卫星遥感中国海域气溶胶光学特性及其辐射强迫研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气溶胶作为重要的气候因子,对地-气能量系统产生重要的影响。本论文主要是结合多颗传感器的卫星数据(MODIS气溶胶产品和CERES辐射通量数据),系统地分析了中国海域气溶胶的光学特性和辐射强迫。首先利用船测数据和AERONET地基观测数据,通过改进了测量方法和验证方法,对MODIS气溶胶产品在中国海域的适用性进行了验证;然后利用验证后的MODIS数据,分析了我国海域气溶胶的时空分布特征,并结合气象场和化学成分进行了原因说明;进一步利用MODIS气溶胶产品,分离出人为气溶胶和沙尘气溶胶成分,并得到它们的时空分布特征;结合MODIS、CERES数据和辐射传输模式,设计了气溶胶直接辐射强迫的算法,得到中国海域气溶胶直接辐射强迫的分布,并与SPRINTARS气溶胶模式结果进行了比较;最后利用MODIS的气溶胶和云产品,对我国海域气溶胶的间接作用进行了分析。得到以下主要结论:
     1.改进太阳光度计测量方法,对中国海域气溶胶进行了船载测量,验证了MODIS气溶胶光学厚度的分布特征;利用AERONET数据,改进验证方法,证实MODIS气溶胶光学厚度与AERONET具有很好的相关关系,误差符合NASA的要求,说明MODIS气溶胶产品适用于中国海域。这为下面的研究打下了基础。
     2.通过分析MODIS气溶胶产品,证实我国海域气溶胶光学厚度(AOT)与小颗粒比例(FMF)存在明显的季节变化和空间分布特征。通过分析气象场和化学成分可知,这一特征受风场和降雨的影响,而陆源输送是我国海域气溶胶的主要来源。
     3.利用MODIS气溶胶产品中AOT与FMF的关系,得到了人为和沙尘气溶胶的计算公式,利用这一公式分别获得中国海域人为和沙尘气溶胶各自的分布。分析结果显示,中国海域人为气溶胶和沙尘气溶胶分别存在明显的时空分布特征。
     4.结合MODIS、CERES数据和辐射传输模式,设计了计算直接辐射强迫的算法:(1)剔除云区;(2)建立无气溶胶晴空条件下的大气顶辐射通量查找表;(3)将辐射率转化为辐射通量;(4)计算气溶胶瞬时直接辐射强迫;(5)计算瞬时辐射强迫与日平均辐射强迫之间的修正因子。通过以上五步,得到了中国海域气溶胶直接辐射强迫的时空分布特征。并通过与SPRINTARS气溶胶模式结果的比较,证实了利用卫星直接计算我国海域气溶胶直接辐射强迫是可行的。
     5.通过分析MODIS的气溶胶和云产品,证实了我国海域气溶胶间接效应是明显存在的。在不同季节由于气溶胶种类的变化和水汽条件的不同,气溶胶对于云的间接作用又是不同的。
     本论文的主要创新点:
     1.对MODIS气溶胶产品的验证方法进行了改进。首先,通过改进MICROTOPSⅡ的测量方法,将适合于陆地测量的太阳光度计应用到海上船载测量。其次,改进了MODIS与AERONET的验证方法,调整了空间匹配窗口的大小,得到了更好的验证效果。
     2.结合气象场和化学成分数据,分别从气象因素和化学组成两个方面分析了我国海域气溶胶的形成原因。分析可知,我国海域气溶胶主要来源于我国沿海的陆地源,受到风场和降雨的共同作用,形成明显的时空分布特征。
     3.利用MODIS气溶胶产品中的AOT和FMF关系,得到了沙尘气溶胶和人为气溶胶的计算公式,直接从卫星数据中区分了沙尘气溶胶和人为气溶胶成分。
     4.在国内首次结合多颗传感器的卫星数据,直接获得气溶胶瞬时直接辐射强迫。并利用辐射传输模式,将瞬时直接辐射强迫转化为日平均直接辐射强迫。最后利用卫星数据证实了中国海域气溶胶的间接效应的存在。
Atmospheric aerosol plays an important role in the global and regional climate change. It has a significant impact on the solar radiation budget. In this dissertation, aerosol optical characteristics and aerosol radiative forcing over the China Sea are analyzed directly by satellite data, including MODIS and CERES. Firstly, MODIS aerosol product is validated over the China Sea by ship-based measurements and AERONET data. Then temporal and spacial distributions of aerosol over the China Sea are discussed by MODIS aerosol product and formation mechanism of their distribution is explained by meteorological data and chemical composition. Furthermore, based on relationship between fine mode fraction(FMF) and aerosol optical thickness(AOT) in MODIS, anthropogenic component and dust component of aerosol can be respectively computed from satellite data. Meanwhile, the algorithm for getting aerosol direct forcing by satellite data is proposed. Characteristic of the algorithm is combination of different satellite data and radiance transfer model. Aerosol direct forcing over the China Sea is computed by this algorithm and then the algorithm's results are compared with results of Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS). In final, aerosol indirect forcing over the China Sea is discussed by MODIS aerosol product and cloud product. Some significant results are revealed as follows:
     1. Aerosol optical characteristics are observed over the China Sea by improved ship-based measurement method, which validates distribution feature of MODIS aerosol product. At the same time, values of MODIS aerosol product are validated by AERONET data with an improved method. The result shows that they have a good relationship and the error between them is within NASA required standard. This provides importance scientific argument for aerosol research over the China Sea.
     2. Spatial distribution feature and season variation characteristic of aerosol over the China Sea are notable by MODIS data. Then analysis of meteorological data and chemical composition shows that they are influenced by wind and rainfall and continental region is main source of aerosol over the China Sea.
     3. An algorithm for separating anthropogenic component and dust component from MODIS data is proposed on the basis of the relationship between AOT and FMF. Results of this algorithm show that anthropogenic aerosol and dust aerosol over the China Sea exist prominent season variation and spatial distri(?)ution feature.
     4. Based on MODIS、CERES and radiance transfer model, an algorithm, which is used for computing aerosol direct forcing over the China Sea, is proposed. The algorithm is meaning in physics by five steps: (1) separating of cloud and clear region; (2) generating the Look-up-tables (LUT) of radiation flux at the top of atmosphere in the clear sky without aerosol; (3) converting radiance to radiation flux; (4) computing instantaneous aerosol direct forcing; (5) computing scaling factor to convert instantaneous aerosol direct forcing to diurnally averaged values. Using these five steps, aerosol direct forcing over the China Sea is gained and then it is compared with Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS). The result shows the algorithm is possible and feasible.
     5. Aerosol indirect forcing does exist over the China Sea by analysis of MODIS aerosol product and cloud product. Because of different aerosol kinds and water vapor amounts at different seasons, aerosol indirect forcing over the China Sea expresses different features.
     Some innovations is listed as follow:
     1. The validation method is improved. Firstly, ship-based measurement method is modified. Though altering MICROTOPS II parameters, sun photometer is applied to observe over the China Sea. Secondly, validation method between MODIS and AERONET is improved by modifying space windows. The validation result is better than before.
     2. Formation mechanism of aerosol distribution feature over the China Sea is explained by combination of meteorological data and chemical composition. Aerosol over the China Sea comes from the China continent and is influenced by wind and rainfall.
     3. Using relationship between AOT and FMF in MODIS, anthropogenic component and dust component of aerosol can be respectively computed from satellite data.
     4. Aerosol direct forcing over the China Sea is first studied by combination different satellite data in home. And through scaling factor, instantaneous aerosol direct forcing is converted to diurnally averaged values. Meanwhile, Aerosol indirect forcing is validated by MODIS data over the China Sea.
引文
[1]G.M.Hidy,J.R.Brock.The Dynamics of Aerocolloidal Systems(Pergamon,New York,1970).
    [2]李晓静,刘玉洁,邱红等.利用MODIS资料反演北京及其周边地区气溶胶光学厚度的方法研究.气象学报,2003,61(5):550-591.
    [3]张小曳.中国大气气溶胶及其气候效应的研究.地球科学进展,2007,22(1):12-16.
    [4]Ramanathan V.,Crutzen P.J.,et al.Indian Ocean Experiment:An integrated analysis of the climate forcing and effects of the great Indo-Asian haze.Journal of Geophysical Research,2001,106:28371-28398.
    [5]Huebert B.J.,Bates T.,Russell T.,et al.An overview of ACE-Asia:Strategies for quantifying the relationships between Asian aerosols and their climatic impacts.Journal of Geophysical Research,2003,108(D23):8633,doi:10.1029/2003JD003550.
    [6]Kaufman Y.J.,Tanre D.,Boucher O..A satellite view of aerosols in the climate system.Nature,2002,419:215-223.
    [7]Holben B.N.,Eck T.F.,Slutsker I.,et al.A federated instrument network and data archive for aerosol characterization.Remote Sensing of Environment,1998,66:1-16.
    [8]IPCC.Third Assessment Report,Climate Change 2001:The Scientific Basis.New York:Cambridge University Press,2001.
    [9]WMO.Strategy for the Implementation of the Global Atmosphere Watch Programme(2001-2007),WMO No.142.World Meteorological Organization,Geneva,2001:43-45.
    [10]中国气象局监测网罗司编译.全球大气监测观测指南.北京:气象出版社,2003.34-50.
    [11]WMO.Aerosol measurement procedures guidelines and recommendations,WMO No.153.World Meteorological Organization,Geneva,2003:24-37.
    [12]Holben B.N.,Tanre D.,Smirnov A.,et al.An emerging ground-based aerosol climatology:aerosol optical depth from AERONET.Journal of Geophysical Research,2001,106:12067-12098.
    [13]Bates T.S.Preface to special section:First Aerosol Characterization Experiment(ACE-1)Part 2.Journal of Geophysical Research,1999,104,p.21,645.
    [14]Wood,R.D.W.Johnson,S.R.Osborne.Boundary Layer,aerosol and chemical evolution during the thrid Lagrangian experiment of ACE-2.Tellus,2000,52B:401-422.
    [15]Rajeev K.,V.Ramanathan.Regional Aerosol Distribution and its Long Range Transport over the Indian Ocean.Journal of Geophysical Research,2000,105(D2):2029-2043.
    [16]Alfaro S.C.,et al.Chemical and optical characterization of aerosols measured in spring 2002at the ACE-Asia supersite,Zhenbeitai,China.Journal of Geophysical Research,2003,108(D23),8641,doi:10.1029/2002JD003214.
    [17]Ramanathan V.,Crutzen P.J.,Kiehl J.T.,et al.Aerosols,climate,and the hydrological cycle.Science,2001,294:2119-2124.
    [18]Rates F.,Vandingenen R.,Vignati E.,et al.Formation and cycling of aerosols in the global troposphere.Atmospheric Environment,2000,34:4215-4240.
    [19]Barth M.C.,Rasch P.J.,Kichl J.T.,et al.Sulfur chemistry in the national center for atmospheric research community climate model:Description,evaluation,features and sensitivity to aqueous chemistry.Journal of Geophysical Research,2000,105:1387-1415.
    [20]Jacobson M.Z.GATOR-GCMM:A global-through urban-scale air pollution and weather forecast model 1.Model design and treatment of subgrid soil,vegetation,roads,rooftops,water,sea ice,and snow.Journal of Geophysical Research,2001,106:5385-5401.
    [21]Rasch P.J.,Barth M.C.,Kiehl J.T.,et al.A description of the global Sulfur cycle and its controlling processes in the national center for atmospheric research community climate model,version3.Journal of Geophysical Research,2000,105:1367-1385.
    [22]邱金桓.中国10个地方大气气溶胶1980-1994年间变化特征研究.大气科学,1997,21(6):725-733.
    [23]罗云峰.近30年来中国地区大气气溶胶光学厚度的变化特征.科学通报,2000,45(5):549-554.
    [24]辛金元,王跃思,李占清等.中国大气气溶胶光学特性及其时空分布联网观测与研究(1)-太阳分光辐射观测网的建立和仪器定标分析.环境科学,2006,27(9):1123-1134.
    [25]Xin Jinyuan,Yuesi Wang,et al..AOD and Angstrom exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005.Journal of Geophysical Research,2007,112,D05203,doi:10.1029/2006JD007075.
    [26]李正强,赵凤生,赵藏,高飞,唐军武.黄海海域气溶胶光学厚度测量研究.量子电子学报,2003,20(5):635-640.
    [27]李放,吕达仁.北京地区气溶胶光学厚度中长期变化特征.人气科学,1996,20(4):385-394.
    [28]毛节泰,王强,赵柏林.大气透明度光谱和浑浊度的观测.气象学报,1983,41(3):322-332.
    [29]邱金桓,孙金辉,夏其林,张金定.北京大气气溶胶光学特性的综合遥感和分析.气象学报,1988,46(1):49-55.
    [30]邱金桓,杨景梅,潘继东.从全波段太阳直接辐射确定大气气溶胶光学厚度Ⅱ:实验研究.大气科学,1995,19(5):586-596.
    [31]章文星,吕达仁,王普才.北京地区人气气溶胶光学厚度的观测和分析.中国环境科学,2002,22(6):495-500.
    [32]王鹏举,周秀骥.青藏高原大气光学特征的测量与分析.气象科学研究院院刊,1988,3(1):46-55.
    [33]陶丽君,周诗健.底层大气光学厚度的一些特征.人气科学,1984,8(4):427-434.
    [34]李韧,季国良.藏北高原五道梁地区的气溶胶特征.高原气象,2004,23(4):501-505.
    [35]张军华,刘莉,毛节泰.地基多波段遥感西藏当雄地区气溶胶光学特性.大气科学,2000,24(4):549-555.
    [36]胡秀清,张玉香,张广顺等.中国遥感卫星辐射校正场气溶胶光学特性观测研究.应用气象学报,2001,12(3):257-266.
    [37]李霞,胡秀清,崔彩霞等.南疆盆地沙尘气溶胶光学特性及我国沙尘天气强度划分标准的研究.中国沙漠,2005,25(4):488-495.
    [38]田文寿,黄建国,陈长和.兰州西固地区冬季太阳辐射与大气浑浊度.高原气象,1995,14(4):459-466.
    [39]牛生杰,章澄昌,孙继明.贺兰山地区沙尘暴若干问题的观测研究.气象学报,2001,59(2):196-205.
    [40]许黎,柳中明,石广玉.台湾地区大气气溶胶光学特性的测量与分析.应用气象学报,1997,8(2):252-263.
    [41]毛节泰,刘莉,张军华.GMS5卫星遥感气溶胶光学厚度的试验研究.气象学报,2001,59(3):352-359.
    [42]邱明燕,盛立芳,房岩松等.气象条件对青岛地区气溶胶光学特性的影响.中国海洋大学学报,2004,34(6):925-930.
    [43]高润祥,张文煌.渤海西岸气溶胶光学厚度测量研究.新疆气象,27(6):19-25.
    [44]麻金继,杨世植,张玉平.厦门海域气溶胶光学特性的观测研究.量子电子学报,2005,22(3):473-476.
    [45]谭浩波,吴兑,毕雪岩.南海北部气溶胶光学厚度观测研究.热带海洋学报,2006,25(5):21-25.
    [46]赵崴,唐军武,高飞.黄海、东海上空春季气溶胶光学特性观测分析.海洋学报,2005,27(2):46-53.
    [47]Charlson R.J.,Langner J.,Rodhe H.,et al.Perturbation of the northern hemisphere radiative balance by back scattering from anthropogenic aerosol.Tellus,1991,43AB:152-163.[48]Langner J.,Rodhe H.A global three-dimensional model of the tropospheric sulfur cycle.J Atmos Chem,1991,13:52-63.[49]Charlson R.J.,Schwartz S.E.,Hales J.M.,et al.Climate forcing by anthropogenic aerosols.Science,1992,255:422-430.[50]Kiehl J.T.,Briegleb B.P.The relative roles of sulfate aerosols and greenhouse gases in climate forcing.Science,1993,260:311-314.[51]Hansen J.,Lacis A.How sensitive is the world's climate? National Geographic Research and Exploration,1993,9:142-158.[52]Chuang C.C.,Penner J.E.,Taylor K.E.,et al..Climate effects of anthropogenic sulfate:simulation from a coupled chemistry climate model.Preprints of the Conference on Atmosphric Chemistry,Nashville,Tennessee.American Meteorological Society,Boston,USA.1994:170-174.
    [53] Taylor K. E., Penner J. E. Response of the climate system to atmospheric aerosols and greenhouse gases. Nature, 1994,369:734-737.
    [54] Boucher 0., Anderson T. L. GCM assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. Journal of Geophysical Research, 1995, 100:26061-26092.
    [55] Pham M., Megie G., Muller J. F., et al.. A three -dimensional study of the tropospheric sulfur cycle. Journal of Geophysical Research, 1996,100:26061-26092.
    [56] Kiehl J. T., Rodhe H. Modeling geographical and seasonal foring of climate. Chharlson R J , Heintzenberg J, eds. Chichester: John Wiley,1995:1281-296.
    [57] Mitchell J. F. B, Johns T. C, Gregory J M, et al. Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature, 1995, 376:501-504.
    [58] Catherine C. C, Joyce E. P., Karl E. T., et al.. An assessent of the radidtive effects of anthropogenic sulfate. Journal of Geophysical Research, 1997,102(D3):3761-3778.
    [59] Liu X.H., J.E. Penner. Effect of Mount Pinatubo H2SO4/H2O aerosol on ice nucleation in the upper troposphere using a global chemistry and transport model. Journal of Geophysical Research, 2002, 107(D12), doi:10.1029/2001JD000455.
    [60] Myhre G., et al. Modelling the solar radiative impact of aerosols from biomass burning during the Southern African Regional Science Initiative (SAFARI 2000) experiment. Journal of Geophysical Research , 2003, 108, 8501, doi:10.1029/2002JD002313.
    [61] Reddy M.S., O Boucher. A study of the global cycle of carbonaceous aerosols in the LMDZT general circulation model. Journal of Geophysical Research, 2004, 109, D14202, doi:10.1029/ 2003JD004048.
    [62] Schulz M., et al. Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos. Chem.Phys. Discuss., 2006, 6:5095-5136.
    [63] Stier P., et al. The aerosol-climate model ECHAM5-HAM. Atmos.Chem. Phys., 2005, 5: 1125-1156.
    [64] Koch D. Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM. Journal of Geophysical Research, 2001, 106(D17):20311-20332.
    [65] Iversen T., O. Seland. A scheme for process-tagged SO4 and BC aerosols in NCAR CCM3: Validation and sensitivity to cloud processes. Journal of Geophysical Research, 2002, 107(D24), 4751, doi: 10.1029/2001JD000885.
    [66] Takemura T., et al. Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. Journal of Geophysical Research, 2005, 110, D02202, doi: 10.1029/2004JD005029.
    [67] Pitari G., E. Mancini, V. Rizi, D.T. Shindell. Impact of future climate and emissions changes on stratospheric aerosols and ozone. J.Atmos. Sci., 2002, 59:414-440.
    [68]钱云,符涂斌,胡荣明,王自发.工业502排放对东亚和我国温度变化的影响.气候与环境研究,1996,1(2):143-149.
    [69]胡荣明,石广玉.中国地区气溶胶的辐射强迫及其气候响应试.大气科学,1998,22(6):919-925.
    [70]高庆先,任阵海,姜振远.人为排放气溶胶引起的辐射强迫研究.环境科学研究,1998,11(1):5-9.
    [71]周秀骥,李维亮,罗云峰.中国地区大气气溶胶辐射强迫及区域气候效应的数值模拟.大气科学,1995,22(4):418-427.
    [72]吴涧,蒋维相,刘红年等.硫酸盐气溶胶直接和间接辐射气候效应的模拟研究.环境科学学报,2002,22(2):129-134.
    [73]张立盛,石广玉.硫酸盐和烟尘气溶胶辐射特征及辐射强迫的模拟估算.人气科学,2001,25(2):231-242.
    [74]马晓燕,石广玉,郭裕福等.硫酸盐气溶胶辐射强迫的数值模拟研究.气候与环境研究,2004,9(3):454-464.
    [75]王体健等.一个区域气候-化学祸合模式的研制及初步应用.南京大学学报,2004,40(6):711-727.
    [76]夏祥鳌,王明星.气溶胶吸收及气候效应研究的新进展.地球科学进展,2004,19(4):630-635
    [77]Griggs M.Measurement of atmospheric aerosol optical thickness over water using ERTS-1data.Air Pollut Contr Assoc,1975,25:622-626.
    [78]Fraser R.S.,Malloney R.L..Satellite measurements of aerosol mass and transport.Atmos Environ,1984,18:2577-2584.
    [79]Durkee P.A.,Jensen D.R.,Hindman E.E.The relationship between marine acrosols and satellite detected radiance.Geophys Res,1986,91:4063-4072.
    [80]Tanre D.C.,Devaux M.,Herman R.,Santer.Radiative properties of desert aerosols by optical ground-based measurements at solar wavelengths.Geophys Res,1988,93:14223-14231.
    [81]Legrand,Desbois M.,Vovor K.Satellite detection of Saharan dust,Optimized maging during nighttime.Climate,1988,1:256-264.
    [82]Kaufman Y.J.,Sendra C.Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery.Int.Remote Sens,1988,9:1357-1381.
    [83]Kaufman Y.J.,Joseph J.H.Determination of surface albedos and aerosol extinction characteristics from satellite imagery.Geophys Res,1982,87:1287-1299.
    [84]Martonchik,Diner D.J.Retreval of aerosol and land surface optical properties from multi-angle satellite imagery.IEEE traps Geosel Remote Sens,1992,30:223-230.
    [85]Veefind J.P.,Durkee P.A.Retrieval of aerosol optical depth over land using two-angle view radiometry during TARFOX.Geophys Res Lett,1998,25:3135-3138.
    [86] Leroy M., Coauthors. Retrieval of aerosol properties and surface bi-directional reflectances from POLDER/ADEOS. Geophys Res, 1997,102:17023-17037.
    [87] Kaufman Y.J., Remer L. A. Remote sensing of vegetation in the near IR from EOS/MODIS. IEEE Trans. Geosci.Remote Sens. 1994,32:672-683.
    [88] Tanre D. C, Remer A., Kaufman Y. J., et al. Retrieval of aerosol optical thickness and size distribution over ocean from the MODIS Airborne Simulator during TARFOX. Geophys Res., 1999, 104:2261-2278.
    [89] Yu H., et al. A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys., 2006, 6:613-666.
    [90] Ignatov A., L. Stowe. Aerosol retrievals from individual AVHRR channels. Part I: Retrieval algorithm and transition from Dave to 6S Radiative Transfer Model. J. Atmos. Sci., 2002, 59:313-334.
    [91] Torres O., et al. A long-term record of aerosol optical depth from TOMS: Observations and comparison to AERONET measurements. J. Atmos. Sci., 2002, 59:398-413.
    [92] Boucher O., M. Pham. History of sulfate aerosol radiative forcings. Geophys. Res. Lett., 2002, 29(9):22-25.
    [93] Bellouin N., O. Boucher, D. Tanre, O. Dubovik. Aerosol absorption over the clear-sky oceans deduced from POLDER-1 and AERONET observations. Geophys. Res. Lett., 2003, 30(14), 1748, doi:10.1029/2003 GL017121.
    [94] Higurashi A., et al. A study of global aerosol optical climatology with two-channel AVHRR remote sensing. J. Clim., 2000, 13:2011-2027.
    [95] Bellouin N., O. Boucher, J. Haywood, M.S. Reddy. Global estimates of aerosol direct radiative forcing from satellite measurements. Nature, 2005, 438:1138-1141.
    [96] Kahn, R.A., et al. Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network(AERONET) observation. J.Geophys.Res., 2005,110, D10S04, doi:10.1029/2004JD004706.
    [97] Loeb N.G., S. Kato. Top-of-atmosphere direct radiative effect of aerosols over the tropical oceans from the Clouds and the Earth's Radiant Energy System (CERES) satellite instrument. J. Clim., 2002, 15:1474-1484.
    [98] Spinhirne J.D., et al.. Cloud and aerosol measurements from GLAS: overview and initial results. Geophys. Res. Lett., 2005, 32, L22S03, doi:10.1029/2005GL023507.
    [99] Holzer-Popp T., M. Schroedter, G. Gesell. Retrieving aerosol optical depth and type in the boundary layer over land and ocean from simultaneous GOME spectrometer and ATSR-2 radiometer measurements - 2. Case study application and validation. Journal of Geophysical Research, 2002, 107(D21), 4578, doi:10.1029/2002JD002777.
    [100]Lee K.H.,Y.J.Kim,W.von Hoyningen-Huene.Estimation of regional aerosol optical thickness from satellite observations during the 2001 ACE-Asia IOP.Journal of Geophysical Research,2004,109,D19S16,doi:10.1029/2003JD004126.
    [101]Loeb N.G.,N.Manalo-Smith.Top-of-atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations.J.Clim.,2005,18:3506-3526.
    [102]Remer L.A.,Y.J.Kaufman.Aerosol direct radiative effect at the top of the atmosphere over cloud free oceans derived from four years of MODIS data.Atmos.Chem.Phys.,2006,6:237-253.
    [103]Zhang J.,S.Christopher.Longwave radiative forcing of Saharan dust aerosols estimated from MODIS,MISR and CERES observations on Terra.Geophys.Res.Lett.,2003,30(23),doi:10.1029/2003GL018479.
    [104]Chou M.-D.,P.-K.Chan,M.Wang.Aerosol radiative forcing derived from SeaWiFS -retrieved aerosol optical properties.J.Atmos.Sci.,2002,59:748-757.
    [105]Haywood J.M.,V.Ramaswamy,B.J.Soden.-Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans.Science,1999,283:1299-1305.
    [106]赵柏林,俞小鼎.海洋大气气溶胶光学厚度的卫星遥感研究.科学通报,1986,21:1645-1649.
    [107]张军华,斯召俊,毛节泰,王美华.GMS卫星遥感中国地区气溶胶光学厚度.大气科学,2003,27(1):23-35.
    [108]李成才,毛节泰,刘启汉等.利用MODIS光学厚度遥感产品研究北京及周边地区的大气污染.大气科学,2003a,27(5):869-550.
    [109]刘桂青,李成才等.长江三角洲地区大气气溶胶光学厚度研究.环境保护,2003,8:50-54.
    [110]李成才,毛节泰,刘启汉等.利用MODIS研究中国东部地区气溶胶光学厚度的分布和季节变化特征.科学通报,2003b,48(19):2094-2100.
    [111]李成才,毛节泰,刘启汉等.用MODIS遥感资料分析四川盆地气溶胶光学厚度时空分布特征.应用气象学报,2003c,14(1):1-7.
    [112]王新强,杨世植等.基于6S模型从MODIS图像反演陆地上空大气气溶胶光学厚度.量子电子学报,2003,20(5):629-634.
    [113]田华,马建中,李维亮等.中国中东部地区硫酸盐气溶胶直接辐射强迫及气候效应的数值模拟.应用气象学报,2005,6(3):322-333.
    [114]吴兑.华南气溶胶研究的回顾与展望.热带气象学报,2003,19(增刊):145-151.
    [115]李成才,刘启汉,毛节泰等.利用MODIS卫星和激光雷达遥感资料研究香港地区的一次大气气溶胶污染.应用气象学报,2004,15(6):641-650.
    [116]韩志刚.草地上空对流层气溶胶特性的卫星偏振遥感正问题模式系统合反演初步实验.北京:中国科学院大气物理研究所博士学位论文,2000.
    [117]毛节泰,李成才,张军华等.MODIS卫星遥感北京地区气溶胶光学厚度及与地面光度计遥感的对比.应用气象学报,2002,13(特):127-135.
    [118]李正强,赵凤生.利用静止气象卫星数据确定大气气溶胶光学厚度.量子电子学报,2001,18(4):381-384.
    [119]Ohmura A,Deluisi J,Dehne K,et al.Baseline Surface Radiation Network(BSRN/WCRP),a new precision radiometry for climate research.Bulletin of the American Meteorological Society,1998,79:2115-2136.
    [120]Remer L A,Tanre D,Kaufman Y J.Validation of MODIS aerosol retrieval over ocean.Geophysical Research Letter,2002,29(12):MOD321-MOD324.
    [121]Lorraine Remer,Yoram Kaufman,Didier Tanre.,et al.Collection 005 change summary for MODIS aerosol(04_L2)algorithms.(http://modis-atmos.gsfc.nasa.gov/C005_Changes/C005_Aerosol_5.2.pdf)
    [122]Hiren Jethva,S.K.Satheesh,J.Srinivasan.Assessment of second-generation MODIS aerosol retrieval(Collection 005)at Kanpur,India.Geophysical Research Letter,2007,34:L19802.
    [123]Morys M,Mims F M,Anderson S E.Design,calibration and performance of microtops Ⅱ.Hand-held ozonometer[B].User's Guide,Version 2.42[M].Philadelphia:Solar Light Company,1998.39-50.
    [124]Portern J N,Miller M,Pietas C,et al.Ship based sun photometer measurements using microtops sun photometer.J Ocean Atmos Tech,2001,18:652-662.
    [125]Solar Light Company.MICROTOPS Ⅱ USER'S GUIDE,2003.
    [126]Kirk D.K,Christophe P,Giulietta S.F.Sun-Pointing-Error Correction for Sea Deployment of the MICROTOPS Ⅱ Handheld Sun Photometer.American Meteorological Society,2003,20:767-771.
    [127]高飞,李铜基,陈清莲,邬海强.MICROTOPS Ⅱ手持式太阳光度计海上测量关键技术.海洋技术,2003,23(3):5-9.
    [128]Ichoku C,Chu D A,Mattoo S M.A spatio-temporal approach for global validation and analysis of MODIS aerosol products.Geophysical Research Letter,2002,29(12):MOD121-MOD124.
    [129]Zhao T X-P,Stowe L.L.,Smirnov A,et al.Development of a global validation package for satellite oceanic aerosol optical thickness retrieval based on AERONET observations and its application to NOAA/NESDIS operational aerosol retrievals.Journal of the Atmospheric Science,2002,56:294-312.
    [130]陈本清,杨燕明.台湾海峡及周边海区MODIS气溶胶光学厚度有效性验证.海洋学报,2005,27(6):170-176.
    [131]夏祥鳌.全球陆地上空MODIS气溶胶光学厚度显著偏高.科学通报,2006,51(19):2297-2303.
    [132]Long C.S.,Stowe L.L.Using the NOAA/AVHRR to study stratospheric aerosol optical thickness following the Mt.Pinatubo eruption.Geophysical Research Letter,1994,21(20):2215-2218.
    [133]Higurashi A.,Nakajima T..Development of a two channel aerosol retrieval algorithm on global scale using NOAA/AVHRR.J Atmos Sci,1999,56(7):924-941.
    [134]Remer L.A.,et al.The MODIS aerosol algorithm,products and validation.J.Atmos.Sci.,2005,62:947-973.
    [135]国家海洋局.海洋大气监测技术规程[M].北京海洋出版社,2002.
    [136]章澄昌.大气气溶胶教程[M].北京:气象出版社,1995:52-58.
    [137]李东升,程温莹,汪模辉等.成都市大气颗粒物的特性研究.广东微量元素科学,2005,12(12):47-51.
    [138]US-EPA.Air quality criteria for particulate matter[R].USA:Office of Research and Development,2001.
    [139]Rtha D.S.,Sahu B.K.Source and distribution of metals in urban soil of Bombay,India,using multivariate statistic-caltechniques.Environmental Geoloy,1993,22:276-285.
    [140]张立盛,石广玉.全球人为硫酸盐和烟尘气溶胶资料及其光学厚度的分布特征.气候与环境研究,2000,5(1):67-74.
    [141]Uematsu M.,Yoshikawa A.,et al.Transport of mineral and anthropogenic aerosols during a Kosa event over East Asia.Journal of Geophysical Research,2002:107(D7&D8):AA3/12 AA3/7.
    [142]Kaufman,O.Boucher,D.Taure.Aerosol anthropogenic component estimated from satellite data.Geophysical Research Letter,2005,32,L17804,doi:10.1029/2005GL023125.
    [143]Thomas A.Jones,Christopher.MODIS derived fine mode fraction characteristics of marine,dust and anthropogenic aerosols over the ocean,constrained by GOCART,MOPITT and TOMS.Journal of Geophysical Research,2007,112,D33010,doi:10.1029/2007JD008974.
    [144]韩永翔,宋连春,奚晓霞等.中国沙尘暴月际时空特征及沙尘的远程传输.中国环境科学,2005,25(Suppl):13-16.
    [145]车慧正,石广玉,张小曳.北京地区大气气溶胶光学特性及其直接辐射强迫的研究.中国科学院研究生院学报,2007,24(5):699-704.
    [146]Shi G.Y.Radiative forcing and greenhouse effect due to the atmospheric trace gases.Science in China(B),1992,35(2):217-229.
    [147]Jacobson M.Z.Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols.Nature,2001,409:695-697.
    [148]Breon F.M.,Tanre D.,Generoso S.Aerosols effect on the cloud droplet size monitored from satellite.Science,2002,295:834-838.
    [149]Zhou X.J.,Li W.L.Numerical simulation of the aerosol radiative forcing and regional climate effect over china.Chinese J.Atmos.Sci.,1998,22(4):418-427.
    [150] Zhang L. S., Shi G Y. The simulation and estimation of radiative properties and radiative forcing due to sulfate and soot aerosols. Chinese J. Atmos. Sci., 2001,25(2):231-242.
    [151] Li X. W., Zhou X. J., Li W L. The cooling of Sichuan province in recent 40 years and its probable mechanism. Acta Meteorologica Sinica, 1995, 9:57-68.
    [152] Menon S., Hansen J., Nazarenko L., et al. Climate effects of Black Carbon Aerosols in China and India. Science, 2002, 297:2250-2253.
    [153] Zhao C. S., Tie X. X., Lin Y. P. A possible positive feedback of reduction of precipitation and increase in aerosols over eastern central China. Geophys. Res. Lett., 2006, 33: L11814.
    [154] Zhang J. H., Mao J. T., Wang M. H. Analysis of aerosol extinction characteristics in different area of China. Advance. Atmos. Sci., 2002,19:136-152.
    [155] http://eosweb.larc.nasa.gov/PRODOCS/ceres/table_ceres.html [156] http://ladsweb.nascom.nasa.gov/
    [157] Loeb N. G., Kato S., Loukachine K. Angular distribution models for Top-of-atmosphere radiative flux estimation from the Clouds and the Earth's Radiant Energy System instrument on the Terra Satellite. Part I: Methodology. J. Atmos. Ocean. Tech., 2005, 22:338-351.
    [158] Loeb N. G., Kato S, Loukachine K et al. Angular distribution models for Top-of-atmosphere radiative flux estimation from the Clouds and the Earth's Radiant Energy System instrument on the Terra Satellite. Part II: Validation. J. Atmos. Ocean. Tech., 2006, submitted.
    [159] Christopher S. A., J. Zhang. Shortwave Aerosol Radiative Forcing from MODIS and CERES observations over the oceans. Geophys. Res. Lett., 2002, 29(18), 1859, doi:10.1029/ 2002GL014803.
    [160] Jianglong Zhang, Sundar A. Christopher, Shortwave aerosol radiative forcing over cloud-free oceans from Terra:2. Seasonal and global distributions. Journal of Geophysical Research, 2005, 110, D10S24, doi:10.1029/2004JD005009.
    [161] Kaufman Y. J., B. N. Holben, D. Tanre, et al. Will aerosol measurements from Terra and Aqua polar orbiting satellites represent the daily aerosol abundance and properties. Geophys. Res. Lett., 2000, 23:3861-3864.
    [162] Chrsitopher S. A., J. Zhang. Cloud-free shortwave aerosol radiative effect over the oceans: Straegies for identifying anthropogenic forcing from Terra satellite measurements. Geophys. Res. Lett., 2004, 31, L181, doi:10.1029/2004GL020510.
    [163] Quaas, Boucher, Breon. Aerosol indirect effects in POLDER satellite data and the Laboratoire de Meteorologie Dynamique-Zoom (LMDZ) general circulation model Journal of Geophysical Research, 2004, 109, doi:10.1029/2003JD004317.
    [164] Bennartz. Global assessment of marine boundary layer cloud droplet number concentration from satellite. Journal of Geophysical Research, 2007, 112, D02201, doi:10.1029/2006JD007547.
    [165] Twomey S. A. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 1977,34:1149-1152.
    [166]Kaufman Y.J.,R.S.Fraser.The effect of smoke particles on clouds and climate forcing.Science,1997,277:1636-1639.
    [167]Albrecht B.Aerosols,Cloud Microphysics,and Fractional Cloudiness.Science,1989,245:1227-1230.
    [168]Matsui T.,H.Masunaga,S.M.Kreidenweis,et al.Satellite based assessment of marine low cloud variability associated with aerosol,atmospheric stability,and the diurnal cycle.Journal of Geophysical Research,2006,111,D17204,doi:10.1029/2005JD006097.
    [169]Jones A.,D.L.Roberts.A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols.Nature,1994,370:450-453.
    [170]Li S-M.,C.M.Banic,et al.Water-soluble fractions of aerosol and relation to size distributions based on aircraft measurements from the North Atlantic Regional Experiment.Journal of Geophysical Research,1996,101:29111-29121.
    [171]Lohmann U.,G.Lesins.Comparing continental and oceanic cloud susceptibilities to aerosols.Geophys.Res.Lett.,2003,30,doi:10.1029/2003GL017828.
    [172]Rosenfeld,D.,Y.Rudich,R.Lahav.Desert dust suppressing precipitation:a possible deserfification feedback loop.Proceedings of the National Academy of Sciences,2001,98(11):5975-5980.
    [173]郝增周,潘德炉,白雁.Sea Wifs遥感资料分析中国海域气溶胶光学厚度的季节变化和分析特征.海洋学研究,2007,25(1):80-87.
    [174]Reid J.S.,Hobbs P.V.,Rangno A.L.,et al.Relationships between cloud droplet effective radius,liquid water content,and droplet concentration for warm clouds in Brazil embedded in biomass smoke.Journal of Geophysical Research,1999,104:6145-6153.
    [175]S.N Tripathi,A.Pattnaik,Sagnik Dey.Aerosol indirect effect over Indo-Gangetic plain.Atmosperic Environment,2007,41:7037-7047.
    [176]Bennartz.Global assessment of marine boundary layer cloud droplet number concentration from satellite.Journal of Geophysical Research,2007,112,D02201,doi:10.1029/2006JD007547.
    [177]Levin,Ganor,V.Gladstein.The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean.J.Appl.Meteor.,1996,35:1511-1523.
    [178]Jacobson,M.Z.Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols.Journal of Geophysical Research,2001a.,106(D2):1551-1568
    [179]Kirkevag,Iversen.Global direct radiative forcing by process-parameterized aerosol optical properties.Journal of Geophysical Research,2002,107(D20),4433,doi:10.1029/2001JD 000886,
    [180]Takemura T.,T.Nakajima,et al..Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model.Journal of Climate,2002,15:333-352.
    [181]Takemura T.,H.Okamoto,Y.Maruyama,A.Numaguti,et al.Global three-dimensional simulation of aerosol optical thickness distribution of various origins.Journal of Geophysical Research,2000,105:17853-17873.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700