改性AZO粉体的制备及其在导电胶中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用共沉淀法制备了AZO粉体,对所制备的AZO粉体进行了稀土La的气相扩渗改性,对改性前后AZO粉体的组成、结构和导电性能的变化进行了研究;并将改性AZO粉体应用于导电胶的制备,对所制备的导电胶的力学性能和导电性能进行了研究。
    
     共沉淀法制备AZO粉体的工艺条件为:反应温度50℃,反应溶液pH=7,烘干温度150℃,烘干时间10h,焙烧温度500℃,焙烧时间2h。采用共沉淀法制备出的AZO粉体粒度分布均匀,粒径较小,可以达到纳米级别,电阻率为4.24×107? cm。稀土La气相扩渗能进一步改善AZO粉体的导电性能。正交实验结果表明,当Al掺杂浓度为3.0wt%、La扩渗浓度为2wt%、扩渗温度为480℃、扩渗时间为5h时,改性AZO粉体的室温电阻率为1.37×104? cm。扩渗前后粉体的电阻率下降了3个数量级。XRD测试结果表明,改性AZO粉体和ZnO粉体相对比,主体特征峰没有明显变化,但分别在11o和68.5o出现了与La有关的特征峰。SEM测试表明AZO粉体经稀土La扩渗后有大的晶粒出现,存在明显的团聚现象。EDAX测试结果表明La已进入AZO粉体,并导致导电性能的提高。
     以所制备的改性AZO粉体为导电填料,不饱和聚酯树脂为基体制备了导电胶。当固化剂和促进剂的添加量为2wt%时,所制备出的样品表面平整无龟裂现象,反应速度适中。制备出的导电胶的电阻率最低值为5.3×105? cm。随着改性AZO粉体添加量的增加,剪切强度逐渐变小,冲击强度逐渐增大。当改性AZO粉体添加量为40wt%时,剪切强度为11.48MPa,冲击强度为19.6kJ m-2,满足应用要求。
AZO powders were prepared by co-precipitation method. After that gaseous penetration of rare-earth element La was carried out to modify the AZO powders. The composition, structure and conductivity after modification were studied. The AZO powders were applied to the preparation of conductive glues. The mechanical and conductive properties of the prepared glues were investigated.
     The method to prepare the AZO powders by co-precipitation was that the reaction time was 50℃, the pH value of the solution was 7, the drying temperature was 150℃, drying time was 10h, the calcinations temperature was 500℃and calcinations time was 2h. The AZO powders prepared through co-precipitation exhibited an even distribution of grain size, which could reach nanometer scale. The resistivity of such powder was 4.24×107? cm. Modifying such powder with La by gaseous penetration could further improve the conductivity of AZO powders. The results of orthogonal experiment showed that the resistivity of modified AZO powders reach 1.37×104? cm when Al doping content is 3.0wt%, La doping content was 2.0wt%, penetration temperature was 480℃and penetration time is 5h. The resistivity after penetration dropped three orders of magnitude. XRD results showed that, compared with ZnO powders, the main peaks of modified AZO powders showed no obvious difference, but new peaks at 11o and 68.5o, which were related to La element. SEM results showed that there were large grains and obvious agglomeration after La penetration into AZO powders. EDAX results showed that La entered AZO and rendered the improvement of conductivity.
     Conductive glues were prepared with the prepared AZO powders as conductive fillings and unsaturated polyester resin as matrix. When the additive amount of curing agent and accelerant are 2wt%, the surface of samples prepared was smooth and free of cracks, and the reaction speed was moderate. The resistivity reached the lowest point of 5.3×105? cm. As the additive amount of modified AZO powders increased, the shear strength gradually decreased and the impact strength gradually increased. When the additive amount of modified AZO powders was 40wt%, the shear strength was 11.48MPa and the impact strength was 19.6kJ m-2, which could meet the need of application.
引文
1 P. Savolainen, J. K. Kivilahti. A Solde Alloyfilled Z-Axis Condutive Epoxy Adhesive. Adhesive. 1995,49:187~196
    2 D. Lu, C. P. Wong. Novel Conductive Adhesives with Stable Joint Resistance for Surface Mount Application. IMAPS/IEEE Proceedings of the 5th Intemational Symposium on Advanced Packaging Materials, 1999:288~294
    3 M. Bouguettaya, N. Vedie and C. Cherrot. New Conductive Adhesives for Surface Mount Solder Replacemen. Synthetic Metals, 1999,(102):1428~1431
    4 H. K. Kim, F. G. Shi. Electrical Reliability of Electrically Conductive Adhesive Joints:Dependence on Curing Condition and Current Density Microelectronics Joumal. 2001,(32):315~321
    5 M. Mizuno, M. Saka and H. Abe. Mechanism of Clectrical Conduction though Ansotropically Conductive Adhesive films. IEEE Transactions on CPMT-Part A. 1996,194:546~553
    6田民波.电子封装中的无铅化.印制电路信息. 2002,(10):3~10
    7 M. Kitajima, T. Shono. Department of the Tin-Zinc-Aluminum (Sn-Zn-Al)Solder Alloys. International Conference on Electronics Packaging. 2003:339~344
    8 W. J. Jeong, H. Nishikawa. Characteristics of Conductive Adhesive for High Conductivity in Electronics Packaging. International Conference on Electronics Packaging. 2003:366~369
    9邬博义,吴懿平,张乐福等.新一代绿色电子封装材料.微电子学. 2002,32(5):357~361
    10田民波,梁彤祥,何卫.电子封装技术与封装材料.半导体情报. 1995,32(4):42~61
    11 R. R. Tummala, E. J. Rymaszeuski, A. G. Klopfenstein等.微电子封装手册.第二版.北京:国防出版社. 2000:3~11
    12 J. E. Morris. IEEE Forward:Electrically Conductive Adhesives. Transactions on CPMT-Part B. 1995,18(2):282~283
    13 M. Lyons, E. Hall, Y. H. Wong, et al. A New Approach to Using Anisotropically Conductive Adhesives for FliP-Chip Assembly. IEEE Transactions on CPMT-Part A. 1996,19(l):5~11
    14 P. Wong, D. Lu. Development of Solder Replacement Isotropically Adhesives. Electronics Packaging Technology Conference. 2000:214~221
    15 S. Liong, C. P. Wong. An Altemative to Epoxy Resin for Application in Isotropically Adhesive. International Symposium on Advanced Packaging Maierials. 2001:13~18
    16 J LiL, E. Morris. Elcetrical Conduction Models for Isotropiecally Conductive Adhesive Joints. IEEE Transactions on CPMT-Part A. 1997,20(l):3~8
    17 D. D. Chang, P. A. Crawford, J. A. Fulton, et al. An Overview and Evaluation of Anisotropically ConductiveAdhesive Film for Fine Pitch Electronic Assembly. IEEE Transactions on Components, Hybrids and Manufacturing Technology.1993,16(8):828~835
    18 D. P. Beck. Printed Electrical Resistor. U. S. Patent. 2,866,057,1958
    19 H. Wolfson, G. Elliott. Electrically Conducting Cements Containing Epoxy Resins and Silver. U.S.Patent. 2,774,747,1956
    20范志新,陈久琳,孙以材. AZO透明导电薄膜的特性、制备与应用.真空. 2000,(5):10
    21夏志林.电子束蒸发制备AZO薄膜的光电性能研究.武汉:武汉理工大学. 2004:3~5
    22巩锋.溶胶凝胶法制备Al 3+: ZnO薄膜及其性能研究.北京:北京工业大学. 2003:5~7
    23 G Alan, Jack, O. Andersson. Iron Powder in Electrical Machines Possibilities and Limitations. Advances in Powder Metallurgy and Particulate Materials. 2001,48(5):1240~1249
    24 B. J. ngram, T. O. Mason. Powder-solution-composite Technique for Measuring Electrical Conductivity of Ceramic Powders. Journal of the Electrochemical Society. 2003,150(8):396~402
    25 J. Kozak, M. Rozenek and L. Dabrowski. Study of Electrical Discharge Machining Using Powder-suspended Working Media. Proceedings of the Institution of Mechanical Engineers. Journal of Engineering Manufacture. 2003,217(11):1597~1602
    26 P. Pecas, E. Henriques. Influence of Silicon Powder-mixed Dielectric on Conventional Electrical Discharge Machining. International Journal of MachineTools and Manufacture. 2003, 43(14):1465~1471
    27 Zois Haralampos, A. Lazaros and Yevgen Mamunya. Structure-electrical Properties Relationships of Polymer Composites Filled with Fe-powder. Macromolecular Symposia. 2003,194(4):351~359
    28 Wenderothk, Pertermant. Effect of Pressure on the Impregnation of Thermoplastic Resin into a Unidirectional Fiber Bundle. Polym Composition. 1989,10(1):52~63
    29 Z. Wang, F. Q. Xue and Y. He. An Adaptive Neuro-fuzzy Inference System for Engineering Vehicle Shift Decisions. Materials and Engineering. 2004, (20):3441~3443
    30傅敏.导电涂料以及导电材料在导电涂料中的应用发展概况.涂料技术与文摘. 2006, (6):67~70
    31姜雨泽.烟气净化用防腐涂料导电特性的实验研究.环境科学与技术. 2006, (5):25~29
    32 Oboulhas, Tsahat, X. F. Xu, et al. Multi-plant Purchase Co-ordination Based on Multi-agent System in an ATO Environment. Journal of Manufacturing Technology Management. 2005,16(6):654~669
    33 N. Venkatathri. Synthesis and Characterization of Vanadium Containing ATO and AFO type Molecular Sieves. Applied Catalysis. 2003, 242(6):393~401
    34 X. C. Chen. Synthesis and Characterization of ATO/SiO2 Nanocomposite Coating Obtained by Sol-gel Method. Materials Letters. 2005, 59(10):1239~1242
    35曾光群,康青,万步勇.碳纤维对水泥基复合材料电磁屏蔽性能的影响.材料科学与工程学报. 2006, (3):95~97
    36奚文骏,冯玉光.导电衬垫在电磁屏蔽中的应用.电子元器件应用. 2005, (4):54~58
    37 D. W. Kim, D. S. Kim and Y. G. Kim. Preparation of Hard Agglomerates Free and Weakly Agglomerated Antimony Doped Tin Oxide (ATO) Nanoparticles by Coprecipitation Reaction in Methanol Reaction Medium. Materials Chemistry and Physics. 2006,97(2):452~457
    38 G. Du, X. Q. Liu, J. Yan, et al. Preparation of Conductive Coatings Filled with Nano ATO. Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technolog. 2005,25(9):285~288 - 44 -
    39 Z. H. Chen, P. Y. Huang and X. G. Wu. Influences of Dehydrating Process on Properties of ATO Nano-powders. Transactions of Nonferrous Metals Society of China (English Edition). 2004,14(6):1123~1128
    40 J. M. Montes, F. G. Cuevas and J. A. Rodriguez. Electrical Conductivity of Sintered Powder Compacts. Powder Metallurgy. 2005,48(4):343~344
    41 Bayramli, Erdal, Ozgur, et al. Powder Metal Development for Electrical Motor Applications. Journal of Materials Processing Technology. 2005,161(2):83~88
    42 E. Pike, C. H. Seager. Percolation and Conductivity: A Computer Study I and II. Phys. Rev. 1974, 10(4B):1421~1434, 1435~1446
    43 S. KirkPatrick. Percolation and Conduetion. Rev. Modem Phys. 1973,45(4):574~588
    44 C. Jannes. Jagt. Reliability of Electrically Conduetive Adhesive Joints for Surface Mount Applications:A Summary of the State of the Art. IEEE Transactions on Components, Packaing, and Manufacturing Technology. 1998,21(2): 215~225
    45 Kazuo Ishibashi, Jun Kimura. A new Asnistropic Conductive Film with Arrayed Conduetive Partcles. IEEE Transactions on Compenents Packaging and Manufacturing Technology. 1996,19(4B):752~757
    46徐颖,卢凤纪,李贺军.纳米TiO2对不饱和聚酯(TiO2/UPR)的改性.材料研究学报. 2002,(5):512~516
    47周文英,李海东,牛国良.纳米SiOx改性不饱和聚酯树脂.纤维复合材料. 2003,(4):14~17
    48 Q. H. Xu, X. J. Yang, L. D. Lu, et al. Study of Modification of Unsaturated Polyester by Filling of Nano TiO2 . China Plastics Industry, 2000,28(6):43~44
    49张毅,马秀清,李永超.纳米SiO2增强增韧不饱和聚酯树脂的研究.中国塑料, 2004,18(2):35~39
    50 L. Li, J. E. Morris. Electrical Conduction Models for Isotropically Conductive Adhesive Joints. IEEE Transactions on CPMT-Part A. 1997,20(l):3~8
    51 J. Liu, L. Ljungkrona and Z. Lai. Development of Conductive Adhesive Joining Surface-mounting Electronics Manufacturing. IEEE Transactions on CPMT-Part B. 1995, 18(2):313~319
    52 M. J. Yim, K. W. Paik. Design and Understanding of Anisotropic Conductive Films(ACF’s) for LCD Packaging. IEEE Transactions on CPMT-Part A. 199821(2):226~234
    53 C. N. Oguibe, S. H. Mannan, D. C. Whalley, et al. Conduction Mechanisms in Anisotropic Conducting Adhesive Assembly. IEEE Transactions on CPMT-Part A. 1998,21(2):235~242
    54 F. G. Shi, M. Abduuah, S. Chungpaiboonpatana, et al. Electrical Coduction of Anisotropic Conductive Adhesives: Effect of Size Distribution of Conducting Filler Particles. Mater Sci Semicond Process. 1999,(2):263~269
    55 L. Daoqiang, K. T. Quinn, C. P. Wong. Conductivity Mechanisms of Isotropic Conductive Adhesives(ICA’s). IEEE Trans Electr Packg Manuf. 1999,22(3):223~227
    56 H. A. King. Polymer Based Solder Alternatives. Surface Mount Technology, 1988,(3):46~49
    57路庆华.新型导电胶的研究(Ⅱ)耐银迁移导电胶的研究.功能材料, 1998.29(4):439~441
    58李世鸿,郎彩,杜红云.中温固化金导电胶的研究.中国胶粘剂, 1998, 7(5):1~3
    59虞苏玮,安维丹,欧萌.高性能非银导电胶粘剂研究及应用.电子工艺技术, 1997,18(1):34~39
    60杨小峰. CLD-20结构性导电胶的研制与应用.中国胶粘剂, 1999, 8(2):39~41,44
    61姚国良. PTC陶瓷暖风机用导电胶的研制.江苏陶瓷. 1992,58(3):25~26
    62李树棠.晶体X射线衍射学基础.北京:冶金工业出版社. 1994:17~18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700