空气微生物在纤维滤料上收集存活的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪初爆发的SARS以及禽流感等呼吸性传染病,严重威胁人们的正常生活和健康。同时,医院手术部、隔离病房、生物安全实验室、医药卫生、生物制药工程、食品工业等高新技术产业等领域对空气微生物的控制则有了更加严格的要求,因此室内空气微生物污染已经成为人们关注的热点。以过滤为主的空气微生物的去除和防护技术的研究则显得尤为重要。
     本课题首先从理论入手,借助物理气溶胶过滤的理论计算模型,结合空气微生物特性,建立纤维滤料对空气中微生物过滤的模型。另外,采用经典的Logistic模型对滤料上收集下的微生物的繁殖进行分析,最后根据纤维滤料上存活微生物二次污染模型确定空气微生物被过滤后产生二次污染的理论可能性。根据各个模型之间的关系,将上面相互独立的3个模型综合为一个适用于空调系统微生物过滤收集、繁殖存活、二次污染的整体评价模型,可以用来模拟在任意时刻过滤器上微生物的繁殖存活情况及可能的二次污染情况,分析微生物在空调系统中变化的规律。
     同时,通过搭建空气微生物过滤实验台,采用微生物实验的方法对过滤、繁殖模型进行验证,发现微生物过滤模型能够比较好地对纤维滤料的微生物过滤效率进行预测,而且如果精度要求不高或缺乏微生物大小及粒径分布等数据时,也可以利用物理气溶胶模型来预测微生物过滤效率。还用实验方法分析了过滤器在不同容尘量下,过滤收集到的微生物存活繁殖情况,通过Logistic模型,对不同营养状况下的滤料上的微生物繁殖情况进行了对比,发现Logistic模型可以比较好地反映沉积在滤料上的微生物的存活繁殖规律。
     最后,通过实验观察了在连续通风条件下,由于滤料的微生物繁殖污染,所能引起的微生物二次污染情况。实验结果发现虽然受到各种因素,如滤料效率、微生物繁殖程度以及风速等的影响,但是均在滤料的下游捕集到活性微生物,检测到微生物的二次污染,因此仅仅依靠空气过滤不能达到空气微生物长期防护的最终目的,应当进一步研究新型过滤杀菌技术。这些理论和实验数据为下一步的空气微生物过滤防护技术的研究提供了有益参考。
In early 21st century, People’s life and health were seriously affected by the outbreaks of some severe respiratory diseases, such as Service Acute Respiratory Syndrome (SARS) and the bird flu (H5N1 Killer Flu). And some high-tech fields, such as operating room, isolation ward, biological safety laboratory, medical care system, biomedical pharmacy engineering, food industry, are stricter with the control of airborne microorganisms than before. So the issue of indoor microbe contamination gradually draws widely and highly attentions of the world, and more research on bioaerosols removal and protection, especially the way of air filtration, is more important to be carried out.
     At the beginning of the subject, a bioaerosols removal efficiency model was established by combining the classic inert aerosol removal efficiency mathematical model with the characters of airborne microorganisms to predict the bioaerosols removal efficiency of the fibrous filter media. A classic Logistic mathematical model was used to analysis and to evaluate the growth extent of the microorganisms collected on the filter media. And a reentrainment model was used for the collected microorganisms on fibrous filter media to predict the theoretical probability of the secondary contamination. After that, according to the inner relationship of the above three separated models, an overall model was integrated to simulate the airborne microorganisms collection, survival and growth, and secondary contamination on the filters in the air-conditioning systems.
     And experiments were taken to prove the models of filtration and growth for the fibrous filter media by establishing an airborne microorganisms testing system. It was found that the bioaerosols removal efficiency model was suitable to predict the bio-protection performance of the fibrous filter media. Under the situation of low accuracy or lack of the data of microorganism characters including size, shape, size distribution, etc., the inert aerosol filtration model also could be used to predict the bioaerosols removal efficiency of the filter media. Other experiments were taken to simulate the different stages of the filter dust holding and tested the survival and growth of the filtrated microorganisms. After compared the experimental results with the theoretical data of Logistic model, it was found that the model could be fit to evaluate the survival and growth of the microorganisms which were filtrated on the filter media with different nutrition.
     In addition, the experiments tested the secondary contamination of the filter media under the situation of continuous ventilation. It showed that the results were seriously affected by some parameters, such as removal efficiency, the growth extent of microorganisms, face velocity, etc. However, microorganisms were detected at all downstream tests of the contaminated filter media, and all of them caused the secondary contamination in the air-conditioning system. So bioaerosols filtration is not the termination for long term bio-protection, further study on the new sterilization technology should be carried out. So the above theory and the experimental data will facilitate the next research on the bioaerosols filtration protection.
引文
[1]舒俭德.科技知识:流感预防和SARS[EB/OL],http://www.ycwb.com/gb/content/2003-10/30/content_596783.htm,2003-10-30.
    [2]蕥嬉.禽流感可能在人群中传播[EB/OL],http://www.ycwb.com/gb/content/2005-02/08/content_848051.htm,2005-02-08.
    [3]周晓瑜,施玮等.室内生物源性污染对健康影响的研究进展[J] .公共卫生,2005,34(3):367.
    [4]中华人民共和国国家技术监督局.GB/T18883-2002,室内空气质量标准[S].北京:中国标准出版社,2002-11.
    [5]田伟,陈刚才.室内空气中颗粒物对人体健康的影响.中国预防医学杂志,2002,3(3):74-77.
    [6]李劲松.试论室内空气生物污染[J] .中国预防医学杂志,2002,3(3):174-177.
    [7]车凤翔.空气生物学援救现状和进展[J].环境科学,1986,7:85.
    [8]陈政旻.咳嗽飞沫粒径分布之研究[D].台湾:台湾大学,2004.
    [9]赵彬,陈玖玖.室内颗粒物的来源、健康效应及分布运动研究进展[J].环境与健康杂志,2005,22(1):65-68.
    [10]周易生.室内空气污染对人体健康的影响[J].华夏医学,1999,12(5): 646-647.
    [11]胡庆轩,徐秀芝等.沈阳市室内空气真菌粒子的研究[J].云南环境科学,1996,15(1):16-19.
    [12]张伯利,李俊等.公共场所卫生学[M].上海:上海医科大学出版社,1991:185.
    [13]周扬胜.病态建筑综合症的原因与解决方法[J].环境保护,1998(5):36-38.
    [14]李劲松.室内空气生物污染危害评价和控制的研究[A].中华预防医学会环境卫生分会.全国空气污染与健康学术研讨会论文集[C].浙江:袭著革,2005:156-170.
    [15]沈晋明,许钟麟.采用生物洁净技术控制空调系统的微生物污染[A].第五届中国国际(北京)洁净技术论坛暨展览论坛文集[C].北京,2002:23-29.
    [16] ACOEM Evidence-based Statement. Adverse Human Health Effects Associatedwith Molds in the Indoor Environment [Z]. USA: American College of Occupational and Environmental Medicine, 2002.
    [17] B.G. Shelton, K.H. Kirkland, W.D. Flanders. Profiles of airborne fungi in buildings and outdoor environments in the United States [J]. Appl Environ Microbiol, 2002, 68(4): 1743-1753.
    [18] W.D. Griffiths, I.W. Stewart, S.J. Futter. The development of sampling methods for the assessment of indoor bioaerosols [J]. Journal of aerosol science, 1997, 28(3): 437-457.
    [19] R.B. Simmons, S.A. Crow, D.G. Ahearn. Fungal colonization of air filters and insulation in a multi-story office building: production of volatile organics [J]. Occupational health and industrial medicine, 1998, 38(2): 68-69.
    [20] F.C. Tsai1, J.M. Macher, YY Hung. Concentrations of airborne fungi in 100U.S. office buildings [A]. Rongyi Zhao. Indoor air 2005: Proc.10th Int. Conf. Indoor Air Quality and Climate [C]. Beijing (China): Tsinghua University press, 2005: 1414-1417.
    [21] S. Jeffrey, W. Iain. Deposition of Biological Aerosols on HVAC Heat Exchangers [Z]. USA: Lawrence Berkeley National Laboratory, 2001.
    [22] K.Abe. Fungal index and contamination in air conditioners when cooled [J]. Journal of the Society of Indoor Environment, 1998, 1: 41-50.
    [23] Shahan T.A., Sorenson W.G., Lewis D.M. Suporoxlde anion production in response to bacterial lipopo-lysaccharide and fungal spores implicated in organic dust toxic syndrome [J]. Environ Res, 1994, 67(1): 98-107.
    [24]陈悦.上海市部分空调系统微生物污染状况的初步调查[J].环境与职业医学,2004,21(3):214-217.
    [25]于玺华.现代空气微生物学[M].北京:人民军医出版社,2002:7-11.
    [26] Hambraeus A., Aerobiology in the operating room [J]. J Hosp Infect, 1988, 11(Suppl.A): 68.
    [27]周德庆.微生物学教程[M].北京:高等教育出版社,1999:186-190.
    [28] C.J. Washam. Evaluation of filters for removal of bacteria phages from air [J]. Applied Microbiology, 1966, 14(6): 497-505.
    [29]李恒业.生物洁净手术室中效净化系统的研究[D].天津:天津大学,1984.
    [30] H.M. Decker. Removal of bacteria and bacteriophoge from the air by electrostatic precipitators and spunglass filter pads [J]. Soc.Heating Ventilation Engrs., 1951, 26: 155-158.
    [31] P. Relants. Evaluation of a commercial air filter for removal of viruses from the air [J]. Applied Microbiology, 1968, 16(10): 1465-1467.
    [32]古桥正吉.バィォクリ-ンル-ム手术室使用上の问题点[J].空气清净,1980,17(7):19-25.
    [33] A. Ginestet, S. Mann, S. Parat. Bioaerosol filtration efficiency of clean HVAC filters and shedding of micro-organisms from filters loaded with outdoor air [J]. Journal of aerosol science, 1996, 27(Suppl.1): 619-620.
    [34] L.M. Brosseau, N.V. McCullough, D. Vesley. Mycobacterial aerosol collection efficiency of respirator and surgical mask filters under varying conditions of flow and humidity [J]. Applied Occupational and Environmental Hygiene, 1997, 12(6): 435-445.
    [35] Lisa M. Brosseau, Shu-Kuang Chen, Donald Vesley, James H.Vincent. System Design and Test Method for Measuring Respirator Filter Efficiency Using Mycobacterium Aerosols [J]. J. Aerosol Sci., 1993, 25(8): 1567-1577.
    [36] R. Maus, H. Umhauer. Collection Efficiencies of Coarse and Fine Dust Filter Media for Airborne Biological Particles [J]. J. Aerosol Sci., 1997, 28(3): 401-415.
    [37] I.E. Agranovski. Development and evaluation of a new personal sampler for culturable airborne microorganisms [J]. Atmospheric Environment, 2002, 36(5): 889-898.
    [38] W.D. Griffiths. The development of sampling methods for the assessment of indoor bioaerosols [J]. J. Aerosol. Sci., 1997, 28(3): 437-457.
    [39] N.V. McCullough, L.M.Brosseau, D.Vesley. Collection of three bacterial aerosols by respirator and surgical mask filters under varying conditions of flow and relative humidity [J]. Ann. Occup.Hyg., 1997, 41(6): 677-690.
    [40] Hamada Nobuo, Fujita Tadao. Effect of air-conditioner on fungal contamination [J]. Atmospheric Environment, 2002, 36(35): 5443-5448.
    [41] T. Ozawa. Fungal contamination in air conditioner of household [J]. Aichi Pharm. Soc., 1996, 36(4): 14-22.
    [42] R. Maus, A. Goppelsroder, H.Umhauer. Survival of bacterial and mold spores in air filter media [J]. Atmospheric Environment, 2001, 35: 105-113.
    [43] PC. Kemp, HG. Neumeister-Kemp, G. Lysek. Survival and growth of micro-organisms on air filtration media during initial loading [J]. Atmospheric Environment, 2001, 35(28): 4739-4749.
    [44] Stephen J. Kemp, Thomas H. Kuehn, David Y.H. Pui. Filter collection efficiencyand growth of microorganisms on filters loaded with outdoor air [J]. ASHRAE Transaction, 1994, 101(1): 228-238.
    [45]李军保,胡庆轩,徐桂清.医用灭菌包装纸对细菌气溶胶滤效的研究[J].中国消毒学杂志,1990,7(3):147-151.
    [46]李恒业.大气中生物粒子的等效率直径及其有效滤材的研究[A].中国电子学会洁净技术学会第二届学术年会论文集[C].1986:170-174.
    [47]李恒业.生物洁净手术室中效净化系统的研究[D].天津:天津大学,1984.
    [48]张少凡.制药工业的生物洁净技术研究[D].天津:天津大学,1989.
    [49] Hinds William C. Aerosol Technology [M]. Library of congress cataloging in publication data, 1981: 172.
    [50] Hinds William C. Aerosol Technology [M]. Library of congress cataloging in publication data. 1981: 174-178.
    [51]А.А.Кирш,И.Б.Стечкина,Н.А.Фукс.Исследованиявобласгиволокнисгыхазрозольныхфильтров[J].Коллоидныйжурнал, 1969, 31: 227-232.
    [52] Lee K.W., Liu B.Y.H. Theoretical study of aerosol filtration by fibrous filters [J]. Aerosol Sci. Tech., 1982, 1: 147-161.
    [53] Chen C.Y. Filtration of aerosols by fibrous media [J]. Chemical Reviews, 1955, 55(3): 595-623.
    [54]戴维斯. CN.空气过滤[M].北京:原子能出版社,1979:1-171.
    [55] Kvetoslav R.Spurny. Aerosol filtration science at the end of the 20th century. Chapter2, advance in aerosol filtration [M]. Lewis publishers, Boca Roton, 1997.
    [56] Rosner D.E., P.Tandon A.G. Konstanpulous local size distribution of particles deposited by internal impaction on cylindrical target in dust-loaden [J]. J.aerosol Sci., 19952, 61: 257-1279.
    [57]蔡杰.空气过滤ABC[M].北京:中国建筑工业出版社,2002:142-143.
    [58] Kowalski W.J., Bahnfleth W.P. Whittam T.S. Filtration of airborne microorganisms: Modeling and Prediction [J]. ASHRAE Transaction, 1999, 105(2): 4-17.
    [59] Ryan K.J. Sherris medical microbiology [M]. Norwalk: Appleton & Lange, 1994.
    [60] D.H. Howard, L.F. Howard. Fungi pathogenic for humans and animals [M]. New York: Marcel Dekker, Inc, 1983.
    [61] E. Mitscherlich, E.H. Marth. Microbial survival in the environment [M]. Berlin: Springer-Verlag, 1984.
    [62] H.A. Burge. Airborne allergenic fungi: Classification, nomenclature, anddistribution. Immunol [J]. Allergy Clinics North Amer, 1989, 9(2): 307-309.
    [63] R.A. Samson. Health implications of fungi in indoor environments [M]. Amsterdam: Elsevier, 1994.
    [64] Cartwrigh J. Particle shape factors [J]. Ann Occup Hyg, 1962, 5(2): 163.
    [65] Parther C Resit. Introduction to aerosol science [M]. New York: Macmillan publishing company, 1988: 36.
    [66] Koch A.L. The logarithm in biology: Mechanisms generating the lognormal distribution exactly [J]. J. Theoret. Biol., 1966, 12: 276-290.
    [67] Koch A.L. Bacterial growth and form [M]. New York: Chapman & Hall, 1995.
    [68] Koppes L.J.H., C.J. Woldringh, N. Nanninga. Size variations and correlation of different cell cycle events in slow-growing Escherichia coli [J]. J. Bact. 1978, 134: 423-433.
    [69] Zaritsky A. On dimensional determination of rod shaped bacteria [J]. J. Theoret. Biol. 1975, 54: 243-248.
    [70] Bliss C.I. Statistics in biology [M]. New York: McGraw-Hill, 1967.
    [71] Reist P.C. Aerosol science and technology [M]. McGraw-Hill: New York, 1993.
    [72] Hinds William C. Aerosol Technology [M]. Library of congress cataloging in publication data, 1981: 69-87.
    [73] Tyson J.J. Sloppy size control of the cell division cycle [J]. J. Theoret. Biol., 1986, 118(4): 405-426.
    [74] Harvey R.J., A.G. Marr, P.R. Painter. Kinetics of growth of individual cells of Escherichia coli and Azotobacter agilis [J]. J. Bact. 1967, 93 (2): 605-617.
    [75] Ellwood D.C., J. Melange, P. Rupture. Adhesion of microorganisms to surfaces [M]. London: Academic Press, 1979.
    [76]马知恩.种群生态学的数学建模与研究[M].安徽:教育出版社,1996:9-18.
    [77] A.L.J. Quetelet Sur I’homme e’t le developpement de ses facultes: Ouessai de physique sociale [J]. Bachelier Paris, 1835.
    [78] P.F. Verhulst. Notice Sur la loi que la population suit dons son accroissement [J]. Correspondences Mathematigues et physiques. 1838, 10: 113-121.
    [79] Daniel E. Wachenheim, John A. Patterson, Michael R. Ladisch. Analysis of the logistic function model: derivation and applications specific to batch cultured microorganisms [J]. Bioresource Technology, 2003, 86(2): 157-164.
    [80] Yinge Qian, Klaus Willeke. Particle Reentrainment form Fibrous Filters [J]. Aerosol Science and Technology, 1997, 27(3): 394-404.
    [81] European Committee for Standardization. EN 1822-3 High Efficiency Air Filters (HEPA and ULPA) -Part 3: Testing Flat Sheet Filter Media[S], 1998.
    [82]谢慧怡.高效空气过滤器及滤料杀菌效率评价方法的研究[D].天津:天津大学,2006.
    [83]于玺华.现代空气微生物学[M].北京:人民军医出版社,2002:16-19.
    [84] K.R. May. The collison nebulizer: description, performance and application [J]. Aerosol Science, 1973, 4: 235-243.
    [85]于玺华.现代空气微生物学[M].北京:人民军医出版社,2002:101-110.
    [86]车凤翔,徐桂清,史传英.京津地区大气细菌生态分布[J].中国环境科学,1990,10(3):192-195.
    [87] American Society of Heating Refrigerating and Air-Conditioning Engineers. Inc. ASHRAE 909-RP, Determine the efficiency of antimicrobial treatments of fibrous air filters [R], 1996.
    [88] G. Ko M.W. First, H. A. Burge, Influence of relative humidity on particle size and UV sensitivity of Serratia marcescens and Mycobacterium bovis BCG aerosols [J]. In: Tubercle and Lung Disease, 2000, 80(4): 217-228.
    [89]国家环境保护总局,国家质量监督检验检疫总局.中华人民共和国国家标准—病原微生物实验室污染物排放标准[S],2006.
    [90] Andersen A. New Sampler for the Collection, Sizing and Enumeration of Viable Airborne Particles [J]. J. Bateriol 1958, 76: 471-484.
    [91]中华人民共和国国家发展改革委员会.QB/T 2591-2003,中华人民共和国轻工业行业标准(抗菌塑料-抗菌性能试验方法和抗菌效果)[S].北京:中国标准出版社,2003-02.
    [92] The American Society for Testing and Materials. Designation: F2101-01. Standard Test Method for Evaluating the Bacterial Filtration Efficiency (BFE) of Medical Face Mask Materials, Using a Biological Aerosol of Staphylococcus aureus [S], 2001.
    [93]张秀花,张同庆.紫外线空气消毒效果观察及体会[J].实用医技杂志,2005,12(1):132.
    [94]中华人民共和国国家质量监督检验检疫局.GB15979-2002,中华人民共和国国家标准一次性使用卫生用品标准[S].北京:中国标准出版社,2002-09-01.
    [95] B. Alan Phillips, Wayne T. Davis. Maureen Dever. Investigation of the Effect of a Topically Applied Tackifier in Reducing Particle Bounce in a Melt-Blown Air Filter [J]. Filtration & Separation, 1996, 33(10): 933-939.
    [96]李金海.误差理论与测量不确定评定[M].北京:中国计量出版社,2003: 32-36.
    [97] H.A.Φykc.气溶胶力学(顾震潮译)[M].北京:科学出版社,1960:198-199.
    [98] S.图梅.大气气溶胶(王明星,王庚辰译)[M].北京:科学出版社,1984:71-72.
    [99]许钟麟,沈晋明.关于尘埃粒子计数器采样管长度的探讨[J].同济大学学报,1998,26(4):447-452.
    [100]许钟麟.空气洁净技术原理[M].北京:科学出版社,2003:461-480.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700