新型水煤浆气化喷嘴和气化炉的开发以及气化过程数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水煤浆气化技术在近年来一直受到国际社会和我国的高度重视,我国在“六五”、“七五”、“八五”、“九五”科技攻关项目中一直将水煤浆技术列在其中。水煤浆技术在我国也得到了空前的发展,并取得了可喜的成绩。然而,与国际社会相比,我国的水煤浆气化技术还存在许多问题,在喷嘴的设计与制造、大容量高压煤浆泵的制造、喷嘴与气化炉结构的配置、数值模拟计算软件的开发、高温炉衬耐火砖的制造、PDP软件包的设计等方面还不尽如人意。另外,由于受到Texaco水煤浆气化技术专利的限制,在引进时都要向其支付昂贵的技术专利费,因此开展不同原料(如渣油、油水煤浆、焦水煤浆、黑液水煤浆等)的气化技术从而绕开Texaco技术专利的限制,是解决这个问题的良好途径。
     本文即在目前我国水煤浆气化技术存在的上述问题下开展了部分研究工作。利用实验室现有的设备和技术结合其他形式水煤浆喷嘴的优点,开发了三通道多级内混撞击式水煤浆气化喷嘴,并进行了大量的试验,对喷嘴内各部件结构尺寸对雾化的影响展开了研究,通过优化选择确定了各部件的结构尺寸,得到了最佳雾化效果的水煤浆气化喷嘴,确定了喷嘴内各部件结构尺寸对雾化的影响规律;在导师的指导和帮助下开发了新型多入口水煤浆气化炉,并利用数值模拟计算方法对不同炉侧喷嘴入口高度、不同炉侧喷嘴入口角度等因素对气化炉内流畅分布的影响进行了冷态数值模拟,得到了不同形式的气化炉内流场分布、颗粒浓度分布等,确定了最佳形式的喷嘴与气化炉结构配置方式,同时对上述因素对气化炉内流场分布、颗粒浓度分布、压力分布等进行了冷态试验研究,得到的结果与数值模拟计算结果吻合良好,确定了数值模拟计算代替试验研究的可行性;利用数值模拟计算方法对现场工业炉气化过程进行了数值模拟计算,并进行了现场工业炉试验测试,数值模拟计算方法得到的结果和试验测试结果吻合很好,证实了该数值模拟计算方法的可靠性和优越性;利用上述方法对新型多喷嘴入口水煤浆气化炉进行了热态水煤浆气化过程的数值模拟,确定了不同氧煤比、煤浆浓度、气化压力、炉侧喷嘴入口角以及各喷嘴不同煤浆量和氧气量的配比对气化过程和出口煤气成分的影响规律,得到了不同影响因素下气化炉内的温度分布、速度分布、压力分布、CO、CO_2、H_2、H_2O、CH_4、O_2等的浓度分布规律,同时得到了出口煤气组成,为今后气化炉的设计和运行提供了理论依据和指导,并且为气化炉的开发设计和改造提供了一套完整的数值模拟计算方法;进一步运用该方法对焦水煤浆、油水煤浆在该气化炉内的气化过程进行了数值模拟,为今后不同原料的气化提供了理论依据和指导,为不同原料气化炉的开发和设计提供了一套可行的简便方法。
     通过本文的研究证实,利用数值模拟计算方法进行水煤浆气化炉的初期开发或改造是切实可行的,它不但节省了大量的人力物力资源,缩短了开发周期,而且可以为气化炉的运行提供理论指导。
Coal water slurry (CWS) gasification technique is always highly recognized by international society and our country in recent years. This technique is always listed on sixth, seventh, eighth and ninth five-year project. CWS technique is developed well in China. But, compare with the developed countries, in design and manufacture of burner, manufacture of big capacity high pressure CWS pump, structure configuration of the burner and the gasifier, the development of numerical simulation software, the manufacture of furnace firebrick, the design of PDP software and other sides, our technique is not perfect. In addition, because of the limitation of the patent of Texaco CWS gasification technique, high patent cost will be paid when introducing it. So, developing our own gasification technique of different raw material is necessary.In this paper, some research work was developed on above issue. Three tunnel multi-level inner-mixed CWS gasification burner was developed independently, and a lot of experiments were done. At the same time, the effect of the structure size of burner upon CWS atomization was studied. The structure size of the burner was confirmed by optimization test, and the best atomization effect of the burner was obtained. The influence of the structure size of the burner on atomization effect was confirmed. A new multi-inlet CWS gasifier was developed independently. The effect of different furnace side burner inlet height and angle upon flow field distribution was analyzed by means of numerical simulation, and different kind of flow field distribution and particle concentration of gasification furnace was obtained. Consequently, the best kind burner and furnace structure was confirmed. Furthermore, cold test of above factors on flow field, particle concentration distribution, and pressure distribution was done. Because the numerical simulation is in agreement with the test result, the feasibility of numerical simulation replacing experiment investigation was confirmed. The numerical simulation on gasification process of industrial furnace is applied, and industrial furnace site test was finished too. The result of numerical simulation agrees well with the test result. Accordingly, the reliability and superiority of numerical simulation method was proved. Hot numerical simulation of CWS gasification process on the new furnace was finished using above method. The influences on gasification process and the content of the outlet gas were confirmed by different O2 coal ratio, slurry concentration, gasification pressure, burner inlet angel, different ratio of coal slurry and oxygen. And the distribution of the temperature, the velocity, the pressure, and the concentration distribution of CO, CO2, H2, H2O, CH4, O2 in the furnace were obtained. In addition, the content of the outlet gas was obtained also. These not only provided theory foundation and guidance for design and operation of gasifier, but also a set of complete numerical simulation method for design and reform of gasifier. Numerical simulation of gasification process on coke CWS, oil CWS was finished using above method, which provided theory foundation and guidance for gasification of different raw materials, and a set of simple method for design and development of gasifier of different raw material.In this paper, my research proved the earlier development and the reform of CWS gasifier using numerical simulation method is feasible. A lot of material resources could be saved, and the developing period could be shortened. Furthermore, the theory guidance of gasifier operation was provided.
引文
[1] 郑楚光.洁净煤技术.华中理工大学出版社.1996
    [2] 中国能源研究会.中国洁净煤技术计划研究.北京.1996:1-8
    [3] 于涌年.煤炭利用回顾与未来有效技术.煤化工.1994,(3):1-7
    [4] 岑可法,池涌.洁净煤技术的研究与发展.动力工程.1997,17(5):15
    [5] 国家计委交通能源司.中国能源,中国物价出版杜,北京.1997.
    [6] 曾汉才.煤的高效清洁燃烧技术.电站系统工程.1995,11(1):1-6
    [7] 张慧琴,王秋玲,高树婷.中国火电发展环境效益初探.中国能源.1995,(3):1-7
    [8] 陈宏刚,李凡,谢克昌.中国洁净煤技术的研究与开发.1997,20(3):1-7
    [9] 陈鹏.中国高硫煤及其排放SO_2污染控制.煤炭转化.1998,21(3):1-6
    [10] 王洪记.国内洁净煤技术研究现状及开发动态.化工技术经济.1998,16(4):7-11
    [11] 吴韬,龚欣,王辅臣等.水煤浆气化技术及其进展.上海化工.1998,23(21):35-38
    [12] 张东亮.国内外水煤浆气化技术研究开发现状.大氮肥.1995,(4):241-246
    [13] 丁振亭.水煤浆气化技术的开发应用与发展(上).氮肥设计.1996,34(1):12-15
    [14] 丁振亭.水煤浆气化技术的开发应用与发展(中).氮肥设计.1996,34(3):16-19
    [15] 丁振亭.水煤浆气化技术的开发应用与发展(下).氮肥设计,1996,34(6):9-11
    [16] 唐宏青,袁自伟,蒋德军等.水煤浆化工技术的开发与工程现状.1997,14(1):51-58
    [17] 李贵贤.水煤浆加压气化技术新进展.兰化科技.1996,14(3):191-194
    [18] 王建忠.德士古水煤浆气化技术及应用简介.宁夏化工.1990,(2):15-20
    [19] 丁振亭.水煤浆气化及其在化工生产中的应用与发展.现代化工.1995,(6):14-18
    [20] 王洪记.开创21世纪煤化工的德士古水煤浆加压气化技术.化工进展.1997,(3):1-5
    [21] 王洪记.德士古水煤浆气化技术及应用前景.化工纵横,1996,10(12):12-15
    [22] 刘继森,刘杰.面向新世纪的煤化工.四川化工与腐蚀控制.2000,3(3):32-35
    [23] Gerstbrein E O, Guenther W R. Commercial Implementation of the Proven Texaco Gasification Process for Power Generation, VGB Conference of Coal Gasification 1991. Germany: Dortmund, May 16/17, 1991
    [24] Gerstbrein E O. Texaco Gasification-A Commercially Viable Alternative for Power Generation. London, Texaco Ltd, Jan 1992
    [25] Broderick James E. Texaco Gasification in China, Electric Power Mission Seminar. Beijing:June 1993
    [26] Wendy Weirauch. Hudrocarbon Processing. 1996, (3):23-29
    [27] Wendy Weirauch. Ibid. 1996, (4):29-35
    [28] Wendy Weirauch. Ibid. 1996, (5):21-27
    [29] Oil & Gas Journal. 1996, 5(13):49-58
    [30] Tsujino, T. Nippon Enerugi Gakkaishi. 1995, 74(8): 682-690. (In Japanese)
    [31] Schrader, C. and Shah, L. Proceedings-Annual International Pittsburgh Coal Conference. 2000, (17): 129-143
    [32] 陈广智,朱疆.煤气化工艺比较.中氮肥.2001,(1):30-32
    [33] 李大尚.Texaco和GSP两种煤气化工艺的的比较.煤化工.1991,(2):6-13
    [34] 许波.Texaco和U-GAS气化技术比较.煤化工.1997,(2):3-11
    [35] 门长贵.干法粉煤加压气化技术的开发现状和应用前景.煤化工.2000,(1)16-19
    
    [36] 粉煤气化技术和富氧气化技术的进展.化肥论文.2001,(4):12-15
    [37] 周永顺.恩德粉煤气化技术的特点和应用.中氮肥.2002,(2):6-8
    [38] 刘德昌,陈汉平,张世红等.循环流化床粉煤气化炉的发展及大型化措施.化肥工业.2000,27(3):9-10
    [39] 王立群,唐恒,王同章.常压流化床水煤气炉的开发与应用.工业炉.2002,24(3):4-7
    [40] 张建军,王旭冰,成恒新.常压流化床水煤气炉运行总结.煤气与热力.1999,(6):13-15
    [41] 彭万旺,步学朋,王乃记等.加压粉煤流化床气化技术试验研究.煤炭转化.1998,21(4):67-76
    [42] J. W. Allen et al. Atomization of Coal Water Mixtures[C]. 7TH International Symposium of CWF Preparation and Utilization, 1985
    [43] Xie Ming-hu, Lv De-tao. Comparison of the Performance of a Cross-seetion of Commercial CWF Burners[C]. 7TH International Symposium of CWF Preparation and Utilization, 1985
    [44] 原鲲,陈丽芳,吴承康.水煤浆多级喷嘴的雾化和流动特性.燃烧科学与技术.2003,9(1):77-80
    [45] 黄振宇,周志军,曹欣玉等.撞击式多级雾化水煤浆喷嘴的试验研究.热力发电.2001,(3):40-42
    [46] 李平,任建兴,黄振宇.新型水煤浆喷嘴试验研究与应用.上海电力学院学报.1997,13(1):1-7
    [47] Hiron Shilnoda[P).美国专利:4699587
    [48] 牧野启二.水煤浆燃料的燃烧技术[J].配置技术.1996
    [49] 侯智民,冯亮国,王晓云等.德士古双通道气流雾化喷嘴喷雾性能研究.河南化工.2000,(11):4-7
    [50] 于遵宏,龚欣,王辅臣等.中华人民共和国国家知识产权局专利.授权专利号:95111750.5
    [51] 于遵宏,王辅臣,吴韬等.中华人民共和国国家知识产权局专利.授权专利号:97235458.1
    [52] 王达文,孙荣权.高雾化质量喷嘴的设计研究.沈阳大学学报.2001,13(4):55-57
    [53] 王达文,孙荣权,于文馨.燃烧器高雾化质量喷嘴的设计研究.机械设计与制造.2001,(3):82-83
    [54] 马其良,张松寿,王国华等.大容量Y型气体雾化油喷嘴的结构特点及冷态试验研究.动力工程.1998,18(5):32-35
    [55] 马其良,张松寿.Y型喷嘴油雾两相流中无华细度的差异性研究.工业炉.1998,(1):9-12
    [56] 李广军,王新军,向宇等.燃油喷嘴气液两相流雾化特性研究.热能动力工程.1999,14(4):253-256
    [57] 徐行,郭志辉,边寿华.直射式喷嘴喷雾特性的试验研究.航空动力学报.1997,12(4):341-344
    [58] 孙纪国,田吕义,程圣清等.气液同轴直流式喷嘴喷雾及燃烧实验研究.航空动力学报.2000,15(3):317-320
    [59] 胡小平,周进,黄玉辉等.气液同轴式喷嘴缩进比对雾化细度影响的实验.国防科技大学学报.1996,18(3):16-19
    [60] 于洪娟,张路宁,郭伯伟等.气液内混式高压喷嘴液体流量特性及雾化特性的研究.沈阳工业学院学报.2001,20(2):66-70
    [61] 吉晓莉,陈家炎,赵云亮.内混式空气雾化喷嘴的研究.武汉工业大学学报.1998,20(3):47-49
    [62] 王森林,岳守标,杨波.新型气体雾化燃油喷嘴的试验研究.节能.2002,(4):6-8
    
    [63] 仇性启,王宗明,王丽娟等.气动旋流雾化原油喷嘴雾化特性的试验研究.石油机械.2001,29(2):5-7
    [64] 王立荣.新型旋流与内混式气动雾化喷嘴比较.石油化工设备.2002,31(2):24-26
    [65] 邢茂,赵阳升,胡耀青等.高压旋转射流流动特性的实验研究.力学与实践.2001,23(1)49-51
    [66] 姚增权,马进.简式旋流喷嘴的设计.电力环境保护.2002,18(3):1-4
    [67] 徐行,郭志辉,顾善建.新型气动雾化喷嘴喷雾特性的实验研究.航空动力学报.1997,12(3):295-298
    [68] 吴文林,赵忠祥,赵伟.假塑性流体雾化研究.(Ⅰ.雾化特性的研究.)化工机械.1994,21(4):193-197
    [69] 李建勋,王均.超声波高粘重油雾化喷嘴的性能和应用.轻金属.2001,(9):27-29
    [70] 俞刚,张新宇,李建国.超声速气流中的煤油喷嘴研究.流体力学实验与测量.2001,15(4):13-15
    [71] 吴中.超声波在高粘性重油喷嘴雾化中的应用.冶金设备.2001,(6):68-70
    [72] 马其良,张松寿.超声波雾化油喷嘴雾化性能的试验研究.工业炉.2000,22(2):6-7
    [73] 范全林,郭志辉,梁学萍.气泡雾化喷嘴水平喷射特性的研究.航空动力学报.1996,11(4):412-416
    [74] 梁学萍,郭志辉,徐行.气泡雾化喷嘴水平喷射的雾化特性研究.北京航空航天大学.1998,24(1):24-27
    [75] 刘联胜,吴晋湘,傅茂林等.气泡雾化喷嘴雾化特性试验.燃烧科学与技术.2001,7(1):63-66
    [76] 郭志辉,徐行,梁学萍.一种新型气泡雾化喷嘴水平喷射特性的研究.推进技术.1997,18(5):78-81
    [77] 刘联胜,吴晋湘,韩绍兴等.内超声气泡雾化喷嘴实验研究.燃烧科学与技术.2002,8(2):155-158
    [78] 赵忠祥,凌毅,王姣娜.小型二流式喷嘴雾化性能研究.化学工程.2000,28(6):22-24
    [79] 吴文林,赵忠祥,赵伟.假塑性流体雾化研究.(Ⅰ.雾化特性的研究.)化工机械.1995,22(3):4-7
    [80] 林恒,秦勤,章博等.一种新型喷嘴的特性研究.冶金设备.2001,(4):42-45
    [81] 张蒙正.张泽平,李鳌.两股互击式喷嘴雾化性能试验研究.推进技术.2000, 21(1):57-59
    [82] 张蒙正,傅永贵,张泽平等.两股互击式喷嘴喷雾化研究与应用.推进技术.1999, 20(2):73-76
    [83] 胡春波,陈步学,蔡体敏.靶式喷嘴雾化特性实验研究.推进技术.1998,19(6):54-57
    [84] 庞麓鸣,汪孟乐,冯海仙.工程热力学.高等教育出版社.北京.1993:265-286
    [85] 张泽,吴少华,秦裕琨等.炉内流场中复杂结构喷嘴射流的近流线数值模拟.中国电机工程学报.2001,21(8):108-113
    [86] 姚寿广,马哲树,仲华.单只文丘利油燃烧器出口气液两相流动与燃烧的数值模拟.燃烧科学与技术.2001,7(3):249-253
    [87] 王振国,吴湘晋,鄢小清等.气液同轴离心式喷嘴喷雾流场数值模拟.推进技术.1996,17(3):43-49
    [88] 岳明,徐行,杨茂林.离心式喷嘴内气液两相流动的数值模拟.工程热物理学报.2003,24(5):888-890
    [89] 周立新,张会强,雷凡培等.离心式喷嘴内流场特性的数值模拟.推进技术.2002,23(6):480-484
    
    [90] Xu Jun. A Level Set Approach Simulating Topological Changes of Gas2Liquid Interface in Small Scale Incompressible Viscous Two2Phases Flows. Chinese Journal of Computational Physics. 1998, 15(3): 349-356
    [91] 李明川,崔桂香.有气相注入的管内气液分层流数值模拟.工程力学.2002,19(3):78-81
    [92] S M Jeng, M A Jog, M A Benjamin. Computational and Experimental Study of Liquid Sheet Emanating from Simplex Fuel Nozzle. AIAA Journal, 1998,36(2): 201-207
    [93] A T Sakman, M A Jog, S M Jeng, et al. Parametric Study of Simplex Fuel Nozzle Internal Flow and Performance. AIAA Journal, 2000,38(7): 1214-1218
    [94] J J Hutt, D M McDaniels, A W Smith. lnetrnal Flow Environment of Swirl Injection[R]. AIAA 94-3262
    [95] 张庆,赵晓琳.水煤浆的流变学属性.化学工程.1994,22(1):53-59
    [96] 吴韬,龚欣,王辅臣等.6.5Mpa水煤浆气化反应过程剖析.大氮肥.1997,20(5):323-326
    [97] 张明慎,刘吉祥.德士古水煤浆气化炉的设计.化工设备设计.1998,35(6):8-11
    [98] 范立明.水煤浆加压气化工艺的认识及气化炉温度的控制.谓化科技.2000,(1):23-26
    [99] 黎军.德士古水煤浆气化工艺概况.安徽化工.2001,(1):46-49
    [100] 王洪记.开创21世纪煤化工的德士古水煤浆加压气化技术.化工进展.1997,(3):1-5
    [101] 方兆轩.德士古水煤浆加压气化及净化工艺.中氮肥.1996,(5):11-15
    [102] 丁振亭.德士古气化炉的应用与改进.化工设计.1995,(6):8-13
    [103] 张明慎.德士古水煤浆气化炉容器外壳材质.化工设备设计.1997,34(5):62-64
    [104] 谭可荣,韩文,赵东志等.新型水煤浆气化技术的开发及其应用.煤炭转化.2001,24(1):36-39
    [105] 龚欣,刘海峰,王辅臣等.新型水煤浆气化炉.节能与环保.2001.11.30:15-17
    [106] 费祥麟.高等流体力学.西安交通大学出版社.西安.1995
    [107] D. Choudhury. Introduction to the Renormalization Group Method and Turbulence Modeling. Fluent Inc. Technical Memorandum TM-107, 1993
    [108] S. A. Morsi and A. J. Alexander. An Investigation of Particle Trajectories in Two-Phase Flow Systems(J).. Fluid Mech., 55(2): 193-208
    [109] A. Haider and O. Levenspiel. Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles. Powder Technology, 1989, (58): 63-70
    [110] H. Ounis, G. Ahmadi, and J. B. McLaughlin. Brownian Diffusion of Submicrometer Particles in the Viscous Sublayer. Journal of Colloid and Interface Science, 1991, 143(1): 266-277
    [111] YU Zun-hong (于遵宏), YU Jian-guo (于建国), SHEN Cai-da, et al. (沈才大等). Analysis of gasification process in Texaco gasifier(Ⅱ)-Measurement of velocity distribution under cold condition (德士古气化炉气化过程剖析(Ⅱ)——冷态速度分布测试)[J], Nitrogenous Fertilizer (大氮肥), 1994(1): 46-50.g.
    [112] YU Zun-hong (于遵宏), FU Shu-fang (付淑芳), YU Jian-guo, et al. (于建国等). Analysis of gasification process in Texaco gasifier(Ⅲ)-Measurement of residence time distribution (德士古气化炉气化过程剖析(Ⅲ)——停留时间分布测试)[J]. Nitrogenous Fertilizer (大氮肥), 1994(2): 115-119.
    [113] WANG Fu-chen (王辅臣), YU Guang-suo (于广锁), GONG Xin, et al. (龚欣等). Measurement and investigation of concentration distribution on cold gasifier of Texaco residual-oil gasification (德士古渣油气化炉冷态浓度分布的测试与研究)[J]. Journal of East China University of Science and Technology (华东理工大学学报), 1995, 21(3): 288-293.
    [114] YU Zun-hong (于遵宏), ZHANG Xue-gang (张学刚), YU Jian-guo, et al. (于建国等). Analysis of gasification process in Texaco gasifier(Ⅳ)—Residence time distribution model(德士古气化炉气化过程剖析(Ⅳ)——停留时间分布模型)[J].Nitrogenous Fertilizer(大氮肥),1994(3)0:34-238.
    [1
    
    [115] WANG Fu-chen (王辅臣), TIAN Rong-lin (田荣林), YU Jian-guo, et al. (于建国等). Determinating technology conditions of pitch gasifier using by-pass-mixing model (用短路混合模型确定沥青气化炉的工艺条件)[J].Journal of East China University of Science and Technology(华东理工大学学报),1995,21(3):294-299.
    [116] 王辅臣,刘海峰,龚欣等.水煤浆气化系统数学模拟(J). 燃料化学学报,2001,29(1):33-38
    [117] 李永欣,吉文欣.超声辅照前后水煤浆浆体的动电势变化研究(J).燃料化学学报,2002,30(6):559-562
    [118] 王志奇,李保庆.油焦浆流变特性的研究(J).燃料化学学报,2000,28(2):147-151
    [119] ZHANG Hui-qiang (张会强), CHEN Xing-long (陈兴隆), ZHOU Li-xing, et al.(周力行等). A review on numerical modeling of turbulent combustion (湍流燃烧数值模拟研究的综述)[J], Advances in Mechanics (力学进展), 1999, 29(4): 567-575
    [120] Chen Chingsgun, Chang Kehchin, Chen Jyhyuan. Application of a robust β-PDF treatment to analyse the thermal NO formation in nonpremixed hydrogen-air flame[J]. Combustion and Flame, 1994, 98: 375-390
    [121] Zhou L X, Zhang H Q, Lin W Y. A multi-δ-PDF model of turbulent combustion[A]. In: Proc of the First Asian-Pacific Conference on Combustion[C]. Osaka Japan: 1997, 194-197.
    [122] P. Cheng. Two-Dimensional Radiating Gas Flow by a Moment Method. AIAA Journal, 2: 1662-1664, 1964
    [123] R. Siegel and J. R. Howell. Thermal Radiation Heat Transfer. Hemisphere Publishing Corporation, Washington D.C.. 1992
    [124] Fluent6.1 documentation. Fluent.Inc. January 28, 2003: 11-23~11-24
    [125] M. N. Ozisik. Radiative Transfer and Interactions with Conduction and Convection. Wiley, New York, 1973.
    [126] Spalding D B. Convective Mass Transfer, Edward Arnald Ltd., 1963
    [127] 岑可法,姚强等.煤浆燃烧、流动、传热和气化的理论与应用技术.浙江大学出版社.1997,377-378
    [128] H. Kobayashi, J.B.Howard, and A.F.Sarofim. Coal Devolatilization at High Temperatures. In 16th Symp. (Int'l.) on Combustion. The Combustion Institute, 197
    [129] 王靓.拓展石油焦市场,发展下游应用技术.石油商技.1998,14(6):24~27
    [130] 唐宏青,任向坤,陈月华.煤气化制氨中焦水煤浆技术简介.大氮肥.2001,24(3):155-157
    [131] 王俊玲,齐祥明,宗志敏等.新型油水煤浆燃料的研究与探索.矿业快报.2002,(11):11-13
    [132] 朱红,陈公伦,松全元.煤浆燃料的新进展.选煤技术.2000,(1):8-9
    [133] 陈业泉,朱红,孙正贵等.油基油水煤浆的流变性质研究.中国矿业大学学报.2001,30(6):608-612
    [134] 朱红,赵炜,闫学海.油水煤浆三元混合体系的制备及特性研究.中国矿业大学学报.2002,31(6):579-582
    [135] 闫学海,胡卫新,朱红.油-水-煤浆制备过程中规律性探索.江苏煤炭.2000,(1):28-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700