燃烧法制备钛酸镁电子陶瓷
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Mg_2TiO_4具有低介电常数、介电损耗和优良的微波介电性能,但目前对于Mg_2TiO_4作为电子陶瓷的研究仍然很少,对其发光性能的研究尚未见相关文献报道。
     本论文以钛酸四丁酯和硝酸镁为原料,分别以柠檬酸和尿素为燃料,低温燃烧法合成了Mg_2TiO_4粉体并研究了采用燃烧法合成制备钛酸镁Mg_2TiO_4电子陶瓷粉体材料的工艺条件,并通过XRD、SEM分别对合成样品的物相组成、结构、颗粒大小、形貌等微观特征进行了表征和分析;研究了掺杂稀土离子的种类及其掺杂量、燃料种类、煅烧温度、保温时间、乙二醇和柠檬酸用量对其性能的影响,并采用荧光光度计对粉体的发光性能进行了表征和初步探讨。
     XRD衍射图分析表明:燃料种类对物相组成的影响最大。以尿素为燃料合成的样品纯度高,物相组成为纯的Mg_2TiO_4(PCPDF卡号为02-1157);以柠檬酸为燃料合成的样品为Mg_2TiO_4,含有少量的MgTiO_3和MgO。煅烧温度、保温时间同样影响样品的物相,以柠檬酸为燃料时,随煅烧温度的升高和保温时间的增加,Mg_2TiO_4的衍射峰变得尖锐而且强度增强,影响较为明显;以尿素为燃料时,Mg_2TiO_4的衍射峰随温度升高的变化较明显,但是随保温时间增加的变化影响不大。可见,适当提高温度和延长保温时间都有利于合成较纯的Mg_2TiO_4。
     SEM照片显示,燃料种类对样品的微观形貌影响较大。尿素为燃料时,样品的微观形貌为球团状,柠檬酸为燃料时,样品的微观形貌为片状。
     FL光谱分析结果表明,Mg_2TiO_4的激发光谱为峰值位于338nm的宽带谱,其发射峰位于400nm和661nm,为Mg_2TiO_4的本征发射,其中400nm为Mg_2TiO_4的主发射峰,位于紫光区,661nm为次发射峰,位于红光区,因此发光颜色为紫红色。掺杂稀土离子的种类及其掺杂量、燃料种类、煅烧温度、保温时间、乙二醇的量、柠檬酸的量对Mg_2TiO_4的发光性能都有影响。稀土离子的掺入有助于提高钛酸镁的发光性能,掺Dy~(3+)和Nd~(3+)的发光效果最好,掺Dy~(3+)、Nd~(3+)、Tb~(3+)对400nm处的紫光发射有利,掺Pr~(3+)则有利于661nm处的红光发射;以尿素为燃料合成样品的发光亮度和强度强于柠檬酸体系合成的样品;煅烧温度、保温时间、掺杂浓度影响样品的发光性能,随煅烧温度提高、保温时间和掺杂浓度的增加,发光亮度提高,但并非煅烧温度越高,保温时间越长,掺杂浓度越大,样品的发光性能就越好。猝灭浓度0.05moL%,合适的保温时间20min。结果表明,燃烧法合成钛酸镁Mg_2TiO_4电子陶瓷粉体材料的较佳工艺条件为:尿素为燃料,尿素:[Mg+Ti]=1.5:1,乙二醇:尿素=4:1,掺入稀土离子的量为0.05moL%,煅烧温度为900℃,保温时间为20min。
     对Mg_2TiO_4的合成制备技术、性能以及用途的研究还属于一个新的领域,本研究对应用领域的拓展以及新产品的开发,以及利用我国丰富的钛和镁资源,发展新产业具有非常重要的现实意义。同时,我国钛和镁的矿产资源非常丰富,有着发展钛和镁金属材料、无机非金属材料如钛酸镁电子陶瓷材料、荧光材料、光学功能材料等新型钛镁材料的资源优势。
Mg_2TiO_4 has minor dielectric constant , dielectric spoilage and excellent microwave dielectric properties, but researches on Mg_2TiO_4 used as electroceramics are still very few , literatrues about the luminescent properties haven't been found. In the dissertation , Mg_2TiO_4 of high purity and better luminescent effect can be synthesized at 900℃by combustion method using urea as the fuel , the temperature can be reduced by 400℃compared with the temperature 1300℃of solid state reaction in literature , so the cost can be greatly reduced.
     In the dissertation , the magnesium titanium oxide(Mg_2TiO_4) electroceramics powders has been synthesized via combustion method by using tetra-n-butyl titanate and magnesium nitrate as raw materials, citric acid and urea as the fuels respectively. And also, researches on technological conditions of the synthesis of Mg_2TiO_4 electronic ceramics are studied , simultaneously , phase composition, construction, particle size, appearance and other microscopic features are characterized and analysized by XRD and SEM. The influence of the factors on the properties of Mg_2TiO_4 are studied , such as the variety of the doping ions and its doping amount , the sort of fuels , calcination temperature , the holding time , the amount of ethylene glycol and the quantity of citric acid , and also the luminescent properties are investigated by the fluorescence spectrophotometer.
     The XRD shows that the kinds of fuels have the greatest influence on the phase composition. When using urea as the fuel , Mg_2TiO_4 of high purity can be synthesized , and the phase composition is pure Mg_2TiO_4 , and its PCPDF card number is 25-1157 ; but when using citric acid as the fuel , the sample is constitued by Mg_2TiO_4 , little MgTiO_3 and MgO . Calcination temperature , heat holding time also infulences the phase of the sample , when citric acid is used as the fuel , the diffraction peak of Mg_2TiO_4 is sharper and the intensity is stronger as the temperature and the heat preservation time raises , the effect is obvious ; when urea is used as the fuel , the diffraction peak of Mg_2TiO_4 is visible as the temperature raises , but isn′t apparent as the heat preservation time prolongs. So, raising temperature and prolonging heat preservation time help to get purier Mg_2TiO_4 for the system of magnesium titanate .
     The SEM photos show that the kind of fuels has the greater influence. When urea is used as the fuel , the appearance is regiment and when using citric acid as the fuel , the micro- appearance is schistose .
     The FL spectrums show that the excitation spectrum of Mg_2TiO_4 is a broad-band spectrum , and the peak value is 338nm , the emission peaks are located at 400nm and 661 nm , they are the intrinsic emission of Mg_2TiO_4 , the peak at 400 nm is the main emission peak , which is located in purple light region, and the peak at 661 nm is the secondary emission peak ,which is located in red light region, so the color of the Mg_2TiO_4 is reddish purple. The variety of the doping ions and its doping amount ,the sort of fuels ,calcination temperature ,the holding time ,the amount of ethylene glycol and the quantity of citric acid all have effects on the luminescent properties of Mg_2TiO_4. We find that the doping of rear earth ions helps to enhance the properties of luminescence of Mg_2TiO_4. The samples doped by Dy~(3+) and Nd~(3+) have the best luminescent effect, doping Dy~(3+) , Nd~(3+)and Tb~(3+) favor for the purple light emission of 400nm , doping Pr~(3+) is in favor of the red light emission of 661 nm . The system that uses urea as the fuel have the better luminescent brightness and intensity compared with the system using citric acid as the fuel. The properties of luminescence is better and better as the calcination temperature ,heat preservation time and the amount of doping concentration raises , but it has a quench temperature 900℃, quench concentration 0.05moL%, an optimal heat preservation time 20min. The results show that the better technological conditions of preparing Mg_2TiO_4 electronic ceramics powders by combustion can be got when the ratio of urea to [Mg+Ti] , ethylene glycol to urea is respectively 1.5 and 4.0, the doping amount of rear earth ions equals to 0.05moL% , the calcining temperature is 900℃, heat preservation time lasts 20 minutes.
     Therefore, researches on Mg_2TiO_4 have great importance. The preparation technology , properties and application is still a new field , it will be very important practical to the development of the open up of application field and the development of new products ,and also it has great practical significance to develop new industries using the rich resources of titanium and magnesium . Simultaneously, we have the advantage of resources to develop metal materials of titanium and magnesium,magnesuim titanate electronic ceramics materials , optical functional materials and so on .
引文
[1]康仕芳,谢振风.镁的钛酸盐制备[J],化学工业与工程,2003,11(3):21~26
    [2]马钟燕译.金属矿床学导论[M].北京:北京大学出版社,1979
    [3]吴贤,张健.中国的钛资源分布及特点[J].钛工业进展,2006,23(6):8~12
    [4]胡克俊,姚娟,席歆.攀枝花钛资源经济价值分析[J].世界有色金属,2008,(1):36~42
    [5]刘向阳.钛产业链现状[J].透视,2008,(10):39~44
    [6]王立平,王镐,高颀等.稀有金属[J],2004,28(1):265~267
    [7]曹谏非.钛矿资源及其开发利用[J].化工矿产地质,1996,18(2):127~134
    [8]轻金属-钛[J].中国有色冶金,2006,(5):59~60
    [9]中国科学院过程工程研究所.攀西地区钛资源综合利用技术现状分析与前景展望[J].攀枝花科技与信息,2006年,31(2):8~10
    [10]李东英.我国的钛工业[J].有色冶炼,2000,29(3):1~6
    [11]周廉.我国钛工业的形势与任务[J].钛工业进展,2002,(4):7~12
    [12]邓国珠.世界钛资源及其开发利用现状[J].钛工业进展,2002,(5):9~12
    [13]王志,袁章福.中国钛资源综合利用技术现状与新进展[J].化工进展,2004,23(2): 349~352
    [14]邓国珠,王雪飞.由攀枝花钛精矿制取高品位富钛料的途径[J].钢铁钒钛,2002,(4): 14~17
    [15]周志明.高钛型高炉渣渣钛分离研究[D].重庆:重庆大学材料工程学院,2004.
    [16]大连理工大学无机化学教研室编.无机化学第四版[M].北京:高等教育出版社,2002
    [17]张丁非,彭建,丁培道,等.镁及镁合金的资源、应用极其发展现状[J].材料导报,2004,18(4):72~76
    [18]曾小勒.镁-绿色工程材料[J].世界科学,2008,(3):27~28
    [19]周进生,鲍荣华.全球原镁供需及趋势分析[J].中国矿业,2008,17(4):8~10
    [20]陈肇友,李红霞.镁资源的综合利用及镁质耐火材料的发展[J].耐火材料,2005,39(1):6~15
    [21]庾莉萍.我国镁金属产业前景光明[J].中国金属通报,2008,(14):5~8
    [22]胡庆福,刘景泽,宋丽英.中国镁资源优势及镁质化工材料发展方向[J].无机盐工业,2006,38(9):13~16
    [23] Keller. Optical Spectra of Rare Earth Activated BaTiO_3[J].The Journal of Chemical Physics,1959,31(5):1272~1277
    [24] Markishima.Luminescence of Sm3+ in BaTiO_3 Matrix [J].J Phys Chem solids,1962,(23):749~757
    [25] Grabner. Photoluminescence of Cr-doped CaTiO_3[J].Physical Review,1970,2(11): 4351~4353
    [26] Park ,J K. The luminescent properties of SrTiO_3:Al,Pr Red Phosphor [J].Yoop Hak Hochi,1999,36(5):478~481
    [27]村崎嘉典,荒木清隆. Red emitting long decay phosphors[P].JP:5394005, 1995,01, 26
    [28]刘应亮,李沅英,杨燕生.碱土金属钛酸盐的合成及Eu~(3+)在其中的荧光性质[J].暨南大学学报(自然科学版).1996,17(3):65~69
    [29]朱国贤,庄国雄,蒋毅民.碱土金属钛酸盐和锆酸盐中钐离子的光谱特性[J].湛江师范学报,2003,24(6):46~49
    [30]朱国贤,莫凤珊,庄国雄,等.碱土金属钛酸盐中镨离子的光谱特性[J].湛江师范学院学报,2006,27(3):83~85
    [31]高新.应用前景广阔的无机钛酸盐[J].化工新型材料,1998,(3):8~12
    [32]杜新瑜,邢欣,傅圣利,等.钛酸盐研究进展[J].材料导报,2003,17:177~179
    [33]肖谧,李玲霞,王洪儒,等.CaO-SrO-TiO_2-Bi_2O_3系统介电性能研究[J].硅酸盐学报,2000,28(3): 294~298
    [34]贺干武,刘应亮,雷炳富.钙钛矿CaSnO_3∶Pr~(3+)磷光体的发光特性[J].发光学报,2007,28(3):289~291
    [35]陈祖熊,王坚编著.精细陶瓷—理论与实践[M].北京:化学工业出版社,2005
    [36]张金升,王美婷,许凤秀编.先进陶瓷导论[M].北京:化学工业出版社,2007
    [37]曲远方编.功能陶瓷材料[M].北京:化学工业出版社,2003
    [38] Chot S H ,Yoo J S , Lee J D . Synthesis and lowvoltage charactertistics of CaTiO_3:Pr luminescent powders[J].Electrochem.Soc.,1996,143(10):231
    [39] Diallo P T,Boutinaud P,Mahiou R,et a1. Red luminescence in Pr~(3+)-doped calcium titanates [J].Phys.Status.Solidi(a).1997,160(1): 255~263
    [40]刘利民,曾立华,廉世勋,等.CaTiO_3:Pr~(3+)的合成及发光特性[J].湖南有色金属,1998,14(5):45~47
    [41]张华京,廉世勋,吴振国,等. CaTiO_3:Pr~(3+)的合成及发光性质[J].稀有金属与硬质合金,1999,(137):38~39
    [42] Diallo P T,Jeanlouis K,Boutinaud P,et a1. Improvement of the optical performance of Pr~(3+) in CaTiO_3[J].Alloys and Compounds,2001,323:218~222
    [43] Rocyce,Martin R,Matsuda ,et al.Red emitting long decay phosphors. USA,5650094[P],1997
    [44]廉世勋,林建华,苏勉曾. Ca_(1-x)Zn_xTiO_3:Pr~(3+) ,R~+(R~+ =Li~+,Na~+,K~+,Rb~+,Cs~+,Ag~+ )的合成和发光性质[J].中国稀土学报,2001,19(6):602~605
    [45]杨志平,朱胜超,郭智,等.锌对CaTiO_3:Pr~(3+)发光亮度和余辉时间的影响[J].中国稀土学报,2002增刊,20:42~45
    [46]杨志平,郭智,王文杰等.Pr~(3+)浓度对CaTiO_3:Pr~(3+)红色长余辉材料的影响[J].功能材料与器件学报,2003,9(4):473~476
    [47]杨志平,王文杰,郭智,等.红色长余辉材料CaTiO_3:Pr~(3+)中两种电子陷阱的研究[J].光电子·激光,2004,15(3):332~336
    [48]廉世勋,左成钢,尹笃林等.纳米Ca_(0.8)Zn_(0.2)TiO_3:Pr~(3+),Na~+荧光粉的合成和红色发光性质[J].中国稀土学报,2006,24(2):158~162
    [49]左成钢,廉世勋,尹笃林,等.前驱体法制备Ca_(0.8)Zn_(0.2)TiO_3:Pr~(3+)荧光粉及其发光性能[J].稀土,2007,28(4):1~4
    [50]孙家跃,杜海燕,胡文祥.固体发光材料第一版[M].北京:化学工业出版社,2003
    [51]康宏敏.钛酸盐纳米粉体的低温合成与表征[D].大连:大连理工大学化学工艺,2007
    [52] HILTON A D ,FROST R .Recent developments in the manufacture of barium titanate powders [J]. Key Eng Mater, 1992, 66~67 : 145~184
    [53] PHULE P P, RISBUD S H. Review:low-temperature synthesis and processing of electronic materials in the BaO -TiO2 synthesis[J].J Mater Sci ,1990 ,25:1 169~1183
    [54]赁敦敏,肖定全,朱建国,等.从发明专利看无铅压电陶瓷的研究与发展—无铅压电陶瓷20年发明专利分析之一[J].功能材料,2003,34(3):250~253 [55 ] Hilton A D ,Frost R. Recent developments in the manufacture of barium titanate powders[J].Keyeng Mater,1992,66~67:145~184
    [56]柏朝辉,王学荣,张希艳.溶胶-凝胶法制备BaTiO_3纳米粉体[J].长春理工大学学报, 2002,25(4):7~9
    [57]罗绍华,唐子龙,尧巍华,等.低温燃烧法合成钛酸钡及其陶瓷介电性能研究[J].硅酸盐学报,2003,31(6):560~565
    [58]邢晓旭,郝素娥.Dy掺杂BaTiO_3陶瓷的制备及其介电性能[J].功能材料,2004增刊, 35:1311~1314
    [59]郭靖,胡曰博,熊育飞,等.TiCl_4共沉淀法合成了超细钛酸钡粉体[J].四川有色金属, 2004,(2):29~33
    [60]侯铁翠,李智慧,卢红霞等.改进的柠檬酸盐溶胶-凝胶法制备四方相纳米尺寸钛酸钡粉体[J].航空材料学报,2007,27(3):74~76
    [61]朱启安,张超,张聪等.固相研磨-低温煅烧法制备钛酸钡纳米粉体[J].功能材料, 2007,38(5):714~716
    [62]莫雪魁,李艳君,高以磊等.纳米钛酸钡粉体的水热合成研究[J].中国粉体技术,2007,(3):36~37
    [63]严玉清,温玉刚.钛酸钡纳米粉体的制备及表征[J].华北科技学院学报,2007,4(2):26~28
    [64]曲晓田,李莉.钛酸钡纳米粉体的制备与X射线衍射分析[J].山西大学学报(自然科学版),2007,30(1):61~63
    [65]翟学良,赵海燕,贾密英.稀土掺杂钛酸钡系电子陶瓷的交流阻抗谱研究[J].功能材料, 2004增刊,35:1271~1274
    [66]沈志刚,张维维,陈建峰等.掺杂离子及掺杂工艺对钛酸钡性能的影响[J].无机盐工业, 2005,37(9):17~19
    [67]黄金祥,郝素娥,孙亮.Pr对Pr-Mn共掺BaTiO_3陶瓷的气相扩渗及其PTC特性[J].压电与声光,2006,28(5):569~571
    [68]李波,张树人,周晓华等. Y2O_3和ZnO共掺杂对BaTiO_3陶瓷的微观结构和介电性能的影响[J].无机材料学报,2007,22(3):451~455
    [69]黄祥卉,陈振华.电子陶瓷用钛酸钡粉体制备及其发展.材料导报,2003,17(1):30~32
    [70]郭靖,胡曰博,熊育飞,等.TiCl4共沉淀法合成了超细钛酸钡粉体[J].四川有色金属,2004,(2):29~33
    [71]沈志刚,陈建峰,刘方涛,等. Ba1 - x Sr x TiO_3纳米粉体的直接沉淀法合成、结构与介电特性[J].功能材料,2003,34 (5):556~558 [72 ] VARA THARAJAN R,SAMANTA S B, JAYAVEL R,et al. Ferroelectric characterizationstudies on barium calcium titanate single crystals[J].Materials Characterization,2000,45(2):89~93
    [73]祖庸,卫志贤.钛酸锶的制造技术[J].西北大学,19~21
    [74]曲远方.现代陶瓷材料及技术[M].华东理工大学出版社,2008
    [75]王桂赟,王延吉,许永权,等.化学沉淀法合成高纯超细SrTiO_3[J].材料科学与工程学报,2003,21(4):562~564
    [76] Yan Xiuru,Wang Junzhen,Wang Jianping,et al.The preparation of perovskite type strontium titanate by sol-gel process[J].Transaction of Tianjin University, 1995,1(2):139~144
    [77]孙彤,孙平,王思兵.水热法合成钛酸锶超细粉末的工艺研究[J].电子器件,1996,19 (4):230~234
    [78]方惠会,王开毅.草酸盐共沉淀法制备高纯超细钛酸锶粉体[J].中南工业大学学报,1996,27(3):316~319
    [79]冯秀丽,王公应,邱发礼.以偏钛酸为原料常压水热法合成纳米钛酸锶[J].合成化学, 2006,14(3):293-296
    [80]朱启安,龚敏,谭仪文,等.一种合成纳米SrTiO_3的新方法[J].湘潭大学自然科学学报, 2007,29(1):69~73
    [81]胡雄,丁一刚,吴元欣,等.纳米钛酸锶粉体制备及其表面改性工艺研究[J].无机盐工业,2007,39(10):19-20
    [82]张近.钛酸锶的制备与应用[J].钛工业进展,1998,(6):37~38
    [83]蒋琴,吴艳波,张守臣,等.溶胶-凝胶法制备钛酸锶粉体极其光催化性能的研究[J].工业催化,2006,14(12):60~63
    [84]邵义,李娅楠.水热法制备钛酸锶纳米粉体的性能[J].沈阳工业大学学报,2008,30(5):535~538
    [85]潘红梅,何翔.纳米钛酸锶粉体的制备及光催化研究[J].佛山陶瓷,2006,(10):4~6
    [86] MASAHIRO M,MINORU T,HIROKI T.Tobimatsu.Photo—catalytic activity of SrTiO_3codoped with nitrogen and lantha-Bum under visible light illumination [J].Langrnuir,2004,20:232~236
    [87]赵联芳,付大放,钱春香.掺杂Fe~(3+)的纳米TiO2光催化降解氮氧化物研究[J].东南大学学报(自然科学版),2003,33(5):677—680
    [88] SATORU M,HIROYUKE H,ATSUSHI T.Ultrafine particle fluidization and its application to photocatalytic NOx treatment[J].Chemical Engineering Journal,2001,82:183~188
    [89]蒋琴,吴艳波,张守臣,等.溶胶-凝胶法制备钛酸锶粉体极其光催化性能的研究[J].工业催化,2006,14(12):60~63
    [90]天津大学,华南工学院合编.电子陶瓷[M],2001
    [91]吴坚强,刘维良,曹文卫,等.钛酸镁粉末合成工艺与性能的研究[J].2001,37(3):13~16
    [92] Wakino.K.Ferroelectrics 1989.9(1):69~81
    [93]吴顺华.高频、高QMTZ系统微波陶瓷的研究[J].硅酸盐通报,1999(6):25~29
    [94]曲远方主编.功能陶瓷材料[M].北京:化学工业出版社,2003
    [95]周玉编著.陶瓷材料学第二版[M].北京:科学出版社,2004
    [96]张中太,张俊英等编著.无机光致发光材料及应用[M].北京:化学工业出版社,2005
    [97]颜海洋.高频高Q(Mg,Co)TiO_3-CaTiO_3系统陶瓷材料研究[D].天津:天津大学,2003
    [98] Pengliu,Jianli Ma,Ling Meng,et al.Preparation and dielectric properties of BST- Mg2TiO4 composite ceramics[J].Materials Chemistry and Physics,2009, 114:624~628
    [99] Chengliang Huang,Shisheng Liu. Dielectric characteristics of the (1?x) Mg2TiO4–xSrTiO_3 ceramic system at microwave frequencies[J]. Journal of Alloys and Compounds,2009,471:9~12
    [101] Masahiko Isobe, Yutaka Ueda. Synthesis ,structure and physical properties of spinel solid solutions Mg2TiO4- MgTi2O4[J].Journal of Alloys and Compounds, 2004,383:85~88
    [101] D.M. Flot, J.T.S. Irvine. Synthesis, electrical properties and thermal analysis of transition metal-doped Mg2TiO4 spinels[J]. Solid State Ionics,2000,135:513~518
    [102] E.Merck. Peroxide route for synthesis of magnesium titanate powders of various compositions[J]. Ceramics International,1994,20(2):111~116
    [103] M. R. S. Silva,S. C. Souza,I. M. G. Santos, et al. Stability Studies on Undoped and Doped Mg2TiO4, Obtained by The Polymeric Precursor Method[J]. Journal of Thermal Analysis and Calorimetry,2005,79:421~424
    [104]崔剑飞,陈玮,王乃刚,等.添加La2O_3对Mg2TiO4陶瓷的显微结构与微波介电性能的影响[J].无机材料学报,2003,18(1):180~184
    [105] J. Stade, D. Hahn, R. Dittmann.New aspects of the luminescence of magnesi- umtitanate partI : Activation with chromium : Activation with chromium[J].Journal of Luminescence,1974,8(4):308~317
    [106] J. Stade, D. Hahn, R. Dittmann.New aspects of the luminescence of magn- esiumtitanate part II: Activation with manganese[J].Journal of Luminescence,1974,8(4):318~325
    [107]王毅敏,李懋强,彭建中,等.聚合物分解法制备微波介质陶瓷粉体的研究[J].粉体技术,1996,2(2):13~17
    [108]颜海洋,吴顺华,苏皓.Mg0-Ti02-Ca0系统介电性能的研究[J].压电与声光,2003, 25 (6): 486-489
    [109] Jantunen H, Rautioaho R, Usimaki A, Leppavuori S. Compositions of MgTi03- CaTi03 ceramic with two borosilicate glasses for LTCC technology [J]. Journal of the European Ceramic Society,20(2000): 2331~2336
    [110]王念榕,刘晓林,闫涛等.化学沉淀法制备纳米钛酸镁粉体[J].北京化工大学学报,2005,32(6):1~4
    [111]温传庚,王开明,周英彦等.特殊液相沉淀法制备镁的钛酸盐[J].鞍山科技大学学报,2005,28(3-4):161~163
    [112]缪亚美.溶胶-凝胶法低温制备纳米钛酸镁粉体[D].浙江大学,2006
    [113]罗驹华,王加芳.单相钛酸镁微波介电陶瓷的制备和性能[J].硅酸盐学报,2009,37(2):259~263
    [114]陈云霞,刘维良,肖尊文,等.氧化锌和铅硼玻璃料对MgTi03微波介质陶瓷的影响[J].中国陶瓷工业,2003,10(1):17~20
    [115]陶锋烨,葛迪云,张火荣.MgTiO_3微波介质材料介电性能的改善研究[[J].电子元件与材料,2003,2(2):28~30
    [116]黄勇,周晓华,张树人等.固相反应法制备MgTiO_3及其掺杂改性[J].2005,36(5): 689~691
    [117] Zeng J M, Wang H, Song S G, et al. Preparation and characterization of MgTi03 thin films by atmospheric pressure metalorganic chemical vapor deposition [J]. Journal of Crystal Growth,178(1997): 355~359
    [118] Choi Y H, Lee J. MgTi03 thin films prepared by metalorganic solution deposition and their properties[J].Thin Solid Films,2001,(385):43~47
    [119] Lee B D, Lee H R, Yoon K H, Cho Y S. Microwave dielectric properties of magnesoum calcium titanate thin films [J]. Ceramics International,2005, (31):143~146
    [120] Dharmaraj N,Park H C,Lee B M,Viswanathamurthi P, et al.Preparation and morphology of magnesium titanate nanofibers via electrospinning[J].Inor- ganic Chemistry Communications,2004,(7):431~433
    [121] M.P.Baura-Pena etc. Synthesis of the mineral geikielite MgTiO_3[J].Mater.Sci,1991(26):4341~4343
    [122] M.P.Baura-pena,J.Martinez-Lope et al.Synthesis of Magnesium Dititanate[J]. Journal of American Ceramics,1992,75(7):1978~1980
    [123]刘晓光,陈大明,仝建峰等.某涂料用MgTiO_3粉体的制备研究[J].中国粉体技术,2006,(14):4~7
    [124]杨应国,胡小华,袁曦明.纳米稀土发光材料的研究与展望[J].矿产保护与利用,2005,(5):44-47
    [125] Jain S R, Adiga K C, Vemeker V R P. A new approach to thermochemical calculation of condensed fuel-oxidizer mixtures.Combustion and Flame,1981, 40(1):71~76
    [126]秦英德. CaTiO_3:Pr~(3+)红色发光材料的合成制备与性能研究[D].成都:成都理工大学, 2008
    [127] Zhou Y,Lin J,Yu M,et al. Comparative study on the luminescent properties of Y3Al5O12:RE~(3+)(RE:Eu,Dy)phosphors synthesized by three methods[J]. Journal of Alloys and Compounds,2004,375(1-2):93~97
    [128]李治霞.红色长余辉发光材料CaTiO_3:Pr~(3+)的制备和余辉性能改进及其特性研究[D].重庆:重庆大学,2004
    [129]刘正伟.新型长余辉材料的合成与性能研究[D].广州:暨南大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700