均匀湍流内有限惯性颗粒碰撞率的直接模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃烧源可吸入颗粒物对于人体健康和自然环境有严重的危害作用,了解其在燃烧过程中生成和长大过程的机理是在燃烧过程中控制颗粒物生成的前提,其核心问题之一是颗粒-颗粒的碰撞和凝并过程。而由于湍流对细微颗粒具有复杂的输运作用和局部聚集效应,细颗粒的碰撞率将不同于常规的几何碰撞率。研究具有有限惯性、并有局部富集条件下颗粒的碰撞率是目前两相流体力学和气溶胶动力学的研究热点之一。
    本文在系统总结有关颗粒平均碰撞率模型的研究进展和相关数学模型、算法的基础上,基于后溯算法,构建了能够模拟三维空间内具105~106个颗粒碰撞的直接模拟程序,其中颗粒动量方程采用二阶预估-校正格式,颗粒位移采用二阶Adams积分,气相湍流场采用拟谱方法求解,颗粒位置上流体的速度由气相场用四阶拉格朗日插值得到,通过采用相邻网格、网格排除和颗粒排序等方法对程序进行优化,程序计算量较常规方法可低2个数量级,满足了在微机上模拟巨量颗粒碰撞需要。使用该程序,首先对均匀剪切流内St<<1的颗粒(轻颗粒流)和St>1且速度呈高斯分布颗粒(重颗粒流)两种工况进行数值验证,其结果和文献中的解析解一致,证明了算法和程序的可靠性,并讨论了计算参数的选取原则。进一步的,本文对各向均匀同性湍流内有限惯性颗粒的聚集现象及其对碰撞率的影响进行了模拟计算,采用径向分布函数、归一化的条件颗粒浓度等参数定量表征了不同St数颗粒的局部聚集程度;对St=1的颗粒,受局部聚集的影响,其颗粒碰撞率可为零惯性颗粒的20~30倍。
Inhaled particulate matter originating from combustion does serious harm to human health and environment. Mechanism of formation and growth of inhaled particulate matter in combustion is the precondition of its control during combustion process, where the controlling process is inter-particle collision and coagulation. Because turbulence imposes complex transport and accumulation effects on fine particle, the collision rate of fine particles there may different from those predicted by the custom model. Research on collision rate of finite inertial particle with preferential concentration is one of hotspots in gas-particle flow mechanism and aerosol dynamics.
    After a brief summary of the research developments in particle average collision rate model, correlated mathematic models and numerical simulation algorithms, a retroactive algorithm-based program was built for direct numerical simulation (DNS) the collisions between particles in 3-dimenional space, with particle number up to 105~106. The second-order forecast-correction method was applied in solution of particle’s momentum equation, where the fluid velocity at the particle location is determined using a fourth-order Lagrangian interpolation. The particle position was advanced by a second-order Adams integral method. The fluid velocity field was generated by a pseudo spectral method. By optimizing algorithms such as cell index, exclusive search and particle sequence et al., the program can fit the requirements of simulating collisions between huge numbers of particles on personal computer, whose computation load is two orders of magnitude less than that of custom algorithm. Verifications of the code were done by two cases: St<<1 particle in uniform shear flow and St>1 particle whose velocity distribution was Gaussian. The results were consistent with analytical solutions in literatures,which proved reliability of retroactive algorithm and the program. The principle of computational parameter selection was also discussed. Moreover, DNS study of finite inertial particle with preferential concentration in isotropic turbulence and its influence on collision rate were performed. The accumulation level of various St number particle was quantified by parameters such as radial distribution function, and conditional expectation of normalized particle number density et al.; It showed that collision rate of St =1 particle was 20~30 times larger than that of zero-inertial particle because of local preferential concentration.
引文
Muller, H. Zur allgemeinen theorie der raschen koagulation. Kolloidbeihefte, 1928, 27:223-250
    Tolfo, F. A simplified model of aerosol coagulation. J. Aerosol Sci., 1977, 8:9-19
    Shon, S. N., Kasper, G., and Shaw, D.T. An experimental study of Brownian coagulation in the transition regime. J. Colloid Interface Sci. 1980, 73:233-243
    Majerowicz, A., and Wagner, P. E. Brownian coagulation of atmospheric aerosols in the presence of nucleation mode aerosol sources. J. Aerosol Sci., 1986, 17:463-465
    Gelbard, F., and Seinfeld, J.H. Numerical solutions of the dynamic equation for particle systems. J. Comput. Phys., 1978, 28:357-375
    Landgrebe, J. D., and Pratsinis, S. E. A discrete-sectional model for powder production by gas phase chemical reaction and aerosol coagulation in the free-molecular regime. J. Colloid Interface Sci., 1990, 139:63-86
    Mick, H. J., Hospital, A., and Roth, P. Computer simulations of soot particle coagulation in low-pressure flames. J. Aerosol Sci. 1991, 22:831-841
    Otto, E., Stratmann, F., Fissan, H., Vemury, S., and Protsinis, S. E. Brownian coagulation in the transition regime 2: a comparision of two modeling approaches. J. Aerosol Sci., 1993:24:535-536
    Otto, E., Stratmann, F., Fissan, H., Vemury, S., and Protsinis, S. E. Quasi-self-preserving log-normal size distribution in the transition regime. Part. Part. Systems. Charact. 1994, 11:359-366
    Lee, K. W. Change of particle size distribution during Brownian coagulation. J. Colloid Interface Sci. 1983, 92:315-325
    Lee, K. W., Curtis, L. A., and Chen, H. An analytic solution to free-molecule aerosol coagulation. Aerosol Sci. Technol., 1990, 12:457-462
    Lee, K. W., Lee, Y. J. and Han, D. S. The log-normal size distribution theory for Brownian coagulation in the low Knudsen number regime. J. Colloid Interface Sci.
    
    
    1997, 188:486-492
    Park, S. H., Lee, K. W., Otto, E., and Fissan, H. The log-normal size distribution theory of Brownian aerosol coagulation for the entire particle size range: Part I: analytical solution using the harmonic mean coagulation kernel. J. Aerosol Sci., 1999, 30(1): 3-16
    Debry, E., Sportisse, B., and Jourdain, B. A stochastic approach for the numerical simulation of the general dynamics equation for aerosols. J. Comput. Phys., 2003, 184:649-669
    Fuchs, N. A. The Mechanics of Aesosols. New York: Pergamon Press, 1964.
    Hidy, G. M., and Brock, J. R. Dynamics of Aerocolloidal Systems. New York: Pergamon,1970
    Otto, E., Fissan, H., Park, S. H., and Lee, K. W. The log-normal size distribution theory of Brownian aerosol coagulation for the entire particle size range: Part II-analytical solution using Dahneke’s coagulation kernel. J. Aerosol Sci., 1999, 30(1): 17-34
    Saffman, P.G., and Turner, J.S. On the collision of drops in turbulent clouds. J. Fluid Mech., 1956, (1): 16-30
    Wang, L. P., Wexler, A. S., and Zhou, Y. Statistical mechanical descriptions of turbulent coagulation. Phys. Fluids, 1998, 10:2647-2651
    Abrahamson, J. Collision rates of small particles in a vigorously turbulent fluid. Chem. Eng. Sci., 1975, 30:1371-1379
    Williams, J.J.E., and Crane, R.I. Particle collision rate in turbulent flow. International Journal of Multiphase Flow, 1983, 9(4): 421-435
    Yuu, S. Collision rate of small particles in a homogeneous and isotropic turbulence. AIChE J., 1984, 30: 802-807
    Kruis, F.E., and Kusters, K.A. The collision rate of particles in turbulent flow. Chem. Eng. Comm., 1997, 158: 201-230
    Zhou, Y., Wexler, A.S., Wang, L.-P. On the collision rate of small particles in isotropic turbulence. II. Finite-inertia case. Phys. Fluids, 1998, 10:1206-1216
    
    Wang, L.P., Wexler, A.S., and Zhou, Y. Statistical mechanical description and modeling of turbulent collision of inertial particles. J. Fluid Mech. 2000, 415:117-153
    Alipchenkov, V. M., and Zaichik, L. I. Particle collision rate in turbulent flow. Fluid Dynamics, 2001, 36(4): 608-618
    Maxey, M.R. The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech., 1987, 174: 441-465
    Squires, K.D., and Eaton, J.K. Preferential concentration of particle by tubulentce. Phys. Fluids A, 1991, 3: 1169-1179.
    Wang, L. P., and Maxey, M. R. Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech., 1993, 256: 27-68.
    Fessler, J. R., Kulick, J.D., and Eaton, J.K. Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids A, 1994, 6:3742-3749
    Sundaram, S., and Collins, L.R. Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech., 1997, 335:75-109
    Reade, W. C., and Collins, L.R. Effect of preferential concentration on turbulent collision rates, Physics of Fluids. 2000,12(10): 2530-2540
    Kuboi, R., Komasawa, I., and Otake, T. Collision and coalescence of dispersed drops in turbulent liquid flow. J. Chem. Engng Japan, 1972, 5:423-424
    Delichatsios, M.A., and Probstein, R. F. Coagulation in turbulent flows: theory and experiment. J. Colloid Interface Sci. 1975, 51:394-405
    Higashitani, K., Yamauchi, K., Matsuno, Y., and Hosokawa, G. Turbulent coagulation of particle dispersed in a viscous fluid. J. Chem. Engng Japan, 1983, 16:299-304
    De Boer, G. B. J., Hoedemakers, G. F. M., and Thoenes, D. Coagulation in turbulent flow: Part I and Part II. Chem. Engng Res. Des. 1989, 67:301-307,308-315
    Lichtenfeld, H., Knapschinsky, L., Sonntag, H., and Shilov, V. Fast coagulation of
    
    
    nearly spherical ferric oxide (haematite) particles. Colloid Surface A, 1995, 104:313-320
    Hu, C., and Mei, R. Effect of inertial on the particle collision coefficient in Guassian turbulent. the 7th Intl.Symposium on Gas-Solid Flows, Paper FEDSM97-3608, ASME Fluids Engineering Conference, Vancouver, BC, Canada, 1997.
    Orszag, S. A., Numerical simulation of incompressible flows within simple boundaries.1. Galerkin(Spectral) representation. Studies in Appl. Math., 1971, 50(4): 293-327
    Orszag, S. A., and Patterson G. S. Numerical simulation of three-dimension homogeneous isotropic turbulence. Phys. Rev. Lett., 1972, 28:76-79
    Rogallo, R. S., Numerical experiments in homogeneous turbulence. NASA Technical Memorandum-81315, 1981
    Moin, P., and Mahesh, K. Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid. Mech., 1998, 30:539-578
    Riley, J. J., and Paterson, G. S. Diffusion experiments with numerically integrated isotropic turbulence. Phys. Fluids., 1974, 17:292-297
    Yeung, P. K., and Pope, S. B. An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Comput. Phys, 1988, 79:373-416
    Squires, K. D., and Eaton, J. K. Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A, 1990, 2: 1191-1203
    Elghobashi, S. Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 1992, 242:655-700
    Kallio, G.A., and Reeks, M.W. A numerical simulation of particle deposition in turbulent boundary layers. Int J. Multiphase Flow, 1989, 15:433-446
    McLaughlin, J. B. Aerosol particle deposition in numerically simulated channel flow. Phys. Fluids. A, 1989, 1:1211-1224
    Brooke, J. W., Kontomaris, K., Hanratty, T. J., and McLaughlin, J. B. Turbulent deposition and trapping of aerosols at a wall. Phys. Fluids A, 4:825
    
    Brooke, J. W., Hanratty, T. J., McLaughlin, J. B. Free flight mixing and deposition of aerosols. Phys. Fluids. 1994, 6:3404-3415
    Sundaram, S., and Collins, L.R. Spectrum of density fluctuations in a particle-fluid system I. Monodisperse spheres. Int J. Multiphase Flow, 1994, 20:1021-1037
    Sundaram, S., and Collins, L.R. Spectrum of density fluctuations in a particle-fluid system II. Polydisperse spheres. Int J. Multiphase Flow, 1994, 20:1039-1052
    Sundaram, S., and Collins, L.R. Numerical considerations in simulating a turbulent suspension of finite-volume particles. J. Comput. Phys, 1996, 124: 337-350
    Allen, M.R., and Tildesley, D.J. Computer Simulation of Liquids. Oxford :Oxford Univ. Press, 1987.
    Hockney, R.W., and Eastwood, J.W. Computer Simulation Using Particles. New York: McGraw-Hill, 1981.
    Haile, J.M. Molecular Dynamics Simulation-Elementary Methods. New York: Wiley, 1992.
    Allen, M.D., and Raabe, O.G. Slip correction measurements of spherical solid aerosol particles in an improved Millikan apparatus. Aerosol Sci. Technol., 1985, 4(3): 269-286
    Ounis, H., Ahmadi, G. and McLaughlin, J.B., Numerical Simulation of Brownian Particle Diffusion in a Turbulent Channel Flow, In "Advances in Micromechanics of Granular Materials," Ed. by H.H. Shen et al., Elsevier, Amsterdam, 1992:433-442
    Saffman, P.G. The lift on a small sphere in a slow shear flow. J. Fluid Mech., 1965, 22: 385-400.
    Saffman, P.G. Corrigendum to “The lift on a small sphere in a slow shear flow”. J. Fluid Mech., 1968, 31:624.
    Dandy, D.S., and Dwyer, H.A. Sphere in shear flow at finite Reynolds number. Effect of shear on particle lift, drag, and heat transfer. J. Fluid Mech., 1990, 216:381-410
    McLaughlin, J.B. Inertial migration of a small sphere in linear shear flows. J. Fluid
    
    
    Mech., 1991, 224:261-274.
    Mei, R. Approximate expression for the shear lift force on a spherical particle at finite Reynolds number. International Journal of Multiphase Flow , 1992, 18(1):145-147
    岑可法,樊建人,工程气固多相流动的理论及计算,杭州: 浙江大学出版社,1990
    Brock, J.R. On the theory of thermal forces acting on aerosol particles. Journal of Colloid and Interface Science, 17:768-780
    Friedlander, S.K. Smoke, Dust, and Haze: Fundamentals of Aerosol Behavior. New York: Wiley, 1977.
    Wang, L. P., Wexler, A.S., and Zhou, Y. On the collision rate of small particles in isotropic turbulence I Zero-inertia case. Phys. Fluids, 1998, 10: 266-276.
    Jonas, P. R., and Goldsmith, P. The collection efficiencies of small droplets falling through a sheared air flow. J. Fluid Mech., 1972, 52: 593-608
    Delichatsios, M.A. Particle coagulation in steady turbulent flows: application to smoke aging. J. Colloid Interface Sci. 1980, 78:163-174
    Koziol, A.S., and Leighton, H.G. Turbulent particle dispersion: a comparison between Lagrangian and Eulerian modeling approaches. J. Atmos. Sci., 1996, 53:1910-1920
    Brunk, B.K., Koch, D.L., and Lion L.W. Hydrodynamic pair diffusion in isotropic random velocity fields with application to turbulent coagulation. Phys. Fluids, 1997, 9:2670-2691
    Brunk, B.K., Koch, D.L., and Lion, L.W. Turbulent coagulation of colloidal particles. J. Fluid Mech., 1998, 364: 81-113
    Brunk, B.K., Koch, D.L., and Lion, L.W. Observations of coagulation in isotropic turbulence. J. Fluid Mech., 1998, 371,:81-107
    Zinchenko, A.Z., and Davis, R.H. Collision rates of spherical drops or particles in a shear flow at arbitrary Peclet number. Phys. Fluids, 1995, 7: 2310-2327
    Pruppacher, H.R., and Klett, J.D. Microphysics of Clouds and Precipitation.
    
    
    D.Reidel.
    Panchev, S. Random Function and Turbulence. Pergamon, 1971.301-309
    Fevrier, P., Simonin, O., and Legendre, D. Particle dispersion and preferential concentration dependence on turbulent Reynolds number from direct numerical and large-eddy simulations of isotropic homogeneous turbulence. In Proceedings of the Fourth International Conference on Multiphase Flow, New Orleans, 2001.
    Fuchs, N. A. Zur Theorie der Koagulation. Z. Phys. Chemie, 1934, 171A:199-208
    Wright, P.G. On the discontinuity involved in diffusion across an interface (the delta of Fuchs). Disc. Faraday Soc. 1960, 30:100-112
    Dahneke, B. Simple kinetic theory of Brownian diffusion in vapors and aerosols. in : Meyer, R.E. ed. Theory of Dispersed Multiphase Flow. New York: Academic Press.1983:97-133.
    Sommerfeld, M. The importance of inter-particle collision in horizontal gas-solid channel flows. In Gas-Particle Flows. FED-ASME, 1995,228:335-345
    Simonin, O. Prediction of the dispersed phase turbulence in particle-laden jets. In Gas-Particle Flows. FED-ASME, 1991,121:197-206
    Chen, M., Kontomaris, K., and McLaughlin, J.B. Dispersion, growth, and deposition of coalescing aerosols in a direct numerical simulation of turbulent channel flow. Proceedings of the ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition, Hilton Head, SC, USA, 1995:27-32
    Lavieville, J., Deutsch, E., and Simonin, O. Large eddy simulation of interactions between colliding particles and a homogeneous isotropic turbulent field. Proceedings of the ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition, Hilton Head, SC, USA, 1995.
    Balachandar, S., and Maxey, M.R. Methods for evaluating fluid velocities in spectral simulations of turbulence. J. Comput. Phys., 1989,83:96-125
    Kontomaris, K., Hanratty, T.J., and McLaughlin, J.B. An algorithm for tracking fluid particles in a spectral simulation of turbulent channel flow. J. Comput. Phys., 1992,103(2): 231
    
    Yeung, P.K., and Pope, S.B. Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech., 1989, 207:531-586
    Oesterle, B., and Petitjean, A Simulation of particle-to-particle interaction in gas-solid flows. Int. J. Multiphase Flow, 1993, 19(1): 199-211
    Chen M., Kontomaris K., and McLaughlin J.B. Direct numerical simulation of droplet collisions in a turbulent channel flow. Part I: collision algorithm. Int J. Multiphase Flow, 1998, 24:1079-1103
    Smoluchowski, M.V. Versuch einer mathematischen theorie der koagulationskinetic kolloider losungen. Phys. Chem., 1917,92:129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700