离心喷嘴雾化特性实验研究和数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃油喷嘴的雾化特性直接关系到燃烧室的工作效率和稳定性。由于离心式喷嘴雾化性能好、结构相对简单、运行可靠,被广泛应用。国内外对离心喷嘴主要以实验方式研究几何结构以及工况参数对喷嘴雾化性能的影响,随着计算技术提高,数值模拟对揭示这一物理过程也起到越来越重要的作用。但是由于喷嘴雾化过程的复杂性,人们对喷嘴雾化机理还没有统一的认识。
     论文结合理论分析、实验研究和数值模拟开展了离心喷嘴喷雾特性的研究。为了更好的进行模型化研究,加工了放大的石英喷嘴,并建立了可视化的水压实验系统,同时用实用的离心喷嘴和相应实验系统进行了研究。应用二维和三维数值模拟着重分析了喷嘴的内外部流场。
     通过简化模型的理论推导和量纲分析对离心喷嘴进行了理论分析。理论推导得出了简化模型下的特征参数A与流量系数、喷雾锥角与旋流中心的空心柱之间的完整的数学关系。量纲分析得出离心喷嘴雾化过程与几何参数A、Re数有关,弥补了简化模型理论分析中喷嘴雾化特性与流速、粘性无关的弱点。根据实验结果对不同特征参数A和不同压力下的流量系数计算,拟合出流量系数关于特征参数A和流动Re数的流量系数函数,并根据理论流量系数和实验流量系数拟合出流量系数的修正表达式。
     通过实验和数值模拟研究了放大的石英模型喷嘴的流场和雾化特性。实验观测了可视化喷嘴的内、外部流场以及喷嘴在启动、关闭等非稳态下的动态响应过程,喷嘴内部空心柱的形成。根据实验结果发现,在低压下空心柱的直径较小,随着压力的增加,空心柱直径变大,与理论分析相符。实验观测了出口液膜的动态特性,随着喷射压力的增加,扰动的频率加快,液膜破碎距离减小,相应的随着压力的升高,喷嘴表面波的扰动变大,雾化的性能越好。通过二维VOF数值模拟计算了可视化离心喷嘴雾化锥角大小、流场结构以及速度分布等。数值模拟揭示了旋流室的内外部流场,旋流室内的空心柱的形状与实验符合,雾化锥角和实验相比偏大,但是规律基本一致。
     对实用的小型离心喷嘴进行了雾化特性实验与三维数值模拟。对实用离心喷嘴进行雾化特性实验研究,得出不同压力下的雾化粒度及雾化锥角。数值模拟了喷嘴从启动到稳定的动态过程,捕捉了燃油液柱—液膜包—波状流—带状破裂—稳定雾化形成空心锥形液膜的过程。数值模拟得出喷嘴出口附近的空心涡的存在,结果得出的雾化锥角和实验比较接近。数值模拟了不同出口斜扩角对雾化锥角的影响并进行了分析。对喷嘴流量系数和液膜厚度进行了理论计算、实验研究和数值模拟的三方对照,流量系数计算值和实验值都随着压力的增加而减小,理论计算和数值模拟及实验结果相比存在误差,但是变化趋势一致。
     离心喷嘴雾化是一个复杂的物理过程。本文的实验研究,尤其是模型喷嘴的实验结果为进一步的理论研究提供了基础数据。理论分析和数值模拟结果也可为喷嘴设计提供参考。
The atomization characteristic of the nozzle is directly related to the efficiency and stability of the combustion. The pressure atomizer is widely used because of simple structure and reliable operation. Domestic and foreign scholars research the influence of the geometry and working parameters on the atomization performance by experiments. With computing technology improvement, numerical simulation is playing a more and more important role in revealing the atomization physical processes. However, the atomization Mechanism is not unified understanding because of the complexity of the atomization process of the nozzle.
     In this paper, theoretical analysis, numerical simulation and experimental technologies were used for the study of the spray characteristics of the typical pressure atomizer. For the better modeling studies, machining a larger quartz nozzle and establish a visualization system hydrostatic test, practical pressure atomizer and the corresponding experimental system were studied at the same time. Focus on the internal and external flow field of the nozzle by two-dimensional and three-dimensional numerical simulation.
     The atomization of the pressure atomizer is analyzed theoretically by the simplified model theory and dimensional analysis. The complete mathematical relationship between the characteristic parameters A, flow coefficient and hollow of the cyclone center of the simplified model is obtained by theoretical derivation. The atomization process of the pressure atomizer was related to the geometric parameters A and Re number by dimensional analysis, which to make up for the weakness of the theoretical analysis on the simplified model that nozzle atomization characteristics was not related to the flow rate and viscosity. The flow coefficient of different characteristic parameters A under different pressure was calculated by the experimental result, fitting flow coefficient function on the characteristic parameters o A and Re, and fitting the correction flow coefficient expression based on theoretical and experimental flow coefficient.
     The flow field in the enlarged quartz model nozzle and the atomization characteristics was researched by experiment and numerical simulation. We observed the internal and external flow field of the visual nozzle and the non-steady-state dynamic response at the starting and shutting moment, and observed the internal hollow column formation in the nozzle. Based on the experimental results, the diameter was smaller in the hollow column under low pressure, as the pressure increases, the hollow column become larger, which is conformed to the Theoretical analysis. We observed the dynamic characteristics of the liquid film of the export, with the ejection pressure increasing, the Perturbation Frequency accelerated, the breakup distance decreases, the surface wave perturbations becomes larger, the performance of the atomization becomes better. We calculated the size of the spray cone angle, flow field structure and velocity distribution of the nozzle through VOF two-dimensional numerical simulation. Numerical simulation reveals the vortex vessel of the internal and external flow field, and the shape of the hollow columns of the swirl chamber accords with the experiment, the spray cone angle is larger than the experiment result, but the regularity is basically the same.
     Experiment and three-dimensional numerical simulation was done for a small practical pressure atomizer. The experimental study on the atomization characteristics of the pressure atomizer obtained atomized particle size and spray cone angle under the different pressure. Numerical simulation recorded the dynamic process of the change from the start to the stability, capturing process of the hollow conical liquid film is formed, the process is the fuel liquid column-liquid film packet-wavy flow-banded rupture-stabilize atomizing. The Numerical Simulation derived that the hollow vortex exits near the exit of nozzle, the spray cone angle derived from the results is relatively closed to experiment. Numerical simulation of different exit ramp expansion angle of the spray cone angle and analyzed. The influence of different exit expansion angle to the spray cone angle was simulated of and analyzed.
     The nozzle flow coefficient and film thickness were compared by three ways experiment, numerical simulation and theoretical calculated, the calculated and experimental values of the flow coefficient decreases with increasing pressure, theoretical calculations and numerical simulation exits the error compared to the experimental results are, but exits the same variation trend.
     The atomization of pressure atomizer is a complex physical process. Experimental study of this paper, especially the experimental results of the model nozzle provides basic data for the further theoretical study. The theoretical analysis and numerical simulation results can also provide reference for the nozzle design.
引文
[1]高剑,蒋德明.柴油机喷雾特性的测试方法[J].柴油机,2002,
    [2]董尧清.国外柴油机喷雾特性的研究现状[J].国外油泵油嘴,1985,
    [3]黄素逸.动力工程现代测试技术[M].武汉:华中科技大学出版社,2001.
    [4]徐航,朱崇基.激光全息技术应用于柴油喷雾场的研究.,Vol.12(1),.[J].内燃机学报,1994,12(2):
    [5]贺萍.直喷式柴油机喷雾碰壁混合三维数值模拟及实验研究[D];华中理工大学博士学位论文,1996.
    [6]H E, N C..Initial Drop Size and Velocity Distributions for Airblast Coaxial Atomizers [J]. Fluid Engineering,1991,113(3):453-459.
    [7]J S, T K. Quantitative Analysis of Fuel Vapor Concentration in Diesel Spray by Exciplex Fluorescence Method. SAE Paper 970796,1997,
    [8]Cao Z M, Nishino K, Torii K. Digital-Imaging Measurement of Diesel Fuel Spray Using Double-Pulsed Laser-Induced Fluorescence. Trans. JSME, Ser. B, Vol.65(629), pp.71-77,1999
    [9]孟庆生.信息论[M].西安:西安交通大学出版社,1986.
    [10]A B M, HENTSCHEL W. V, PP.101-120. Laser Metrology-A Diagnostic Tool in Automotive Development Processes [J]. Optics and Lasers in Engineering,2000(34):pp. 101-120
    [11]M B G, PP. Modeling Atomization of High-Pressure Diesel Sprays [J]. ASME Journal of Engineering for Gas Turbine and Power, Vol.2001(123), pp.419-427.
    [12]成晓北.柴油机燃油喷射雾化过程的机理与试验研究博士学位论文[D];华中科技大学,2002.
    [13]N.K. Rizk, J.5.Chin, ComPrehensive Fuel Nozzle Model, AIAA94-3278.
    [14]K.D.BRUNDISH, WILSON C W. Improved Combustion Mixture Control Using a Novel Fuel Injector [M].2001.
    [15]K.D.Brundish,S.Nash and C.Wilson,The Initial Design of a Fluidically Controlled Variable Geometry Fuel Injector.AIAA 98-3908,1998
    [16]龚景松,傅维标.“旋转型气-液雾化喷嘴”流量特性的实验研究[J].热能动力工程,2004,19(4):376-379.
    [17]龚景松,傅维标.“旋转型气-液雾化喷嘴”的雾化角与流量分布特性研究[J].冶金能源,2004,23(1):44-47.
    [18]龚景松,傅维标.旋转型气-液雾化喷嘴的雾化特性研究[J].热能动力工程,2006,21(6):
    [19]C.W H. An Arbitrary-Lagrangian-Eulerian Computing method for All Flow Speeds [J]. CompPhys,1974,14(26).
    [20]F N W.P W. SLIC (simple line interface calculation) in van Dooren AI and Zandberger P [J]. Lecture Notes in Physics,1982,59(8).
    [21]D G, B M N, V D. Numerical simulation of wavy falling film flow using VOF method [J]. Compute Phys,2003,192(189).
    [22]P B J, L B D. Flux-corrected transport algorithm that works [J]. Compute Phys,1973,11(31.
    [23]ST Z. Fullymult-i dimensional flux-corrected transport a-lgorithms for fluids [J]. Compute Phys,,1979,31(27).
    [24]Y L P. Numerical method for calculation of surface tension flows in arbitrary grids [J]. AIAA J,1991,29(7).
    [25]张健,方杰,范波芹.VOF方法理论与应用综述[J].水利水电科技进展,2005,25(2):4.
    [26]T M, S T, A B. Coupling level set/vof/ghost fluid methods:Validation and application to 3D simulation of the primary break-up of a liquid jet [J]. International Journal of Multiphase Flow, 2007,33(5):15.
    [27]J I, H H, T T. Integrated simulation of the atomization process of a liquid jet through a cylindrical nozzle [J]. Interdisciplinary Information Sciences,2007,13(1):16.
    [28]R L, T M, A B P. Numerical simulation of primary break-up and atomization:DNS and modelling study [J]. International Journal of Multiphase Flow,2009,35(3)
    [29]XUE J, JOG M A, JENG S M, et al. Effect of geometric parameters on simplex atomizer performance [J]. AIAA 2004,42(12):7.
    [30]S.M.JENG, A.T.SAKMAN. A Numerical Parametric Study of simplex Fuel Nozzle Internal Flow and Performance [J]. AIAA Journal,1998,36(2):
    [31]S.M.JENG, M.A.JOG. Computational and Experimental Study of Liquid Sheet Emanating from SimPlex Fuel Nozzle [J]. AIAA97-0796,1997,
    [32]T S A, JHA S J,1998. A Numerical Parametric Study of Simplex Fuel Nozzle Internal Flow and Performance [J]. AIAA-98,1998,3906(
    [33]A D, K S S. Numerical Prediction of Air Core Diameter, Coefficient of Discharge and Spray Cone Angle of a Spray Pressure Nozzle [J]. International Journal of Heat and Fluid Flow,2000, 21
    [34]MADSEN J, HJERTAGER. Numerical Simulation of Internal Flow in a Larege-scale Pressure-Swirl Atomizer [J]. Aalborg University Esbjerg,2004,
    [35]ISHIMOTO J. Integrated Simulation of the Atomization Process of a Liquid Jet Through aCylindrical Nozzle [J]. Interdisciplinary Information Sciences,2007,3(1):7-16.
    [36]王振国等.气液同轴离心式喷嘴喷雾流场数值模拟[J].推进技术,1996,17(3)(
    [37]王国辉,蔡体敏,何国强,et al.一种旋流式喷嘴的实验和数值研究[J].推进技术,2003,24(1):
    [38]周立新,张会强,雷凡培,et al.离心式喷嘴内流场特性的数值模拟[J].推进技术,2002,23(6):5.
    [39]S.P.LIN. Breakup of Liquid Sheets and Jets [J]. International Journal of Automotive Technology,3(2):8.
    [40]H.P.TRINH. Modeling of Turbulence Effecton Liquid Jet Atomization [J]. NASA/TM,2007,
    [41]ZUO B, M.GOMES A. Rutland.Modeling Superheated Fuel Sprays and Vaporization [J]. Engine Research,2001,
    [42]THOMAS BOECK [J]. Numerical Simulation of Liquid-Gas Interfaces with Applications to Atomization [J]. Laboratoire de Modelisation en Mecanique,2004,
    [43]D.KIM, DESJARDINS O, M.HERRMANN, et al. Toward Two-Phase Simulation of the Primary Breakup of a Round Liquid Jet by a Coaxial Flow of Gas [J]. Center for Turbulence Research Annual Research Briefs,2006,11.
    [44]JUNG-HYUN, SOO-YOUNG R A. Breakup Length of Conical Emulsion Sheet Discharged by Pressure-Swirl Atomizaer [J]. International Journal of Automotive Technology,2(3):5.
    [45]XUE J. Computational Simulation of Flow Inside Pressure-Swirl Atomizers [D]; University of Cincinnati,2001.
    [46]DENISON M K, WEBB B W. A Speetral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers [J]. Heat Transfer,1993,115(11.
    [47]S.A.MORSIAND, A.J.ALEXANDER. An Investigation of Partiele Trajectories in Two-Phase Flow Systems [J]. Fluid Mech,55(2):20.
    [48]ZHDANOV. S K. Nonlinear theory of Kelvin-Helmholtz instability [M]. PhysieaD87.,1995.
    [49]T.F.SMITH, Z.F.SHEN, FRIEDMAN J N. Evaluation of Coeffieients for the Weighted Sum of Gray Gases Model [J]. Heat Transfer,1982,4.
    [50]ZHDANOV S K. Nonlinear theory of Kelvin-Helmholtz instability [M].1995.
    [51]TAYLOR G I[J] The Stability of Liquid Surface when Aeeelerated in a Direction Perpendicular to Their Planes [J]. Pro Roy Soe,1950,201(5.
    [52]C O. Formation of DropS by Nozzle and Breakup of Liquid Jets [J]. Z Angew Math Mech, 1936,16(3):355.
    [53]D R R. AtomiZation and Other BreakuP Regimes of a Liquid Jet [J]. New Jersey:Prineeton University,1978,
    [54]D R R. Breakup Regimes of a Single Liquid Jet [J]. American Math Soc,1976,
    [55]P L S, W L Z. Meehanism of the Breakup of Liquid JetS [J]. AIAA J,1990,28(1):6.
    [56]H S J, G L X. Absolute and Instability Conneetive of CylindriCal Liquid Jets in Co-Flowing Gas Streams [J]. Atom Sprays,1998,8(1):17.
    [57]AIE. Asynunetric Instability of a Viscous Liquid Jet [J]. Journal of Colloid and Interface Science,1997,189(3.
    [58]M A, K.J A. Surface Wave Transition Before Breakup on a Laminar Liquid Jet [J]. Int J Heat Fluid Flow,1999,20(5.
    [59]B G, B L Z, D F. Linear Analysis of the Temporal Instability of AXisy-mmetrical Non-Newtonian LiquidJets [J]. Int J MultiPhase Flow,2000,26(
    [60]IBRAHIM. Comprehensive study of internal flow field and linear and nonlinear instability of an annular liquid sheet emanating from an atomizer [D]; University of Cincinnati,2006.
    [61]D C, J Y A. Waves on the air/liquid interface of a pressure swirl atomizer [J]. ILASS-Europe, 2001,
    [62]SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy viscosity model for high Reynolds number turbulence flows- Model Development and Validation [J]. Comput Fluids, 1995,24(3):

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700