某试验台增压燃烧数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
增压燃烧技术是船用大型蒸汽动力装置的关键技术之一,本文研究对象是某增压燃烧试验平台的增压锅炉,其炉膛内的燃烧过程是锅炉设计运行中的重要环节。
     本文根据试验台锅炉设计图纸建立了三维实体几何模型,应用FLUENT软件,采用realizablek-ε湍流模型、“简单化学反应系统”模型、简化的PDF模型和DO辐射模型对多个稳态工况下的炉内燃烧流场进行了数值模拟。
     通过数值模拟,得出了流场主要参数的分布情况,指出增压锅炉炉内空气动力特性,燃油喷雾流场的分布特性,并提出了利用当量混合分数的分布来考核火焰长度的方法。当燃烧器对冲布置时,炉内的混合气体分布更均匀,火焰充满度好,有利于强化燃烧。
     数值模拟结果说明:随着稳焰器到调风器出口距离的增大,回流区尺寸逐渐减小,而调风负荷对其影响并不大。在喷油压力较低时,雾化液滴的索特平均直径随喷油压力的增大而变大,当达到一定压力时,索特平均直径随着压力的增大而逐渐变小;同时提高炉膛工作压力对降低液滴粒径有明显的促进作用。当过量空气系数为1.15时,高温区最大,火焰最长;过量空气系数为1.3时,由于氧气量大,火焰最短,高温区最小。炉膛内部的增压燃烧流场、冷态流场及喷雾流场的数值模拟结果对试验方案选取和试验结果预测具有一定指导意义。
Pressurized combustion technology is one of the key technology for steam power plant. The subject is the supercharged boiler on a pressurized combustion test platform. The furnace combustion process is the important aspect in the design and operation of boiler.
     A three-dimensional geometric model entitiy was set up based on test-bed boiler design drawings. Combustion flow fields of test boiler were simulated for several steady states with FLUENT software, the realizablek-εturbulence model, a single chemistry reaction system, simplified PDF model and DO thermal radiation model.
     By numerical simulation, the distribution of main parameters for flow field were gained, the pressurized air power characteristics of boiler and fuel spray distribution characteristics were pointed out, and the method of using equivalent mixture fraction to assesslame length was proposed. The burner opposing arrangements was helpful for enhancing combustion, because gas mixture distributed more evenly in the furnace and the fullness of flame was good.
     The result of numerical simulation showed that, recirculation zone size decreased gradually with increase of the distance from the steady flame device to register, while the register load did not affect it so much. At a lower injection pressure, the SMD of atomized droplets increased with increase of the injection pressure. When a certain pressure was reached, the SMD decreased with increase of the injection pressure. At the same time, improving the working pressure in the chamber could promote reducing droplet size. When the excess air coefficient was 1.15, the high temperature zone was the largest and flame was the longest. When excess air coefficient was 1.3, due to the large quantity of oxygen, the flame was the shortest and high temperature district was the smallest. The results of numerical simulation for supercharged combustion, cold flow field and the spray flow field in the furnace had guiding significance on the selection of test schemes and prediction of test results.
引文
[1]李章.舰用增压锅炉装置.北京:海潮出版社,2000:5-9,99-103,20-50页
    [2]刘长和.船用增压锅炉技术的新进展.热能动力工程.1997,14(4):3-7页
    [3]岳彭,王加庆等.船用锅炉增压燃烧与传热计算方法研究.锅炉制造.2008(2):8-11页
    [4]李彦军,姜任秋等.船用增压锅炉热力计算方法有关问题分析.热能动力工程.2005,20(1):93-96页
    [5]王敏,朱东琦等.舰用蒸汽锅炉增压燃烧对锅炉性能影响的研究.应用科技.2004,31(9):45-47页
    [6]Paul TT, Rogakou EP, Yamazaki, et al. A critical role for histone H2AX in recruitment of repair factors to nuclear oci affer DNA damage. Curr Biol, 2000,10(15):886-895P
    [7]Victor de Biasi. Gasification on track to turn problem fuels into electric power and products. Gas Turbine World,1999,29(6):12-22P
    [8]Wu H L, Fricker N. An investigation of the behavior of swirling jet flames in a narrow cylindrical furnace. Fuel,1979,49:144-150P
    [9]Lockwood F C, Abbas A S. Prediction of corner-fired power station combustor. Combustion Science and Technology,1988,58:5-23P
    [10]Shieh J S, Chang K C. Two-Phase Flow Calculation of Dilute Combusting Sprays [A]. HongKon:Proceeding of the Third Asian-Pacific International Symposium on Combustion and Energy Utiliazation,1987:402-407P
    [11]Tolpadi A K. Calculation of Two-Phase Flow in Gas Turbine Combustors. Journal of Engineering for Gas Turbine and Power,1995,117:695-702P
    [12]A Datta, S K Som. Combustion and emission characteristics in a gas turbine combustor at different pressure and swirl conditions. Thermal Engineering, 1999,19:949-967P
    [13]Zamuner B, Gilbank P, Bissieres D, Berat C. Numerical Simulation of the Reactive Two-Phase Flow in a Kerosene/Air Tubular Combustor. Aerospace Science and Technology,2002,6:521-529P
    [14]F.Z.Sierra, J.Kubiak. Prediction of temperature front in a gas turbine combustion chamber. Applied Thermal Engineering,2005, (25): 1127-1140P
    [15]A Saario, A Rebola, P J Coelho. Heavy fuel oil combustion in a cylindrical laboratory furnace:measurements and modeling. Fuel,2005,84:359-369P
    [16]杨振中.内燃机缸内压缩流场和燃烧室几何形状关系的研究.华北水利水电学院学报.1998,(2):44-47页
    [17]姚寿广,马哲树等.单只文丘利油燃烧器出口气液两相流动与燃烧的数值模拟.燃烧科学与技术.2001,7(3):249-253页
    [18]张毅勐,刘敏飞等.WNS型燃油(气)锅炉炉内热流分布及温度分布的数值模拟.能源研究与信息.2002,18(4):225-236页
    [19]周桂娟、毛羽等.燃油加热炉燃烧过程的三维数值模拟.Industrial Furnace.2004,26(6):38-44页
    [20]刘亚琴,李素芬等.燃油锅炉改烧瓦斯气炉内流动和燃烧过程的数值模拟.热能动力工程.2006,21(3):295-298页
    [21]冀光,张文平等.某型燃气轮机燃烧室燃烧流场数值研究.汽轮机技术.2006,48(5):335-338页
    [22]范仲华.文丘利燃烧器的研究在工业锅炉上的应用.热能动力工程.1991,6(3):152-156页
    [23]张蒙正,李鳌等.气/液同轴离心式喷嘴流量及雾化特性实验.推进计算.2004,25(1):19-22页
    [24]朱锡锋,郭涛等.生物油雾化燃烧特性试验.中国科学技术大学学报.2005,35(6):856-860页
    [25]王建志,王永堂等.增压锅炉蒸汽机械雾化喷油器流量特性研究.电站系统工程.2006,22(5):23-25页
    [26]John D.Anderson. Computational fluid dynamics.北京:清华大学出版社,2002:12-70P
    [27]荀柏秋,曲哲等.三维紊流燃烧室流场的数值计算.热能动力工程.2001,16(1):80-82页
    [28]A.V.Fedorov. Mathematical Simulation of Ignition of a Cloud of Hydrocarbon Microdrops. Combustion, Explosion, and Shock Waves. 2002,38(5):577-580P
    [29]夏靖友,张兆顺.分层雷诺应力模式.空气动力学报.1990,28(3):321-324页
    [30]张兆顺.湍流.北京:国防工业出版社,2002:256-263页
    [31]王福军.计算流体动力学分析.北京:清华大学出版社,2004:124-126页,128-130页
    [32]岳晓峰,王瑾等.油束雾化形成机理分析.中国公路学报.2007,20(5):117-121页
    [33]YI Shi jun, XIE Mao zhao, CHEN bai xin. The Breakupand Atomization of a Viscous Liquid jet. ACTA Mechanica Sinica English Series,1996,12(2): 122-134P
    [34]蒋勇,廖光煊,王清安,范维澄.喷雾过程液滴碰撞聚合模型研究.火灾科学.2000,2:27-30页
    [35]Litchford R J, Jeng S M. Efficient statistical transport model for turbulent particle dispersion in sprays. AIAA Journal,1991,29(9):1443-1451P
    [36]赵坚行.燃烧的数值模拟.北京:科学出版社,2002:10-13页,98-109页
    [37]Spalding D B. Combustion and Mass Transfer. Pergamon Press,1979: 55-61P
    [38]周力行.燃烧理论和化学流体力学.北京:科学出版社,1986:388-390页,379-383页
    [39]Y. R. Sivathanu, G.M.Faeth. Generalized State Relationships for Scalar Properties in Non-Premixed Hydrocarbon/Air Flames. Combust Flame, 1990,82:211-230P
    [40]岑可法,姚强等.高等燃烧学.浙江:浙江大学出版社,2002:125-143页
    [41]Spalding D. B. Mathematical Models of Turbulent Flames. A Review. Comb Sci & Tech. Special Issues on Turbulent Reactive Flows,1976,13: 1-25P
    [42]F. Liu, H. Guo. A robust and accurate algorithm of the β-pdf integration and its application to turbulent methane-air diffusion combustion in a gas turbine combustor simulator. International Journal of Thermal Sciences. 2002,41:763-772P
    [43]赵坚行.燃烧的数值模拟.北京:科学出版社,2002:35-36页,98-117页,2-50页,192-198页
    [44]王应时,范维澄.燃烧过程数值计算.北京:科学出版社,1986:71-79页,64-66页
    [45]E. H. Chui and G. D. Raithby. Computation of Radiant Heat Transfer on a Non-Orthogonal Mesh Using the Finite-Volume Method. Numerical Heat Transfer, Part B,1993,23:269-288P
    [46]彭泽均,姜任秋,李彦军.船用增压锅炉燃烧系统的数值模拟.中国工程热物理学会燃烧学学术会议.2006:310-314页
    [47]T. F. Smith, Z. F. Shen, and J. N. Friedman. Evaluation of Coefficients for the Weighted Sum of Gray Gases Model. Heat Transfer,1982,104: 602-608P
    [48]M. K. Denison, B. W. Webb. A Spectral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers. Heat Transfer,1993,115:1002-1012P
    [49]郭宽良.数值计算传热学.合肥:安徽科学技术出版社,1987:323-329页
    [50]Balakrishann N, Deshpande S M. Reconstruction on Unstructured Meshes with Upwind Solvers. Proc of the First Asian CFD Conference, Hong Kong,1995,84-120P
    [51]Belytschko T, Krongauz Y, Organ D, ed. Meshless Methods:An Overview and Recent Developments. Comput Methods Appl Mech Engrg,1996, 139:3-47P
    [52]陶文铨,宇波等.关于对流项离散格式数值稳定性的讨论.哈尔滨工业大学学报.1999,31(增刊):15-18页
    [53]Kong H, Choi H. Effect of different schems and boundary treatment on accuracy of solutions of the Navier-Stokes equations. In:Proceeding of ISTP 10.1997,3:845-850P
    [54]王福军.计算流体动力学分析:CFD软件原理与应用.北京:清华大学出版社,2004:120-123页,74-83页
    [55]Patanka S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transfer.1972,15:1787-1806P
    [56]秦裕琨.燃油燃气锅炉实用技术.北京:中国电力出版社,2001:80-89页
    [57]阮云岭.高压燃油锅炉调风器的选择.炼油设计.1994,24(2):43-45页
    [58]陈育平,朱德书.燃油锅炉双通道旋流调风器数值计算.上海电力学院学报.2001,17(4):13-17页
    [59]朱青等.大型锅炉炉膛三维流场微机数值模拟计算.热能动力工程.1996,11(6):385-390页
    [60]由长福,祁海鹰等.采用不同湍流模型及差分格式对四角切向燃烧煤粉锅炉内冷态流场的数值模拟.动力工程.2001,21(2):1128-1131页
    [61]侯凌云,侯晓春.喷嘴技术手册.北京:中国石化出版社,2002:87-100页
    [62]王晓倩,张德生等.雾化喷嘴及其设计浅析.煤矿机械.2008,29(3):15-17页
    [63]田春霞,仇性启等.喷嘴雾化技术进展.工业加热.2005,34(4):40-43页
    [64]林松飘,周哲纬.液滴的脉动雾化.应用数学和力学.1996,17(7):569-576页
    [65]汪海清,刘永长,贺萍,宋军.燃油喷射雾化机理的探讨.燃烧科学与技术.1995,1(3):280-285页
    [66]岳明,徐行等.离心式喷嘴内气液两相流动的数值模拟.工程热物理学报,2003,24(5):888-890页
    [67]徐刚,吴伟亮.旋流式喷嘴内流场的数值模拟.能源技术.2008,29(3):129-132页
    [68]李进贤,徐敏等.气/液同轴旋流式喷嘴雾化特性实验研究.宇航学报.2000,21(S1):28-31页
    [69]匡江红,何法江等.旋流燃烧锅炉炉内流场的数值研究.上海工程技术大学学报.2006,20(3):193-197页
    [70]吴治永,李文彦.某新型旋流燃烧锅炉的数值模拟.现代电力.2004,21(1):11-16页
    [71]周立行.湍流两相流动与燃烧的数值模拟.北京:清华大学出版社,1991:178-186页
    [72]陈强,仇性启等.工业锅炉火焰形态的研究.工业加热.2008,37(1): 14-15页
    [73]王宗明,段希利等.瓦斯燃烧器湍流扩散火焰数值模拟研究.石油化工设备.2003,32(2):5-8页
    [74]杨明宽.天然气燃烧方式及燃烧器的应用问题.玻璃与搪瓷.2001,29(4):31-35页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700