滑动弧放电等离子体重整燃料制氢实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑动弧等放电离子体是一种常温常压下的非平衡等离子体,它兼具热等离子体和低温等离子体的特点,能量转化效率高,而且设备简单,操作方便,因此,滑动弧放电等离子体作为一种新的制氢技术,具有良好的应用前景。
     本文利用滑动弧放电等离子体,分别以氨气和甲烷作为原料气体,开展了滑动弧放电等离子体重整燃料制氢的实验研究,重点考察了放电电压、进气流量和原料配比等参数对反应的影响,同时对刀片式滑动弧放电等离子体发生方式进行了改进,设计了一套旋转滑动弧放电等离子体发生装置,并利用其进行了甲烷重整制氢的实验研究。
     研究结果表明,滑动弧放电等离子体技术可以在无催化剂的情况下,实现常温常压下分解氨气制氢。放电电压的升高可以提高氨气转化率,同时降低制氢能耗;进气流量的增加会降低氨气转化率,但对制氢能耗的影响则相对复杂一些,制氢能耗会先降低而后升高;氮气的加入有助于提高氨气分解率。
     采用旋转滑动弧放电等离子体在氮气气氛下分解甲烷时,其分解的主要产物包括固体产物炭黑和气体产物氢气、乙烯和乙炔等。放电电压和氮气浓度的升高都可以提高甲烷转化率,进气流量的升高则会缩短反应气体在等离子体区域内的停留时间,同时降低等离子区域内的能量密度,从而降低了甲烷转化率。
     旋转滑动弧放电等离子体部分氧化重整甲烷制氢过程中,放电电压是一个非常重要的参数,放电电压越高,越有利于反应的进行;进气流量增加时,制氢能耗会先降后升;反应器外罩的变化对甲烷重整反应也有一定的影响;过量空气系数逐渐增大时,氢气选择性会先升高后降低,实验结果表明,空气稍过量会有助氢气选择性的提高。
Gliding arc discharge plasma is the non-equilibrium plasma at ambient condition, and has a dual character of thermal and non-thermal plasma. It has a high efficiency of energy transformation and inexpensive cost both from devices and operations. The gliding arc discharge plasma has a favorable foreground in the practical production as a new hydrogen production technology.
     The experimental research on reforming of fuels into hydrogen, using the ammonia and methane as raw materials, with gliding arc discharge plasma was studied. We stressed the effects of supply voltage, total flow and material ratio on the reactions and made an improvement on flat gliding arc discharge generator. A new rotating gliding arc discharge generator was designed and used for methane-reforming.
     The experiment indicated that, gliding arc discharge could decompose ammonia without the catalyst at ambient condition. Increasing of supply voltage can improve the decomposition rate of ammonia, and the energy cost for hydrogen could also decline. Increasing of total flow rate could decrease the decomposition rate and had a complex effect on energy cost for hydrogen, and the energy cost would decrease first and increase after. The decomposition rate would increase with the adding of some nitrogen.
     Products of methane decomposition with rotating gliding arc discharge in nitrogen atmosphere were carbon black, hydrogen, ethylene, acetylene and so on. Increasing of supply voltage and concentration of nitrogen could improve the decomposition rate of methane. Increasing of total flow would reduce the staying time of reactant gas in plasma space and the energy density of plasma space, and then reduce the decomposition rate of methane.
     Supply voltage is an important parameter in partial oxidation of methane with rotating gliding arc discharge, and high supply voltage could be beneficial to the reaction. With increasing of total flow, energy consumption for hydrogen would decrease first and increase after. The height of device cover also has an effect on the reaction. With increasing of excess air coefficient, hydrogen selectivity would increase first and decrease after, and the experiment show that a bit excessive oxygen would be benefit for increasing the hydrogen selectivity.
引文
[1]Barry D. Solomon, Abhijit Banerjee. A global survey of hydrogen energy research, development and policy [J]. Energy Policy,2006,34:781-792.
    [2]毛宗强,刘志华.中国氢能发展战略思考[J].电池,2002,32(3):150-152.
    [3]T. Nejat Veziroglu, Sumer Sahin.21st Century's energy:Hydrogen energy system[J].Energy Conversion and Management,2008,49(7):1820-1831.
    [4]沈永兵.生物质气化制氢数值模拟和实验研究[D].东南大学,2006.
    [5]丁福臣,易玉峰.制氢储氢技术[M].北京:化学工业出版社,2006.
    [6]蔡炽柳.氢能及其应用前景分析[J].能源与环境,2008,5:39-41.
    [7]T. V. Choudhary, D. W. Goodman. CO-free fuel processing for fuel cell applications, Catalysis Today,2002,77(1-2):65-78.
    [8]蔺灿坤.大气压下火花放电等离子体高效转化甲烷制氢和乙炔的研究[D].大连理工大学,2008.
    [9]程庆.钙基二氧化碳吸收剂强化重整制氢的研究[D].北京科技大学,2009.
    [10]李言浩,马沛生,阎振华等.天然气等离子体法制氢技术[J].天然气化工,2003,3:43-45.
    [11]J Zhu, D Zhang, K D King. Reforming of CH4 by partial oxidation:thermodynamic and kinetic analyses [J]. Fuel,2001,80(7):899-950.
    [12]S. S. Bharadwaj, L. D. Schmidt. Catalytic partial oxidation of natural gas to syngas [J]. Fuel Processing Technology,1995,42(2-3):109-127.
    [13]甲烷制氢技术研究进展[J].天然气气工业,2005,25(2):165-168.
    [14]V A Tsipouriari, Z Zhang, X E Verykios. Catalytic Partial Oxidation of Methane to Synthesis Gas over Ni-Based Catalysts:Ⅰ.Catalyst Performance Characteristics. Journal of Catalysis,1998,179(1):283-291.
    [15]M. Steinberg, Production of hydrogen and methanol from natural gas with reduced CO2 emission [J]. International Journal of Hydrogen Energy,1998,23(6):419-425.
    [16]T. V. Choudhary, D. W. Goodman. CO-free fuel processing for fuel cell applications[J].Catalysis Today,2002,77(1-2):65-78.
    [17]许峥,张鎏,张继炎.Ni/y-A12O3催化剂上CH4-CO2重整体系中积碳-消碳的研究[J].催化学报,2001,22(1):18-22.
    [18]Nobuyuki Gokon, Yoshinori Oku, Hiroshi Kaneko,et al. Methane reforming with CO2 in molten salt using FeO catalyst[J]. Solar Energy,2002,72(3):243-250.
    [19]A. S. Chellappa, C. M. Fischer, W. J. Thomson. Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications[J]. Applied Catalysis A:General,2002,227(1-2): 231-240.
    [20]S.F. Yin, B.Q. Xu, X.P. Zhou, et al. A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications [J]. Applied Catalysis A: General,2004,227(1-2):1-9.
    [21]张宝爱.低温条件下甲醇催化分解研究[J].中北大学学报,2005,25(5):366-371.
    [22]Yasuo Ohtsuka, Chunbao Xu, Dapeng Kong,et al. Decomposition of ammonia with iron and calcium catalysts supported on coal chars[J]. Fuel,2004,83(6):685-692.
    [23]张黎明,秦永宁,沈美庆等.载体对镍基氨分解催化剂催化性能的影响[J].燃烧科学与技术,2000,6(1):70-72.
    [24]张钦辉,秦永宁.载体和助剂对NiO催化剂氨分解反应的影响[J].石油学报,2002,18(4):43-46.
    [25]倪平,储伟,王立楠等.氨催化分解制备无C的氢气催化剂研究进展[J].化工进展,2006,25(7):739-743.
    [26]王丽.等离子体催化氨气裂解制氢的研究[D].大连理工大学,2006.
    [27]T.V.Choudhary, C.Sivadinarayana, D.W.Goodman. Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications [J]. Catalysis Letters,2001,72(3-4): 197-201.
    [28]徐柏庆,尹双凤等,低温型氨分解制备氢气的催化剂及其制备方法[P].中国专利:CN1528657A,2004-9-15.
    [29]S F Yin, B Q Xu, W X Zhu, et al. Carbon nanotubes-supported Ru catalyst for the generation of COx-free hydrogen from ammonia[J]. Catalysis Today,2004,93-95:27-38.
    [30]Wioletta Rarog Pilecka, Dariusz Szmigiel, Zbigniew Kowalczyk, et al. Ammonia decomposition over the carbon-based ruthenium catalyst promoted with barium or cesium [J]. Journal of Catalysis,2003,218(2):465-469.
    [31]W. Crookes's evening lecture to the Royal Institution on Friday,30th April 1897.
    [32]D. Gurnett, A. Bhattacharjee, Introduction to Plasma Physics:With Space and Laboratory Applications (2005).
    [33]孙晓丹.滑动弧等离子体降解模拟有机废水的初步研究[D].浙江大学,2006.
    [34]吴芳.滑动弧放电催化协同降解有机污染物的实验研究[D].浙江大学,2008.
    [35]J. Hlina, J. Sonsky. Recurrent properties of coherent structures in a thermal plasma jet. 2008 IEEE 35th International Conference on Plasma Science. (2008) 1.
    [36]I. Matveev, S. Matveeva. Non-thermal plasma tools for ignition and flame control. IEEE 35th International Conference on Plasma Science, Germany, (2008).
    [37]Chang-jun Liu, Richard Mallinson, Lance Lobban. Nonoxidative Methane Conversion to Acetylene over Zeolite in a Low Temperature Plasma[J]. Journal of catalysis,179(1):326-334.
    [38]K. Thanyachotpaiboon, S. Chavadej, T. A. Caldwell, et al. Conversion of methane to higher hydrocarbons in AC nonequilibrium plasmas [J]. AIChE Journal,1998,44(10): 2252-2257.
    [39]严宗诚,陈砺,王红林.液下辉光放电等离子体重整低碳醇水溶液制氢[J].化工学报,2006,57(6):1432-1437.
    [40]S. L. Yao, E. Suzuki, N. Meng, et al. Influence of Rise Time of Pulse Voltage on the Pulsed Plasma Conversion of Methane[J]. Energy Fuels,2001,15(5):1300-1303.
    [41]Shuiliang Yao, Eiji Suzuki, Akira Nakayama. A novel pulsed plasma for chemical conversion[J]. Thin Solid Films,2001,390(1-2):165-169.
    [42]A. Oumghar, J. C. Legrand, A. M. Diamy,et al,Methane conversion by an air microwave plasma[J],Plasma Chemistry and Plasma Processing,1995,15(1):87-107.
    [43]徐云鹏.微波技术在甲烷转化过程中的应用[D].中国科学院大连化学物理研究所,2001.
    [44]H. Lesueur, A. Czernichowski, J. Chapelle. Device for generating low-temperature plasmas by formation of sliding electric discharges [P]. French Patent. No.2639172. (1988).
    [45]A Fridman, S Nester, L A Kennedy, et al. Gliding arc gas discharge [J]. Progress in Energy and Combustion Science,1998,25(5):221-231.
    [46]O. Mutaf-Yardimci, A. Saveliev, A. Fridman, L. Kennedy, Thermal and nonthermal regimes of gliding arc discharge in air flow. Journal of Applied Physics.2000,87 (4): 1632-1641.
    [47]I.V.Kuznetsova, N.Y.Kalashnikov, A.F.Gutsol, et al. Effect of "overshooting" in the transitional regimes of the low-current gliding arc discharge[J]. Journal of Applied Physics,2002,92:4231-4237.
    [48]薄拯,严建华,李晓东等.滑动弧放电等离子体裂解正己烷实验研究[J].环境科学学报,2006,26(6):877-881.
    [49]薄拯.滑动弧放电等离子体处理挥发性有机化合物基础研究[D],杭州:浙江大学,2008.
    [50]杜长明,李俊岭,严建华.滑动弧放电等离子体去除甲苯的实验研究[J].高压电技术,2008,34(3):512-516.
    [51]戴尚莉,李晓东,杜长明等.气液两相滑动弧降解甲基紫废水影响因素的实验研究[J].能源工程,2007,(1):44-47.
    [52]Zheng Bo, Jianhua Yan, Xiaodong Li, et al. Plasma assisted dry methane reforming using gliding arc gas discharge:Effect of feed gases proportion [J]. Internation Journal of Hydrogen Energy,2008,33(20):5545-5553.
    [53]A. Czernichowski, P. Labbe, F. laval, H. Lesueur, Plasma-assisted cleaning of flue gas from sooting combustion. Emerging Technologies in Hazardous Waste Management ACS Symposium Series. USA. (1995).
    [54]S. Saniuk, S. Kingsep, V. Rusanov, A. Czernichowski, Proc ISPC11. UK. (1993).
    [55]H Shiki, J Motoki, Y Ito, et al. Development of split gliding arc for surface treatment of conductive material [J]. Thin solid films,2008,516:3684-3689.
    [56]A. Czernichowski. Gliding Arc application to engineering and environment control[J]. Pure and Applied Chemistry,1994,66(6):1301-1310.
    [57]Krawczyk K, Bogdan Ulejczyk. Decomposition of Chloromethanes in gliding arc discharge[J]. Plasma Chemistry and Plasma Processing,2003,23(2):265-281.
    [58]Krawczyk K, Bogdan Ulejczyk. Influnce of Water Vaper on CCl4 and CHCl3 Conversion in gliding arc discharge[J]. Plasma Chemistry and Plasma Processing,2004,24(2): 155-167.
    [59]Antonius Indarto, Dae Ryook Yangb, Che Husna Azharic, et al. Advance VOCs decomposition method by gliding arc plasma[J]. Chemical Engineering Journal, 2007,131:337-341.
    [60]杜长明,严建华,B G Cheron等.利用滑动弧光放电脱除烟气中多环芳烃和碳黑颗粒[J].中国电机工程学报,2006,26(1):77-81.
    [61]F Abdelmalek, S Gharbi, B Benstaali, et al. Plasmachemical degradation of azo dyes by humid air plasma:Yellow Supranol 4GL, Scarlet Red Nylosan F3GL and industrial waste[J], Water research,2004,38(9):2339-2347.
    [62]E.B. TsagouSobze, D. Moussa, A.Doubla, et al. Degradation of acetate and toluene means of an electric discharge in humid air. Proc.19th Int. Symp. On Plasma Chemistry[C]. Taormina, Italy,2006.
    [63]王达望,马腾才,崔锦华等.大气压旋转螺旋状电极辉光放电等离子体催化甲烷偶联[J].物理化学学报,2005,21(11):1291-1294.
    [64]Liu C J, Mavafee A, Xu G H, et al. Oxidative Coupling of Methane with ac and dc Corona Discharges [J]. Industrial & Engineering Chemistry Reseach,1996,35(10):3295-3301.
    [65]T. Paulmier, L. Fulcheri. Use of non-thermal plasma for hydrocarbon reforming[J]. Chemical Engineering Journal,2005,106:59-71.
    [66]Antonius Indartoa, Jae-Wook Choia, Hwaung Lee, et al. Effect of additive gases on methane conversion using gliding arc discharge[J]. Energy,2006,31(14):2986-2995.
    [67]Iulian Rusua, Jean-Marie Cormier. On a possible mechanism of the methane steam reforming in a gliding arc reactor [J]. Chemical Engineering Journal,2003,91(1):23-31.
    [68]Thammanoon Sreethawong, Piyaphon Thakonpatthanakun, Sumaeth Chavadej. Partial oxidation of methane with air for synthesis gas production in a multistage gliding arc discharge system[J]. International Journal of Hydrogen Energy,2007,32(8):1067-1079.
    [69]Czernichowski A, Czernichowski M, Czernichowski P. GlidArc-assisted reforming of gasoline and diesel oils into synthesis gas [C], European hydrogen energy conference (EHEC), Grenoble, France, September 2003.
    [70]Michael J. Gallagher, Robert Geiger, Anatoliy Polevich, et al. On-board plasma-assisted conversion of heavy hydrocarbons into synthesis gas[J]. Fuel,2010,89(6): 1187-1192.
    [71]T. Nunnally, K. Gutsol, A. Rabinovich, et al. Dissociation of H2S in non-equilibrium gliding arc'tornado'discharge[J]. International Journal of Hydrogen Energy,2009, 34(18):7618-7625.
    [72]Iulian Rusu, Jean-Marie Cormier. Study of a rotarc plasma reactor stability by means of electric discharge frequency analysis [J]. International Journal of Hydrogen Energy,2003, 28(10):1039-1043.
    [73]XS Li, AM Zhu, KJ Wang, et al. Methane conversion to C2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques [J]. Catalysis Today,2004,98(4):617-624.
    [74]任树强.介质阻挡放电等离子体转化甲烷的研究[D].天津大学,2006.
    [75]S Kado, K Urasaki, Y Sekine, et al. Reaction mechanism of methane activation using non-equilibrium pulsed discharge at room temperature[J]. Fuel,2003,82(18):2291-2297.
    [76]Zheng Bo, Jianhua Yan, Xiaodong Li, et al. Nitrogen dioxide formation in the gliding arc discharge-assisted decomposition of volatile organic compounds[J]. Journal of Hazardous Materials,2009,166(2-3):1210-1216.
    [77]A. Oumghar, J. C. Legrand, A. M. Diamy, et al. A Kinetic Study of Methane Conversion by a Dinitrogen Microwave Pla ma[J]. Plasma Chemistry and Plasma Processing, 1994,14(3):229-249.
    [78]钟犁.滑动弧放电等离子体重整甲烷制氢的研究[D].浙江大学,2010.
    [79]D.H Lee, K.T Kim, M.S Cha, et al. Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane[J]. Proceeding of the Combustion Institute,2007,31(2): 3343-3351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700