conducting zone of gliding arc plasma are important parameters to determine temperature and density of the electrons, chemical reactions rates and energy efficiency. Electrical parameters of a 50Hz ac gliding arc discharge were measured at two gas flow rate conditions, 1.43L/min and 6.42L/min. An instantaneous model which was used to describe the energy transfer of gliding arc discharge was simplified by using an approximate expression for the electrical conductivity and diffusivity of plasma, which raveled out the moving boundary in the gliding arc simulation resulted by variation of arc structure. The current density, electric field, dynamic temperature field and the structure of ac gliding arc was calculated. The electric field strength from the simulation result of the model was in agreement with the experimental data. According to the calculational result, the temperature in the axis of arc reached as far as 5700-6700K. It showed gas flow directly affected the arc structure and current density, thus affected the electric field strength and temperature distribution. The electric field strength increased firstly and then decreased during a discharge period.
     (2) A nonlinear model of ac gliding arc discharges in atmosphere-pressure is developed based on the combination of the transient Elenbaas-Heller model and Maxwell's equations. According to the calculation results of discharge parameters, the self-magnetic properties of an ac gliding arc discharge is investigated. The numerical results indicate that the increase in the gas flow rate could change the evolution of the magnetic field. The conjunct effect of gas flow and self-magnetic field determines the arc column structure. Zones with smaller arc radius and larger axial curvatures in the plasma region have larger local magnetic field intensity and self-magnetic pressure, which accelerates the instability of discharges.
     (3) The electron temperature, electron density and degree of non-equinibrium are the important parameters that characterize the thermodynamics properties of gliding arc. According to the Stark broadening of the AlⅠ396. 1nm in a high electric current the distribution of the electrone density along the axis of the reactor is obtained. A transient two-temerature model is used to described energy transfer of the plasma discharge. The electrode density can achieve at 1021~1022m-3 orders of magnitude under the simulation conditions. The evolution of the electrode density is consistent with the experimental results. The electron temperature is in the range of 1.3~1.8eV in the middle 60% of a discharge cycle and first decreases and then increases, which is in agreement with results of the formula from literature. The development trend of the non-equilibrium degree of plasma is similar with that of the electric field strength. The increase of the gas flow rate could not evidently increase the non-equilibrium degree.
     (4) A mathematical model describing the chemical-reaction kinetics for gas-liquid gliding arc discharge is developed based upon assumed temperature profiles and chemical reactions. The distribution of OH from simulation agrees with the results from optical emission spectroscopy. The results indicate much higher temperature is in favor of the production of OH. The formation of the OH first increase and then decrease along the axis. The model can accurately predict the production of H2O2 and H2. Increasing the water flow rate leads to higher H2 and H2O2 production at fixed inlet oxygen carrier flow rates.
     (5)Using butyric acid solution as objective pollutant, the influences of the system parameters on the degradation of wastewater are studied. The respective combination of H2O2 and TiO2 photocatalytic with gliding arc are researched. The results shows a higher oxygen flow rate can promote the degradation of organic contamination. When the concentration of the TiO2 is 0.5g/L, the synergistic effect becomes most significant. Increasing the amount of H2O2 could improve degradation rate.
引文
[1]过增元,赵文华.电弧与热等离子体.北京:科学出版社,1986:2-80
    [2]金佑民,樊友三.低温等离子体物理基础.北京:清华大学出版社,1983:2-40
    [3]陈熙.高温电离气体传热与流动.北京:科学出版社,1993 10-50
    [4]林和健,林云琴.低温等离子体技术在环境工程中的研究进展.环境技术,2005,1:21-24
    [5]程文,吕静,徐大锦,李振花.滑动弧光等离子体技术在化工中应用研究进展.天然气化工,2007,32:64-69
    [6]刘亚纳.滑动弧等离子体-生化法降解有机废水的研究.[博士学位论文]杭州浙江大学2008:20-30
    [7]高锦章,陆泉芳,俞洁,胡中爱,杨武.接触辉光放电等离子体降解水体中硝基苯甘肃科学学报2003,15(01):30-34
    [8]陆泉芳,俞洁,刘永军,高锦章.接触辉光放电等离子体降解水体中的对氯硝基苯.西北师范大学学报(自然科学版),2003,39(01):49-53
    [9]张高,莫玉琴,蒲陆梅,梁慧光,赵晶.接触辉光放电等离子体降解水体中的邻氯苯酚[J].甘肃农业大学学报,2005,40(01):97-99.
    [10]张九林.介质阻挡放电降解对氯苯酚废水实验研究.[硕士学位论文]广州华南理工大学2005:10-17
    [11]吴家婷.介质阻挡及微波放电等离子体中OH和O2(1△g)的光腔衰荡光谱研究.[硕士学位论文]大连大连理工大学2010:3-10
    [12]王燕,赵艳辉,白希尧等.DBD等离子体及其应用技术发展.自然杂志2002 24(5):277-282
    [13]章英慧.高压脉冲放电去除废水中氰化物的研究.[硕士学位论文]武汉华中科技大学2005:21-29
    [14]朱承驻.等离子体技术降解水相中有机污染物的机理研究.[硕士学位论文]上海复旦大学2002:1-67
    [15]靳承铀.介质阻挡放电反应器在水处理中的实验研究.[硕士学位论文]大连大连理工硕士2003:24-34
    [16]金伟成.介质阻挡放电脱除NO的实验研究.[硕士学位论文]南京南京理工大学2006:6-10
    [17]刘强,孙鹤鸿.水中脉冲电晕放电等离子体特性及气泡运动.高电压技术2006 32(2):54-56
    [18]杨世东,史富丽,马军等.水中高压脉冲放电机理与效能.工业水处理,2005,25(8):5-9
    [19]郑攀峰.高压脉冲放电协同臭氧处理模拟染料废水.[硕士学位论文]大连大连理工大学,2006:5-49
    [20]郑维.直流电晕放电OH自由基发射光谱研究.[硕士学位论文]大连大连理工大学,2007:4-8
    [21]张二力,吴锦发,甄汉生.用于微细加工的电子回旋共振微波离子源.微细加工技术,1984,3:74.
    [22]赵化侨.等离子体化学与工艺.中国科技大学出版社,1993
    [23]营井秀朗[日].等离子电子工程学.科学出版社,2002
    [24]戴尚莉.气液两相两相滑动弧放电特性的研究.[硕士学位论文]杭州浙江大学2007:3-65
    [25]孙萍.微波技术在环保领域的应用.化工环保,2002,22(2):53-55
    [26]G.Chih. Application of Actived Carbon in a Microwave Radiation Field to Treat Trichloroethylene[J]. Carbon.,1998,36 (11):1643-1648
    [27]宫福强,刘志斌,黄宝龙.微波法处理高浓度有机废水可行性实验[J].2005,24(S1):247-249
    [28]薄拯.滑动弧放电等离子体处理挥发性有机化合物基础研究.[博士学位论文]杭州浙江大学2008:4-41
    [29]V Kalpathi, Destruction of. volatile oranic compounds in a dielectric barrier discharge plasma reaction. Oklahoma State University, Master thesis. (2005)
    [30]A Fridman, S Nester, L Kennedy, A Saveliev,0 Mutaf-Yardimci, Gliding arc gas discharge. Progress in Energy and Combustion Science.25(1999) 211-231
    [31]H Lesueur, A Czernichowski, J Chapelle, Device for generationg low-temperature plasma by formation of sliding electric discharges. French Patent. No.2639172.(1988)
    [32]Czemichowski A. Gliding arc applications to engineering and environment control. Pure and Applied Chemisty,1994,66(6):1301-1310.
    [33]O Mutaf-Yardimci, A Saveliev, A Fridman, L Kennedy. Thermal and nonthermal regimes of gliding arc discharge in air flow. Journal of Applied Physics.2000,87:1632-1641
    [34]钟梨.滑动弧放电等离子体重整甲烷制氢的研究.[硕士学位论文]杭州浙江大学2009:60-65
    [35]Chlranjeev S K, Alexander F, Alexander G, Gliding arc discharges as a source of intermediate plasma for methane partial oxiddation. TEEE Trans Plasma Scl.2005,33(1):32-41
    [36]林烈,吴承康.磁驱动滑动弧放电大气压非平衡等离子体.棱聚变与等离子体物理,2000,20(2):121-128
    [37]江中和,刘明海,辜承林等.磁驱动滑动弧放电装置的磁路设计.核聚变与等离子体物理,2002,22(2):111-114
    [38]Chiranjeev S K, Young I C, Alexasrder G, et al. Gliding are in tornado using a reveme vortex flow. Rev Sci Instrum.2005,76(2):025110-1-025110-7
    [39]Gutsol A, Larjo J, Hernberg R. Comparative study of ICP generator with forward-vortex and reverse-vortex stabilization. Plasma Chem Plasma Proc.2002,22(3):351-369
    [40]Czeniehowski A. Destruetion of waste or toxic gaes and vapours in gliding arc reactor. Destruction of Waste and Toxie Materials Using Electric Discharges, IEE Colloquium on, London, 1992,4/1-4/5
    [41]DalaineV, Cormier J M, Lefaucheux P. A gliding discharge applied to H2S destruction. Joumal of Applied Physics.1998,83(5):2435-2442
    [42]DalaineV, Cormier J M. H2S destruction in 50Hz and 25kHz gliding arc reactors. Jourmal of Applied Physics,1998,8(3):1215-1222
    [43]Czemichowski A. Plasmas pour la destruetion de H2S et des mercaptans. Oil and Gas Science Technology,1999,54(3):337-355
    [44]Czemichowski A, LesururH. Sulphur and nitrogen conversion from oxide to elemental form patent FR2698090,1993
    [45]郊其庚.活性炭的应用.上海华东理工大学出版社,2002
    [46]Krawczyk K, Mlotek M. Combined Plasma-catalytic Proeessing of nitrous oxide applied Catalysis B:Environmental.2001,30(3-4):233-245
    [47]Krawczyk K, Mlotek M. Conversion of N2O in gliding arc discharges. Przemysl Chemistry,2003, 82(10):1387-1390
    [48]Krawczyk K, Mlotek M. Oxidation and decomposition of N2O by gliding discharge combined with a bed of catalyst. High Temperature Materials and processes,2001,5(3):349-353
    [49]Krawczyk K, Ulejczyk B. Decomposition of Chloromethanes in Gliding Discharges. Plasma Chemistry and Plasma Proeessing.2003,23(2):265-281
    [50]Krawczyk K, Ulejczyk B. Influence of water vapour on CC14 and CHC13 conversion in gliding discharge. Plasma chemistry and Plasma Proeessing,2004(24):155-167
    [51]Cezemiehowski A, Ranaivosoloarimanana A. Zapping VOCs with a discontinuous electric arc. Chemine Technologija,1996,26(4):45-49
    [52]Opaljnska T, Opalska A Proc. Glidjng-discharge CF2C12 and CHF2Cl decomposition in reducing conditions.16th Int. Symp. On Plasma Chemistry, Taormina, Italy,2003
    [53]Cezemiehowski A, Lefaueheux P. Electrieally assisted Partial oxidation of light hydrocarbons by oxygen.Patent FR2768424,1999
    [54]Meguemes K, ChaPelle J, Czemiehowski A. Valorization of methane in electric arcs and high Pressure cold discharges.High Tem Perature Material and Proeesses,2001,5(3):363-374
    [55]Cezemiehowski A. GlidArc cassisted preparation of the synthesis gas from natural and waste hydroearbons gases. Oil and Gas Science and Teehnology,2001,56(2):181-98
    [56]CzemiehowskiA. Eleetrically assisted conversion of natural gas into syngas. Katho-Energochem-Ekol,1998,43(11):359-369
    [57]LefauchcuxA, Czemiehowski P, Ranaivosoloarimanana A. Plasma pyrolysis of natural gas in gliding arc reactor. PrC.11th World Hydrogen Energy Conference, Stuttgat,1996,661-666
    [58]Sclnnidt Szalowski K, Krawczyk K, Ruszniak J. Processing of methane by gliding arc discharges. Proc.15th Int. SymP. on Plasma Chemistry, orleans,2001
    [59]Czemichowski A, Wesolowska K. GlidAre-assisted Production of synthesis gas through Partial oxidation of natural gas. First International Conference on Fuel Cell Seience, Engineering and Technology, NewYork,2003,181-185
    [60]MegUemes K, Chapelle J, Czerniehowski A. Oxidization of CH4byCO2 in an electric arc and in a cold discharge. Proc.11th Int.Symp. on Plasma Chemistry, Loughborough, England,1993:710-715
    [61]MegUemesK, Czemichowski A, ChaPelle J. Oxidation of CH4 by H2O in gliding electric arc. VDI Berichte,1995,1166:495-500
    [62]Lesueur H, Czemichowski A. Electrically assisted Partial oxidation of methane. International Journal of Hydrogen Energy.1994,19:139-144
    [63]Mutaf-Yardimei O, Saveliev A V. Hydrogen Production using non-equilibrium Plasma reformers. Int. Conf. on Energy and envimnment, Shanghai, China,1998
    [64]Janca J, Czemichowski A. Wool treatment in the gas discharge Plasma at atmospheric pressure. Surface and Coatings Technology,1998,98(1-3):1112-1115
    [65]Janca J. Process for bleaching and improvement in the behaviour of dyes on organic materials. Patent FR2711680,1994
    [66]BellakhalN, Dachraoui M. Study of the benzotriazole efficiency as a cormsion inhibitor for copper in humid air plasma. Materials Chemistry and Physics,2004,85(2-3):366-369
    [67]O Mutaf-Yardimci, A V Saveliev, P I Porshnev, et al. "Non-equilibrium effects in Gliding Arc discharges" in Heat and Mass Transfer under plasma Conditions. Annals of the New York Academy of Sciences. NewYork:New York Acad Sciences,1999,891:304-308
    [68]I V Kuznetsova, N Y Kalashnikov, A F Gutsol, et al. Effect of "overshooting" in the transitional regimes of the low-current gliding arc discharge. Journal of Applied Physics,2002,92:4231-4237
    [69]Timothy Ombrello, Xiao Qin, Yiguang Ju. Combustion Enhancement via Stabilized Piecewise Nonequilibrium Gliding Arc Plasma Discharge. AIAA Journal,2006,44:142-150
    [70]B Benstaali,1 P Boubert, B G Cheron, A Addou, J L Brisset. Density and Rotational Temperature Measurements of the OH° and NO° Radicals Produced by a Gliding Arc in Humid Air. Plasma Chemistry and Plasma Processing,2002,22(4):553-571
    [71]N Balconl, N Benard, P Braud, A Mizuno, G Touchard and E Moreaul. Prospects of airflow control by a gliding arc in a static magnetic field. J. Phys. D:Appl. Phys.,2008,41:1-9
    [72]Pellerin S, Richard F, Chapelle J, Cormier J-M, Musiol K. Heat string model of bi-dimensional dc Glidarc. J. Phys. D:Appl. Phys.,2000,33:2407-2419
    [73]Bruce R. Locke, Selma Mededovic Thagard. Analysis of Chemical Reactions in Gliding-Arc Reactors With Water Spray Into Flowing Oxygen. IEEE Transactions on Plasma Science,2009,37(4): 494-501
    [74]袁忠才,时家明,黄勇,马柳.低温等离子体数值模拟方法的分析比较.核聚变与等离子体物理,2008,28(3):278-284
    [75]殷凤良,胡绳荪,高忠林,赵立志.等离子体电弧数值模拟的研究进展.兵器材料科学与工程,2007,30(6):59-63
    [76]Ramakrishnan S,Stokes A D,Lowke J J.An approximate model for high-current free-burning arcs. Journal of Physics D(Applied Physics),1978,11(16):2267-2280
    [77]Hsu K C, Etemadi K, Pfender E. Study of the free-burning high-intensity argon arc. Journal of Applied Physics,1983,54(3):1293-1299
    [78]Hsu K C,Pfender E.Two-temperature modeling of the free-burning,high-intensity arc. Journal of Applied Physics,1983,54((8)):4359-4366
    [79]Bauchire J M,Gonzalez J J,Gleizes A.Modeling of a DC plasma torch in laminar and turbulent flow. Plasma Chemistry and Plasma Processing,1997,17(4):409-432
    [80]Gonzalez J J, Freton P,Gleizes A. Comparisons between two-and three-dimensional models:gas injection and arc attachment. Journal of Physics D(Applied Physics),2002,35(24):3181-3191
    [81]Blais A,Proulx P,Boulos M I.Three-dimensional numerical modelling of a magnetically deflected dc transferred arc in argon. Journal of Physics D:Applied Physics,2003,36(5):488-496
    [82]芦凤桂,姚舜,张毓新等.TIG焊接电弧等离子体流场的有限元分析.焊接技术,2004,33(2):14-16
    [83]R L Phillips. Theory of the non-stationary arc column. Brit. J. Appl. Phys.,1967,18:65-78
    [84]Han Ming Wu, G F Carey. Nolinear convective effects on moving boundary ac plasma arcs. IEEE transactions on plasma science,20:1041-1046
    [85]V Dalaine, J M Cormier, P Lefaucheux. A gliding discharge applied to H2S destruction. Journal of applied physics,83(3):2435-2441
    [86]Takayuki Watanabe, Nobuhiko Atsuchi b, Masaya Shigeta. Modeling of non-equilibrium argon-hydrogen induction plasmas under atmospheric pressure. Thin Solid Films,2007,515: 4209-4216
    [87]V Colombo, E Ghedini, P Sanibondi. Thermodynamic and transport properties in non-equilibrium argon, oxygen and nitrogen thermal plasmas. Progress in Nuclear Energy,2008,50:921-933
    [88]Y P Raizer, Gas Discharge Physics. Berlin:Springer,1997,10-82
    [89]M S Benilov, G V Naidisl. Modelling of low-current discharges in atmospheric-pressure air taking account of non-equilibrium effects. J. Phys. D:Appl. Phys.,2003,36:1834-1841
    [90]G Velleaud, D Pezaire, Al Laurent, M Mercier, F Gary. Study of the dynamics of the roots of a low-voltage break-arc. IEEE transations on plasma science,1995,23:48-53
    [91]汪宇,李晓东,余量,严建华.滑动弧低温等离子体放电特性的数值模拟研究.物理学报,2011,60(3):354-360
    [92]Fleuriert C, Brechot S S, Chapelle J. Stark profiles of Al Ⅰ and Al Ⅱ lines. J. Phys. B: Atom. Molec. Phys.,1977,10(17):3435-3441
    [93]F.Richard, J. M.Cormier, S.Pellerin, J.Chapelle, et al. Physical study of a gliding arc discharge. Appl. Phys.,1996,79 (5):2245-2250
    [94]L.Delair, J.L.Brisset, B.G.Cheron. Spectral electrical and dynamical analysis of a 50 Hz air gliding arc," vol. Doctor. France,2001
    [95]Radu Burlica, J Michael, Kirkpatrickb. Formation of reactive species in gliding arc discharges with liquid water. Journal of Electrostatics,2006,64:35-43
    [96]杜长明,滑动弧放电等离子体降解气相及液相中的有机污染物的研究.[博士学位论文]杭州浙江大学2006,43-137
    [97]Antonius Indarto, Jae Wook Choi, Hwaung Lee, Hyung Keun Song. Kinetic Modeling of Plasma Methane Conversion Using Gliding Arc. Journal of Natural Gas Chemistry,14:13-21
    [98]Kheira Marouf-Khelifa, Fatiha Abdelmalek, Amine Khelifa, Ahmed Addou, TiO2-assisted degradation of a perfluorinated surfactant in aqueous solutions treated by gliding arc discharge. Chemosphere,2008,70:1995-2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700