用户名: 密码: 验证码:
金属硅化物熔体中不同形貌碳化硅晶体的生长研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硅(SiC)半导体材料是继第一代元素半导体材料(Si)和第二代化合物半导体材料(GaAs、GaP、InP等)之后发展起来的第三代宽带隙半导体材料之一。由于SiC材料有着优异的物理化学性能,SiC体单晶和SiC一维纳米材料在光学和电子学器件等方面有着巨大的应用潜力,尤其适合于在高温、高辐射等恶劣环境下工作的电子器件的制造。利用金属硅化物熔体作助溶剂,以合成不同形貌SiC晶体的研究为主题,将论文分为两部分:第一部分主要研究了SiC单晶在金属硅化物熔体中的形核及生长过程,第二部分主要研究了溶剂法SiC一维纳米材料的合成、显微结构及性能。
     采用两种实验方法研究SiC单晶在熔体中的生长:金属硅化物熔体在SiC粉体预制件中的自发熔渗法和石墨坩锅作碳源、金属硅化物作助溶剂的液相生长法。熔渗法研究结果表明:Fe_xSi_y(FeSi,Fe_3Si,Fe_5Si_3)熔体能很好的浸渗SiC预制件,复合材料的弯曲强度和显微硬度都高于相应金属硅化物的强度和硬度。更为重要的是,随着SiC颗粒度的减小,微细SiC颗粒(<0.5μm)在部分熔体中的溶解和析出趋势更甚,导致SiC颗粒烧结长大甚至是SiC单晶的生长。强烈意味着Fe_xSi_y可以成为液相法生长SiC单晶的助溶剂。因为发现Fe_3Si熔体熔渗后有石墨析出的现象,为弄清适合SiC单晶生长的Fe-Si熔体成分,对1600℃时Fe-Si-C三元等温相图做了定量分析。结果表明Fe-Si熔体的硅含量等于27mol%是临界点,当硅含量小于0.27时,有石墨沉积,反之只有SiC析出。结合熔渗实验结果,初步确定Fe_5Si_3熔体比较适合SiC的析晶和长大。在上述研究基础上,用硅含量大于27mol%的Fe_5Si_3、FeSi和FeSi_2熔体做助溶剂,石墨坩锅作碳源,开展液相法SiC单晶生长研究。研究表明Fe-Si化合物熔体能溶解足够的C并有SiC晶体从熔体中析出。这些事实都证明了Fe-Si(硅含量大于27mol%)熔体有适当的碳溶解度并且适合SiC晶体的形核和生长。对Co_xSi_y(CoSi、Co_2Si、CoSi_2)化合物熔体做类似的实验表明,仅有CoSi能自发熔渗SiC预制件并且在预制件复合材料中得到了约0.5mm的SiC晶体颗粒,晶体最大生长速率为120μm/h。Co_2Si、CoSi_2不能自发熔渗SiC预制件并且在这两种合金化合物的液相生长实验中也很难发现SiC晶体颗粒。在CoSi合金中添加10%原子比的Cr能提高C在熔体中的溶解度,同种条件下生长的SiC晶体颗粒尺寸变大,从而验证了硅熔体中添加4f层电子数小的金属能提高C在熔体中的溶解度的说法。经实验验证TiSi化合物熔体中当Si含量为77%原子比时最适合SiC晶体的生长。
     在熔体中生长的SiC晶体,经XRD分析基本上都是具有闪锌矿结构的3C-SiC(β-SiC)并伴有少量的6H-SiC,一般认为这是晶体中存在的层错或寄生相等缺陷造成的。Raman分析确认各熔体中所生长的SiC晶体为3C-SiC,晶体存在一定程度的层错等缺陷并且晶体中的载流子浓度很大(这里认为是晶体中含有高浓度的金属元素掺杂)。根据所得SiC晶体的形貌和晶体生长理论,论文认为在熔体中SiC晶体是按照多二维晶核生长方式生长的,并建立了SiC多二维晶核生长模型。
     在液相法SiC晶体生长的研究过程中,发现气氛中有微量氧存在时,熔体表面有SiC纳米线生成。鉴于这一重要事实,论文第二部分展开利用简单气相反应法制备SiC纳米线及带有非晶SiO_2包敷的SiC/SiO_2纳米电缆的研究。实验以金属硅化物为原料,石墨板为碳源,在Fe-Si、Ni-Si化合物体系的熔点以上温度,几乎都能在化合物颗粒的表层发现SiC纳米线。并且随着处理温度的升高和保温时间的延长,所形成SiC纳米线的直径有增大的趋势。由于Ni-Si化合物跟石墨的浸润性较差,在仅比化合物熔点高出小于200℃的温度区域内,Ni-Si化合物熔体不能在石墨板上熔敷而是形成合金熔球,最后在熔球表面上生长出SiC纳米线形成形状独特的SiC纳米线绒球。在降温阶段,由于SiO和CO反应形成的SiO_2在SiC纳米线表面沉积最终得到由SiO_2包敷的SiC/SiO_2纳米电缆结构。
     在金属硅化物液态膜表面形成的SiC纳米线,经XRD,SEM,TEM和Raman分析表明:纳米线亦为具有闪锌矿结构的3C-SiC,纳米线的截面形貌有圆形和六方形,形成的SiC纳米线为单晶结构,但部分具有层错等缺陷。根据纳米线端部有合金球的典型形貌,论文提出了固-液-固(Solid-Liquid-Solid,SLS)形核和气-液-固(Vapor-Liquid-Solid,VLS)生长的联合生长机理。首先石墨板上的碳溶解于熔体中并与Si结合形成SiC晶核,即SLS形核阶段;由于SiC的密度小于熔体的密度,SiC晶核上浮至熔体膜的表面,并将熔体推出,形成核上方的液滴。炉内的含氧气氛(SiO、CO)被该液滴吸附,在Fe或Ni的催化作用下反应形成SiC,并在先形成的晶核上沉积,实现SiC纳米线的生长,即VLS生长阶段。其中金属元素(Fe和Ni)有提高熔体的碳溶解度和催化的双重作用。
     采用热蒸发法,以相互隔离的纯硅粉和碳黑粉为原料,在反应温度为1470℃保温1~9小时的实验中,得到了SiC纳米棒。随着反应时间的延长,硅蒸气逐渐与碳黑颗粒充分反应形成SiC,其形状从最初的颗粒状,无序短棒状结构或团聚块体,逐渐演变为长且直的纳米棒,甚至为六棱柱状结构。用XRD、IR、SEM和TEM等对SiC纳米棒进行表征,并提出了SiC纳米棒的气-固(Vapor-Solid,VS)生长机理,即硅蒸气与碳黑直接反应形成SiC纳米棒。
As a third generation wide bandgap semiconductor, silicon carbide (SiC) has been developed accompanying the progress of elemental semiconductors, e.g. Si, of the first generation and compound semiconductors, e.g. GaAs, GaP and InP, of the second generation. Due to the excellent physical and chemical properties, SiC bulk crystals and SiC nanomaterials have tremendous potential applications in the fabrication of optic and electronic devices, especially those suitable for operation under harsh environment such as high temperature and high irradiation. Focusing on the syntheses of SiC crystals with different morphologies using metal silicide melts as fluxes, this dissertation is composed of two parts: the study on the nucleation and growth of SiC single crystal in metal-silicide melts in the first part, and the synthesis, microstructure and property of SiC nanometerials by solution methods in the second part.
    In the first part two experiment routes were performed to study the nucleation and growth of SiC crystal from fluxes: spontaneous melt infiltration (MI) of the metal-silicide melts into porous SiC powder preforms and solution method using metal-silicide alloy as the fluxes and graphite crucible providing carbon source. The results showed that Fe_xSi_y (FeSi, Fe_3Si, Fe_5Si_3) melts could infiltrate the SiC powder preforms and produced densified SiC/Fe_xSi_y composites with mechanical properties superior to monolithic silicides. More importantly, with the decrease in SiC particle dimension (<0.5μm), the dissolution of SiC in some of the melts resulted in anomalous grain ripening and single SiC crystal growth, strongly indicating that Fe_xSi_y can be used as an appropriate flux to grow SiC single crystal. Because graphite precipitation, an undesirable phenomenon for SiC crystal growth, was found in the Fe_3Si melt, the 1600℃ isothermal section of the Fe-Si-C phase diagram is constructed to investigate how the melt composition influences the SiC precipitation. Over the isothermal section, X_(Si)=27mol% in the Fe_xSi_y system is determined as the critical value, over which SiC crystal growth can occur, otherwise only leading to free carbon precipitation. Among the Fe_xSi_y (FeSi, Fe_3Si, Fe_5Si_3) system used in the melt infiltration study, Fe_5Si_3 alloy is first regarded as a proper melt for SiC crystal growth.
    Based on the above analysis, solution growth of SiC crystals is practiced by heating Fe_5Si_3, FeSi, and FeSi_2 in graphite crucibles. The experimental results revealed that carbon from the crucible can be dissolved and SiC crystals can grow out of the melts. All the facts confirm that the Fe_xSi_y (X_(Si) > 27 at.%) melt have a proper carbon solubility and are suitable for the nucleation and growth of SiC. Similar experiments were performed for the Co_xSi_y (CoSi, Co_2Si, CoSi_2) fluxes. Only CoSi melt was able to spontaneously infiltrate into SiC powder preforms where SiC crystals with dimension of 0.5 mm were formed, and the maximal growth velocity of SiC crystal was 120μm/h. For Co_2Si and CoSi_2 melts, they could not spontaneously infiltrate into SiC powder preforms, and no SiC precipitation was found. Adding chromium (Cr) in CoSi melt can increase the carbon solubility in the melt and obtained SiC crystals with larger dimension, which proved that adding the metal whose electron number of the 4f layer is small to the Si melt can increase the carbon solubility. Ti-Si melt was also tried for SiC crystal growth, in which Ti-Si with 77atom% Si content is suitable for SiC crystal growth.
    All the XRD patterns of the SiC crystals growth in metal-silicide melts demonstrated that the crystals mostly belong to zinc blende structure, i.e. 3C-SiC (p-SiC), with a few of 6H-SiC which are usually ascribed to the stacking defaults or other faults in 3C-SiC. The Raman spectra affirm again that the SiC crystals with some stacking faults are basically 3C-SiC. The LO phonon mode's shifting in the Raman spectrum also shows that the SiC crystals have a large charge carrier concentration, which we think due to high level metal doping in the SiC crystals. According to the growth SiC crystal microstructure and crystal growth theory, the multi-nuclei growth mode of SiC crystal growth in the melts is proposed.
    In the study of solution growth SiC crystal, SiC nanowires were found on the surface of the melts when the relatively high oxygen impurity was present in the furnace. Inspired by the important phenomenon, the syntheses of SiC nanowires and SiC/SiO_2 nanocables were investigated by the simple vapor-reaction approach in the second part of this dissertation. Metal silicides were employed as the starting materials, and graphite plate acted as the carbon resource. SiC nanowires can be
    always found at the surface of Fe-Si and Ni-Si solidified layers when the heat-treatment temperature is higher than their melting points. With the enhancing of heat-treatment temperature and prolonging of dwelling time, the diameter of SiC nanowires has the trend of increasing. Due to the poor wetting between Ni-Si alloy and graphite, the Ni-Si melt did not spread but forming liquid balls on the graphite plate at the temperature 200℃ above its melting point. SiC nanowires grew at the surface of liquid ball and formed villiform nano wire-balls. During the cooling stage in some cases, the SiO reacted with the CO in the furnace to form SiO_2 which then deposited on the surface of SiC nanowires, forming the SiC/SiO_2 nanocable with SiC as the core and SiO_2 as the wrapping layer.
    The SiC nanowire synthesized on the surface of silicide liquid films were characterized by XRD, SEM, TEM, Raman and FTIR. The results show that the prototype of SiC nanowires is also 3C-SiC (β-SiC), with round and hexagonal cross sections. Solidified liquid droplets were often found attaching to the tips of these SiC nanowires, a well recognized evidence of vapor-liquid-solid (VLS) reaction responsible for the nanowire growth. Base upon these, a growth mechanism combining solid-liquid-solid (SLS) mode and VLS mode is proposed. The carbon in the graphite dissolved in the melt layer, and the supersaturated carbon then reacted with the Si to form SiC embryos by the SLS reaction. Because of its low density compared to the melt, the small SiC embryos just nucleated floated over the surface of the melt, and pushing up the melt to form small alloy droplets on the top. Then the vapor phases (CO and SiO) were dissolved in the alloy droplets and reacted under the catalytic action of Fe or Ni to make SiC embryos grow along a preferential crystallographic direction. The metal elements (Fe and Ni) played two roles: increasing the carbon solubility and catalyzing the reaction.
    Silicon carbide (3C-SiC) nanorods were also synthesized in a special vapor-solid (VS) process. In this process, Si powder and carbon black were separated, but still reacted via VS reaction to form SiC at 1470℃ for 1-9 hours, and the morphologies of the products change from particles, non-regular short bar to regular and even hexagon prism shaped nanorods. XRD, IR, SEM and TEM were employed to characterize the
    SiC nanorods. Based on the characterizations, a vapor-solid formation mechanism of SiC nanorods is proposed, i.e. the gaseous silicon reacted with carbon black to form the SiC nanorods in a proper heat treatment conditions.
引文
[1] J.B. Casady, R.W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review, Solid State Electron., (1996), 39(10): 1409-1422.
    [2] R.R. Siergiej, R.C. Clarke, S. Sriram, A.K. Agarwal, R.J. Bojko, A.W. Morse, V.Balakrishna, M.F. MacMillan, A.A. Burk, Jr., C.D. Brandt, Advances in SiC materialsand devices: an industrial point of view, Mater. Sci. Eng., B, (1999), 61-62: 9-17.
    [3] S. Sriram, R.R. Siergiej, R.C. Clarke, A.K. Agarwal, C.D. Brandt, SiC formicrowave power transistors, Phys. Stat. Sol. (a), (1997), 162(1): 441-457.
    [4] M. Bauer, L. Kador, Microscopic heterogeneities in the electrical properties ofSiC as studied with single-molecule spectroscopy, J. Phys. Chem. B, (2003), 107(51):14301-14305.
    [5] H. Morkoc, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, M. Bums,Large-band-gap SiC, III- V nitride, and II -VI ZnSe-based semiconductor devicetechnologies. J. Appl. Phys., (1994), 76(3): 1363-1398.
    [6] 王玉霞, 何海平, 汤洪高,宽带隙半导体材料SiC研究进展及其应,硅酸盐学报, (2002), 30(3) : 372-381.
    [7] W.J. Choyke, G. Pensl, Physical Properties of SiC, MRS Bulletin, (1997), 22(3):25-29
    [8] J.A. Lely, Ber Deut. Keram. Ges.s (1955), 32: 229-251.
    [9] F.A. Halden, The growth of silicon carbide from solutions, Proc. Conf. OnSilicon Carbide, Boston 1959, Pergamon Press, 1960, 115-123.
    [10] K. Gillessen, W.V. Munch, Growth of silicon carbide from liquid silicon by atraveling heater method, J. Cryst. Growth, (1973), 19:263-268
    [11] Y.M. Tairov, V.F. Tsvetkov, Investigation of growth processes of ingots of silicon carbide single crystals. J. Cryst. Growth, (1978), 43(2): 209-212.
    [12] C.H Carter, Jr., V. F. Tsvetkov, R.C. Glass, D. Henshall, M. Brady, St.G Muller, O. Kordina, K. Irvine, J.A. Edmond, H.-S. Kong, R. Singh, S.T. Allen, J.W. Palmour,Progress in SiC: from material growth to commercial device development, Mater. Sci. Eng.,B,( 1999). 61-62: 1-8.
    [13] Noboru Ohtani, Tatsuo Fujimoto, Masakazu Katsuno, Takashi Aigo, Hirokatsu Yashiro, Growth of large high-quality SiC single crystals, J. Cryst. Growth, (2002), 237-239: 1180-1186.
    [14] Kanji Yasui, Kunio Asada, Tomohiro Maeda, Tadashi Akahane, Growth of high quality silicon carbide films on Si by triode plasma CVD using monomethylsilane, Appl. Surf. Sci., (2001), 175-176: 495-498.
    [15] D.H. Hofmann, M.H. Miiller, Prospects of the use of liquid phase techniquesfor the growth of bulk silicon carbide crystals, Mater. Sci. Eng., B, (1999), 61-62: 29-39.
    [16] 郝跃,彭军,杨银堂,编著,碳化硅宽带隙半导体技术,北京:科学出版社, 2000
    [17] Noboru Ohtani, Jun Takahashi, Masakazu Katsuno, Hirokatsu Yashiro,Masatoshi Kanaya, Development of large single-crystal SiC substrates, Electronicsand Communications in Japan, Part 2, (1998), 81(6): 8-19.
    [18] S. Nakashima, M. Hangyo, Raman intensity profiles and the stacking structurein SiC polytypes, Solid State Commun,, (1991), 80(1): 21-24.
    [19] 韩荣江,王继扬,徐现刚,胡小波,董捷,李现祥,李娟,姜守振,王丽,蒋民华,显微激光拉曼光谱法鉴别SiC晶体的多型体结构,人工晶体学报,(2004), 33(6): 877-881.
    [20] R.I. Scace, G.A. Slack, Solubility of carbon in silicon and germanium, J. Chem.Phys., (1959), 30(6): 1551-1555.
    [21] J. Drowart, G.D. Maria, M.G. Inghram, Thermodynamic study of SiC utilizinga mass spectrometer, J. Chem. Phys., (1958), 29(5): 1015-1021.
    [22] J.L.Davidson, K.K. Blankenship, High temperature radiation hardened devicestechnology assessment, Proc. 1~(st) Int. High temp. Electr. Conf., (1991): 17-22.
    [23] A. Solangi, M.I. Chaudhry, Absorption coefficient of β-SiC grown by chemicalvapor deposition, J. Mater. Res., (1992), 7(3): 539-541.
    [24] L. Patrick, W.J. Choyke, Optical absorption in n-type cubic SiC, Phys. Rev.,(1969), 186(3): 775-777.
    [25] G.L. Harris, In: Properties of silicon carbide, ed. Materials Science ResearchCenter of Excellence Howard University, Washington D.C., USA, 1995: 15
    [26] K. Kusunoki, S. Munetoh, K. Kamei, M. Hasebe, T. Ujihara, K. Nakajima,Solution growth of self-standing 6H-SiC single crystal using metal solvent, Mater. Sci.Forum, (2004), 457-460: 123-126.
    [27] K. Kusunoki, K. Kamei, Y. Ueda, S. Naga, Y. Ito, M. Hasebe, T. Ujihara, K.Nakajima, Crystalline Quality Evaluation of 6H-SiC Bulk Crystals Grown fromSi-Ti-C Ternary Solution, Mater. Sci. Forum, (2005), 482-485: 13-16.
    [28] Zhe Chuan Feng, SiC power materials-Devices and Applications, Springer,2004: 6.
    [29] A. Tanaka, T. Ataka, E. Ohkura, H. Katsuno, Epitaxial growth of SiC fromAl-Si solution reacting with propane gas, J. Cryst. Growth, (2004), 269: 413-418.
    [30] W.F. Knippenberg, Growth Phenomena in Silicon Carbide, Philips ResearchReport, (1963), 18(3): 161-274.
    [31] Y.M. Tairov, V.F. Tsvetkov, General principles of growing large-size singlecrystals of various silicon carbide polytypes. J. Cryst. Growth, (1981), 52(2) :146-150.
    [32] S.K. Lilov, Study of the equilibrium processes in the gas phase during siliconcarbide sublimation, Mater. Sci. Eng., B, (1993), 21(1): 65-69.
    [33] R.C. Glass, D. Henshall, V.F. Tsvetkov, C.H. Carter, Jr., SiC Seeded CrystalGrowth. Phys. Stat. Sol. (b), (1997), 202(1): 149-162.
    [34] W. Bahng, Y. Kitou, S. Nishizawa, H. Yamaguchi, M. Nasir Khan, N. Oyanagi,S. Nishino, K. Arai, Rapid enlargement of SiC single crystal using a cone-shapedplatform, J. Cryst. Growth, (2000), 209: 767-772.
    [35] Noboru Ohtani, Tatsuo Fujimoto, Masakazu Katsuno, Takashi Aigo, HirokatsuYashiro, Growth of large high-quality SiC single crystals, J. Cryst. Growth, (2002),237-239:1180-1186.
    [36] Daisuke Nakamura, Itaru Gunjishima, Satoshi, Yamaguchi, Tadashi Ito, AtsutoOkamoto, Hiroyuki Kondo, Shoichi Onda, Kazumasa Takatori, Ultrahigh-quality silicon carbide single crystals, Nature, (2004), 430: 1009-1012.
    [37] Peter Wellmann, Patrick Desperrier, Ralf Muller, Thomas Straubinger, Albrecht Winnacker, Francis Baillet, Elisabeth Blanquet, Jean Marc Dedulle, Michel Pons, J. Cryst. Growth, (2005), 275: e555-e560.
    [38] 陈之战,肖兵,施尔畏,庄击勇,刘先才,大尺寸6H-SiC半导体单晶材料的生长,无机材料学报,(2002),17(4):685-690.
    [39]徐现刚,胡小波,王继扬,蒋民华,大直径6H-SiC单晶的生长,人工晶体学报,(2003),32(5):135
    [40] H. Nelson, Epitaxy growth from the liquid state and it application to thefabrication of tunnel and laser diode. RCA. Rew, (1963), 24(4): 603-615.
    [41] A. Suzuki, M. Ikeda, N. Nagao, H. Matsunami, T. Tanaka, Liquid-phaseepitaxial growth of 6H-SiC by the dipping technique for preparation ofblue-light-emitting diodes, J. Appl. Phys., (1976), 47(10): 4546-4550.
    [42] M.N. Khan, Shin-ichi Nishizawa, W. Bahng, K. Arai, Liquid-phase epitaxy on6H-SiC Acheson seed crystals in closed vessel, J. Cryst. Growth, (2000), 220: 75-81.
    [43] M.N. Khan, Shin-ichi Nishizawa, T. Kato, R. Kosugi, K. Arai, Silicon carbideepitaxial layer growths on Acheson seed crystals from silicon melt, Mater. Lett.,(2002), 57: 307-314.
    [44] M. N. Khan, Shin-ichi Nishizawa, K. Arai, Healing defects in SiC wafers byliquid-phase epitaxy in Si melts, J. Cryst. Growth, (2003), 254: 137-143.
    [45] Zhiming Chen, Jiangping Ma, Gang Lu, Tianmin, Lei, Mingbin Yu, LianmaoHang, Xianfeng Feng, Liquid phase epitaxial growth of 3C-SiC films deposited on Si,Diamond Relat. Mater., (2001), 10:1255-1258.
    [46] O. Filip, B. Epelbaum, M. Bickermann, A. Winnacker, Micropipe healing inSiC wafers by liquid-phase epitaxy in Si-Ge melts, J. Cryst. Growth, (2004), 271:142-150.
    [47] O. Filip, B. Epelbaum, Z.G Herro, M. Bickermann, A. Winnacker, Liquidphase homoepitaxial growth of 6H-SiC on (0115) oriented substrates, J. Cryst.Growth, (2005), 282: 286-289.
    [48] A. Tanaka, N. Shiozaki, H. Katsuno, Synthesis and growth of 3C-SiC crystals from solution at 950℃, J. Cryst. Growth, (2002), 237-239: 1202-1205. [49] C. Jacquier, G Ferro, F. Cauwet, J.C. Viala, G Younes, Y. Monteil, On the growth of 4H-SiC by low-temperature liquid phase epitaxy in Al rich Al-Si melts, J. Cryst. Growth, (2003), 254: 123-130.
    [50] C. Jacquier, G Ferro, F. Cauwet, D. Chaussende, Y. Monteil, SiC homoepitaxial growth at low temperature by Vapor-Liquid-Solid mechanism in Al-Si melt, Cryst. Growth Des., (2003), 3(3): 285-287.
    [51] M. Syvajarvi, R. Yakimova, I.G. Ivanov, E. Janzen, Growth of 4H-SiC from liquid phase, Mater. Sci. Eng., B, (1997), 46: 329-332.
    [52] M. Syvajarvi, R. Yakimova, H.H. Radamson, N.T. Son, Q. Wahab, I.G. Ivanov, E. Janzen, Liquid phase epitaxial growth of SiC, J. Cryst. Growth, (1999), 197: 147-154.
    [53] T. Ujihara, S. Munetoh, K. Kusunoki, K. Kamei, N. Usami, K. Fujiwara, G. Sazaki, K. Nakajima, Crystal quality of a 6H-SiC layer grown over macrodefects by liquid-phase epitaxy: a Raman spectroscopic study, Thin Solid Films, (2005), 476: 206-209.
    [54] S. Nishino, J. Anthony Powell, H. A. Will, Production of large-area single-crystal wafers of cubic SiC for semiconductor devices, Appl. Phys. Lett., (1983), 42(5): 460-462.
    [55] Y. Chen, T. Kimoto, Y. Takeuchi, H. Matsunami, Selective homoepitaxy of 4H-SiC on (0001) and (1120) masked substrates, J. Cryst. Growth, (2002), 237-239: 1224-1229.
    [56] H. Tsuchida, I. Kamata, T. Jikimoto, K. Izumi, Epitaxial growth of thick 4H-SiC layers in a vertical radiant-heating reactor, J. Cryst. growth, (2002), 237-239:1206-1212.
    [57] H. Tsuchida, I. Kamata, T. Jikimoto, K. Izumi, Growth of thick and low-doped 4H-SiC epitaxial layers in a vertical radiant-heating VPE reactor, Electrical Engineering in Japan, (2002), 138(4): 18-25.
    [58] S. Nakazawa, T. Kimoto, K. Hashimoto, H. Matsunami, High-purity 4H-SiCepitaxial growth by hot-wall chemical vapor deposition, J. Cryst. growth, (2002),237-239: 1213-1218.
    [59] Y. Yamaguchi, H. Nagasawa, T. Shoki, N. Annaka, H. Mitsui, Properties ofheteroepitaxial 3C-SiC films growth by LPCVD, Sens. Actuators, A, (1996), 54:695-699.
    [60] A. Andreev, A. Tregubova, M. Scheglov, A. Syrkin, V. Chelnokov, Influence ofgrowth conditions on the structural perfection of β-SiC epitaxial layers fabricated on6H-SiC substrates by vacuum sublimation, Mater. Sci. Eng., B, (1997), 46: 141-146.
    [61] N. Savkina, A. Tregubova, M. Scheglov, V. Solov'ev, A. Volkova, A. Lebedev,Characterization of 3C-SiC epilayers growth on 6H-SiC substrates by vacuumsublimation, Mater. Sci. Eng., B, (2002), 91-92: 317-320.
    [62] A. Strel'chuk, N.. Savkina, A. Kuznetsov, A. Lebedev, A. Tregubova,Characterization of p-n structures grown by sublimation heteroepitaxy of 3C-SiC on6H-SiC, Mater. Sci. Eng., B, (2002), 91-92: 321-324.
    [63] M. Syvajarvi, R. Yakimova, M. Tuominen, A. Kakanakova-Georgieva, M.F.MacMillan, A. Henry, Q. Wahab, E. Janzen, Growth of 6H and 4H-SiC bysublimation epitaxy, J. Cryst. Growth, (1999), 197:155-162.
    [64] T. Furusho, M. Sasaki, S. Ohshima, S. Nishino, Bulk crystal growth of cubicsilicon carbide by sublimation epitaxy, J. Cryst. Growth, (2003),249: 216-221.
    [65] 长崎诚三,平林真编著,刘安生译,二元合金状态图集,北京:冶金工业出版社,2004
    [66] 高明霞,TiC基Fe-Al、Ni.Al金属间化合物复合材料的自发熔渗制备和结构性能研究,[博士学位论文],浙江大学,2004
    [67] R. Subramanian, J.H. Schneibel, K.B. Alexander, K.P. Plucknett, Iron aluminide - titanium carbide composites by pressureless melt infiltration -microstructure and mechanical properties, Scripta. Mater., (1996), 35(5): 583-588. [68] R. Subramanian, J.H. Schneibel, FeAl-TiC and FeAl-WC composites-melt infiltration processing, microstructure and mechanical properties, Mater. Sci. Eng., A,
    [69] R. Subramanian, J.H. Scheibel, Intermetallic bonded WC-based cermets bypressureless melt infiltration, Intermetallics, (1997), 5(5): 401-408.
    [70] Y. Pan, K..W. Sun, Preparation of TiC/Ni_3Al composites by upward meltinfiltration, J. Mater. Sci. Technol., (2000), 16(4): 387-392.
    [71] K.P. Plucknett, P.F. Becher, S. B. Waters, Flexure strength ofmelt-infiltration-processed titanium carbide/nickel aluminide composites, J. Am.Ceram. Soc., (1998), 81(7): 1839-1844.
    [72] Y. Pan, M.X. Gao, F.J. Oliveira, J.M. Vieira, J.L. Baptista, Infiltration of SiCperforms with iron silicide melts: microstructures and properties, Mater. Sci. Eng., A,(2003), 359: 343-349.
    [73] Y. Pan, X. S. Yi, Kinetic study of cobalt silicide infiltration into silicon carbidepreforms, J. Am. Ceram. Soc, (1999), 82(12): 3459-3465.
    [74] H. Harima, S. Nakashima, T. Uemura, Raman scattering from anisotropicLO-phonon-plasmon-coupled mode in n-type 4H- and 6H-SiC, J. Appl. Phys., (1995),78(3): 1996-2005.
    [75]刘恩科,朱秉升,罗晋升,半导体物理学,北京:国防工业出版社,(1994)
    [76] 白世鸿,陈彦,乔生儒,陈玉顺,康沫狂,SiC陶瓷高温弯曲强度的Weibull模量研究,机械强度,(2000),22(4):312-314.
    [77] Yi Pan, J. L. Baptista, Chemical instability of silicon carbide in the presence oftransition metals, J. Am. Ceram. Soc, (1996), 79(8): 2017-2026.
    [78]杨树人,王宗昌,王兢,半导体材料,北京:科学出版社,(2004)
    [79]杨淑珍,周和平,无机非金属材料测试实验,武汉:武汉工业大学出版社,(1991)
    [80] S. Nakashima, H. Harima, Raman Investigation of SiC Polytypes, Phys. Stat.Sol. (a), (1997), 162:39-64.
    [81] V. Ivantsov, V. Dmitriev, Dissolution and growth of silicon carbide crystals inmelt-solutions, Mater. Sci. Forum, (1998), 264-268: 73-76.
    [82] S. Rohmfeld, M. Hundhausen, L. Ley, Influence of stacking disorder on theRaman spectrum of 3C-SiC, Phys. Stat. Sol. (b), (1999), 215: 115-119.497-501.
    [84] J. W. Yang. P. Pirouz, The α→β polytypic transformation in high-temperatureindented SiC, J. Mater. Res., (1993), 8(11): 2902-2907.
    [85] N. Ohtani, M. Katsuno, T. Fujimoto, T. Aigo, H. Yashiro, Surface step modelfor micropipe formation in SiC, J. Cryst. Growth, (2001), 226: 254-260.
    [1] R.P. Feynman, There's plenty of room at the bottom, Eng. Sci. (1960), 23: 22; reprinted in 1992 J. Micromech. Systems, 1: 60.
    [2] 张立德,牟季美,纳米材料和纳米结构,北京:科学出版社,(2001),5-11.
    [3] 张立德,纳米材料,北京:化学工业出版社,(2000),39-41.
    [4] 阎子峰,纳米催化技术,北京:化学工艺出版社,(2003),9-11.
    [5] D. Zhou, S. Seraphin, Production of silicon carbide whiskers from carbon nanoclusters, Chem. Phys. Lett., (1994), 222(3): 233-238.
    [6] H.J. Dai, E.W. Wong, Y.Z. Lu, S.S. Fan, C.M. Lieber, Synthesis and characterization of carbide nanorods, Nature, (1995), 375: 769-772.
    [7] E.W. Wong, P.F. Sheehan, C.M. Lieber, Nanobeam mechanic: elasticity, strength, and toughness ofnanorods and nanotubes, Science, (1997), 277: 1971-1975.
    [8] W.Q. Han, S.S. Fan, Q.Q. Li, W.J. Liang, B.L. Gu, D.P. Yu, Continuous synthesis and characterization of silicon carbide nanorods, Chem. Phys. Lett., (1997), 265: 374-378.
    [9] S.L. Zhang, B.F. Zhu, F.M. Huang, Y. Yan, E.Y. Shang, S.S. Fan, W.Q. Han, Effect of defects on optical phonon raman spectra in SiC nanorods, Solid State Commun., (1999), 111: 647-650.
    [10] C.C. Tang, S.S. Fan, H.Y.Dang, C. Zhang, P. Li, Q. Gu, Growth of SiC nanorods prepared by carbon nanotubes-confined reaction, J. Cryst. Growth, (2000), 210: 595-599.
    [11] Z.W. Pan, H.L. Lai, F.C.K. Au, X.F. Duan, W.Y. Zhou, W.S. Shi, N. Wang, C.S. Lee, N.B. Wong, S.-T. Lee, S.S. Xie, Oriented silicon carbide nanowires: synthesis and field emission properties, Adv. Mater., (2000), 12(16): 1186-1190.
    [12] E. Mufioz, A.B. Dalton, S. Collins, A.A. Zakhidov, R.H. Baughman, W.L. Zhou, J. He, C.J. O'Connor, B. McCarthy, W.J. Blau, Synthesis of SiC nanorods from sheets of single-walled carbon nanotubes, Chem. Phys. Lett., (2002), 359: 397-402.
    [13] X.H. Sun, C.P. Li, W.K. Wong, N.B. Wong, C.S. Lee, S.T Lee, B.K. Teo, Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes, J. Am. Chem. Soc, (2002), 124: 14464-14471.
    
    [14] A. Bezryadin, C.N. Lau, M. Tinkham, Quantum suppression of superconductivity in ultrathin nanowires, Nature, (2000), 404: 971-974.
    
    [15] W.Q. Han, S.S. Fan, Q.Q. Li, Y.D. Hu, Synthesis of gallium nitride nanorods through a carbon nanotube-confmed reaction, Science, (1997), 277: 1287-1289.
    [16] W.Q. Han, S.S. Fan, Q.Q. Li, B.L. Gu, X.B. Zhang, D.P. Yu, Synthesis of silicon nitride nanorods using carbon nanotube as a template, Appl. Phys. Lett., (1997), 71:2271-2273.
    
    [17] Y. Gao, J. Liu, M. Shi, S.H. Elder, J.W. Virden, Dense arrays of well-aligned carbon nanotubes completely filled with single crystalline titanium carbide wires on titanium substrates, Appl. Phys. Lett., (1999), 74 :3642-3644.
    [18] E. Borowiak-Palen, M. Rummeli, T. Gemming, M. Knupfer, R. J. Kalenczuk, T. Pichler, Formation of novel nanostructures using carbon nanitubes as a frame, Synth. Met., (2005), 153: 345-348.
    
    [19] W.Q. Han, P. Redlich, F. Ernst, M. Ruhle, Synthesizing boron nitride nanotubes filled with SiC nanowires by using carbon nanotubes as templates, Appl. Phys. Lett, (1999), 75: 1875-1877.
    
    [20] W.Q. Han, P. Redlich, F. Ernst, M. Ruhle, Formation of (BN)_xC_y and BN nanotubes filled with boron carbide nanowires, Chem. Mater., (1999), 11: 3620-3623.
    [21] R.S. Wagner, W.C. Ellis, Vapor-liquid- solid mechanism of single crystal growth, Appl. Phys. Lett., (1964), 4(5): 89-90.
    
    [22] E.I. Givargizov, Fundamental aspects of VLS growth, J. Cryst. growth, (1975), 31:20-30.
    
    [23] Y.Y. Wu, P.D. Yang, Direct observation of vapor-liquid-solid nanowires growth, J. Am. Chem. Soc, (2001), 123: 3165-3166.
    
    [24] Y.F. Zhang, Y.H. Tang, N. Wang, D.P.Yu, C.S. Lee, I. Bello, S.T. Lee, Silicon nanowires prepared by laser ablation at high temperature, Appl. Phys. Lett., (1998), 72(15): 1835-1837.
    
    [25] W.S. Shi. Y.F. Zheng, H.Y. Peng, N. Wang, C.S. Lee, S.T. Lee, Laser Ablation Synthesis and Optical Characterization of Silicon Carbide Nanowires, J. Am. Ceram. Soc., (2000), 83(12): 3228-3230.
    
    [26] A.M. Morales, C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science, (1998), 279: 208-211.
    [27] D.P. Yu, C.S. Lee, I. Bello, X.S. Sun, Y.H. Tang, G.W. Zhou, Z.G. Bai, Z. Zhang, S.Q. Feng, Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature, Solid State Commun., (1998), 105(6): 403-407.
    [28] D.P. Yu, Z.G. Bai, T. Ding, Q.L. Hang, H.Z. Zhang, Nanoscale silicon wires synthesized using simple physical evaporation, Appl. Phys. Lett., (1998), 72: 3458-3460.
    
    [29] T. Seeger, P. Kohler-Redlich, M. Ruhle, Synthesis of nanometer-sized SiC whiskers in the Arc-discharge, Adv. Mater., (2000), 12(4): 279-282.
    [30] G.C. Xi, Y.K. Liu, X.Y. Liu, X.Q. Wang, Y.T. Qian, Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures, J. Phys. Chem. B, (2006), 110(29): 14172-14178.
    
    [31] X.T. Zhou, N. Wang, H.L. Lai, H.Y. Peng, I. Bello, N. B. Wong, C. S. Lee, S. T. Lee, P-SiC nanorods synthesized by hot filament chemical vapor deposition, Appl. Phys. Lett., (1999), 74(26): 3942-3944.
    
    [32] K.W. Wong, X.T. Zhou, Frederick C.K. Au, H.L. Lai, C.S. Lee, S.T. Lee, Field-emission characteristics of SiC nanowires prepared by chemical-vapor deposition, Appl. Phys. Lett., (1999), 75(19): 2918-2920.
    
    [33] X.T. Zhou, N. Wang, Frederick C.K. Au, H.L. Lai, H.Y. Peng, I. Bello, C.S. Lee, S.T. Lee, Growth and emission properties of β-SiC nanorods, Mater. Sci. Eng.. A, (2000), 286: 119-124.
    
    [34] H.L. Lai, N.B. Wong, X.T. Zhou, H.Y. Peng, Frederick C.K. Au, N. Wang, I. Bello, C.S. Lee, S.T. Lee, X.F. Duan, Straight β-SiC nanorods synthesized by using C-Si-SiO_2, Appl. Phys. Lett., (2000), 76(3): 294-296.
    
    [35] Y. Zhang, K. Suenaga, C. Colliex, S. Lijima, Coaxial Nanocable: Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon, Science, (1998), 281: 973-975.
    
    [36] Z.L. Wang, R.P. Gao, J.L. Gole, J.D. Stout, Silica nanotubes and nanofiber arrays, Adv. Mater., (2000), 12(24): 1938-1940.
    
    [37] G.W. Meng, L.D. Zhang, C.M. Mo, S.Y.Zhang, Y. Qin, S.P. Feng, H.J. Li, Synthesis of" A β-SiC nanorod within a SiO_2 nanorod " one dimensional composite nanostructures, Solid State Comraun., (1998), 106(4): 215-219.
    [38] L.D. Zhang, G.W. Meng, F. Phillipp, Synthesis and characterization of nanowires and nanocables, Mater. Sci. Eng., A, (2000), 286: 34-38.
    [39] M.Q. He, I. Minus, P.Z. Zhou, S.N. Mohammed, J.B. Halpem, R. Jacobs, W.L. Sarney, L. Salamanca-Riba, R.D. Vispute, Growth of large-scale GaN nanowires and tubes by direct reaction of Ga with NH_3, Appl. Phys. Lett., (2000), 77(23): 3731-3733.
    
    [40] Z.W. Pan, Z.R.Dai, Z.L. Wang, Nanobelts of semiconducting oxides, Science, (2001), 291: 1947-1949.
    
    [41] R.Q. Zhang, Y. Lifshitz, S.T. Lee, Oxide-assisted growth of semiconducting nanowires, Adv. Mater., (2003), 15: 635-637.
    
    [42] G.C. Xi, Y.Y. Peng, S.M. Wan, T.W. Li, W.C. Yu, Y.T. Qian, Lithium-assisted synthesis and characterization of crystalline 3C-SiC nanobelts, J. Phys. Chem. B, (2004), 108(52): 20102-20104.
    
    [43] H.H. Ye, N. Titchenal, Y. Gogotsi, F. Ko, SiC nanowires synthesized from electrospun nanofiber templates, Adv. Mater., (2005), 17:1531 -1535.
    [44] Z.J. Li, J.L. Zhang, A.L. Meng, J.Z. Guo, Large-area highly-oriented SiC nanowire arrays: synthesis, raman, and photoluminescence properties, J. Phys. Chem. B, (2006), 110(45): 22382-22386.
    
    [45] W.Y. Yang, H.Z. Miao, Z.P. Xie, L.G. Zhang, L.N. An, Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymetric precursor, Chem. Phys. Lett. (2004), 383:441-444.
    
    [46] X. Bao, M.R. Nangrejo, M.J. Edirisinghe, Preparation of silicon carbide foams using polymeric precursor solutions, J. Mater. Sci., (2000), 35(17): 4365-4372.
    [47] J.M. Garces, A. Kuperman, D.M. Millar, M.M. Olken, A.J. Pyzik, W. Rafaniello, Synthetic inorganic materials. Adv. Mater., (2000), 12(23): 1725-1735.
    
    [48] J. Moon, A.C. Caballero, L. Hozer, Y.M. Chiang, M.J. Cima, Fabrication of functionally graded reaction infiltrated SiC-Si composite by three-dimensional printing (3DP~(?)) process, Mater. Sci. Eng., A, (2001), 298: 110-119.
    
    [49] G.D. Zhan, J.D. Kuntz, R.G. Duan, A.K. Mukherjee, Spark-plasma sintering of silicon carbide whiskers (SiC_w) reinforced nanocrystalline alumina, J. Am. Ceram. Soc, (2004), 87(12): 2297-2300.
    
    [50] Z.Y. Ryu, J.T. Zheng, M.Z. Wang, B.J. Zhang, Synthesis and characterization of silicon carbide whiskers, Carbon, (2001), 39(12): 1929-1930.
    
    [51] A. Fissel, B. Schroter, W. Richter, Low-temperature growth of SiC thin films on Si and 6H-SiC by solid-source molecular beam epitaxy, Appl. Phys. Lett., (1995), 66(23): 3182-3184.
    
    [52] J.G. Lee, I.B. Cutler, Formation of silicon carbide from rice hulls, Am. Ceram. Soc. Bull. (1975)54: 195-198.
    
    [53] W. Seo, K. Koumoto, Stacking faults in β-SiC formed during carbothermal reduction of SiO_2, J. Am. Ceram. Soc, (1996), 79(7): 1777-1782.
    
    [54] R.V. Krishinarao, M.M. Godkhinai, P.G.I. Mukunda, M. Chakraborty, Direct Pyrolysis of Raw Rice Husks for Maximization of Silicon Carbide Whisker Formation, J. Am. Ceram. Soc, (1991), 74(11): 2869-2875.
    
    [55] S. Motojima, M. Hasegawa, Chemical vapour growth of P-SiC whiskers from a gas mixture of Si_2Cl_6-CH4-H-2-Ar, J. Cryst. Growth, (1988), 87: 311-317.
    
    [56] I.C. Leu, Y.M. Lu, M.H. Hon, Substrate effect on the preparation of silicon carbide whiskers by chemical vapor deposition, J. Cryst. Growth, (1996), 167: 607-611.
    
    [57] H.J. Choi, J.G. Lee, Stacking faults in silicon carbide whiskers, Ceram. Int., (2000), 26: 7-12.
    
    [58] V. Raman, V.K. Parashar, S. Dhakate, O.P. Bahl, U. Dhawan, Synthesis of Silicon Carbide through the Sol-Gel Process from Rayon Fibers, J. Am. Ceram. Soc. (2000), 83(4): 952-954.
    [59] X.K. Li, L. Liu, Y.X. Zhang, Sh.D. Shen, Sh. Ge, L.Ch. Ling, Synthesis of nanometer silicon carbide whiskers from binary carbonaceous silica aerogels, Carbon, (2001), 39: 159-165.
    [60] G.W. Meng, L.D. Zhang, C.M. Mo, S.Y. Zhang, Y. Qin, S.P. Feng, H.J. Li, Preparation of β-SIC nanorods with and without amorphous SiO_2 wrapping layers, J. Mater. Res., (1998), 13: 2533-2538.
    [61] T. Hashishin, Y. Kaneko, H. Iwanaga, Y. Yamamoto, Silicon carbide whiskers synthesized from SiO_2-CH_4-Na_3AlF_6 system, J. Mater. Sci., (1999), 34:2189-2192.
    [62] C.H. Liang, G.W. Meng, L.D. Zhang, Y.C. Wu,Z. Cui, Large-scale synthesis of β-SIC nanowires by using mesoporous silica embedded with Fe nanoparticles, Chem. Phys. Lett., (2000),329: 323-328.
    [63] W.Y. Yang, H.Z. Miao, Z.E Xie, L.G. Zhang, L.N. An, Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric precursor, Chem. Phys. Lett., (2004), 383: 441-444.
    [64] N.A. Krivoglaz, Theory of X-ray and thermal-neutron scattering by real crystal, New York: Plenum, 1969
    [65] Zhikun Zhang, Zuolin Cui, Chuncheng Hao, Lifeng Dong, Zhaoguo Meng, Liyan Yu, Defect of nanocrystalline copper and silver, Science in China (Series B), (1998), 41(1): 30-35.
    [66] 李镇江,SiC、GaN半导体纳米材料及阵列的合成、性能与机理研究,[博士论文],西北工业大学,2003
    [67] S. Nakashima, H. Harima, Raman Investigation of SiC Polytypes, Phys. Stat. Sol. (a), (1997), 162: 39-64.
    [68] S.L. Zhang, B.F. Zhu, F.M. Huang, Y. Yah, E.Y. Shang, S.S. Fan, W.G. Han, Effect of defects on optical phonon Raman spectra in SiC nanorods, Solid State Commun. (1999), 111(11): 647-651
    [69] S. Rohmfeld, M. Hundhausen, L. Ley, Influence of stacking disorder on the Raman spectrum of 3C-SiC, Phys. Stat. Sol. (b), (1999), 215:115-119.
    [70] C. Vix-Guterl, I. Alix, P. Gibot, P. Ehrburger, Formation of tubular silicon carbide from a carbon-silica material by using a reactive replica technique: infra-red characterisation, Appl. Surf. Sci., (2003), 210: 329-337.
    
    [71] Y.H. Gao, Y. Bando, K. Kurashima, T. Sato, SiC nanorods prepared from SiO and activated carbon, J. Mater. Sci., (2002), 37: 2023-2029.
    
    [72] K. Okada, H. Kato, K. Nakajima, Preparation of silicon carbide fiber from activated carbon fiber and gaseous silicon monoxide, J. Am. Ceram. Soc, (1994), 77(6): 1691-1693.
    
    [73] L.H. Qian, Z.G. Wang, H. Toda, T. Kobayashi, Effect of reinforcement volume fraction on the thermo-mechanical fatigue behavior of SiCw/6061 Al composites, Mater. Sci. Eng., A, (2003), 357(1-2): 240-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700