浙江红山茶花青素和脂肪酸合成相关基因克隆与表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浙江红山茶是山茶科山茶属的重要树种,树形优美、冬末春初开花,花大、色彩艳丽,是非常重要的冬春开花的观赏树种;其茶油富含不饱和脂肪酸,是高质量的食用油,被称之为东方橄榄油。本研究根据转录组测序结果,利用RACE技术克隆了浙江红山茶花青素和脂肪酸生物合成途径中的关键基因,并对它们的表达模式进行了研究。研究的主要结果如下:
     1、利用454测序,从浙江红山茶花芽RNA中得到了46279条EST序列,其中19397条Contigs,26882条Singlets。总共24593条序列获得了注释,17952条序列划分为56个小的类别分别归入分子功能、细胞组分、分子生物学过程中。KEGG分析发现与代谢相关的序列有3844条,涉及285个代谢通路。通过与拟南芥调控信息数据库(AGRIS)的比对,发现1740条序列与拟南芥599个转录因子具有很高的同源性,它们属于51个转录因子家族。
     2、根据转录组注释结果,从EST数据中检测到花青素合成通路中的10个基因,利用RACE技术,从浙江红山茶花瓣的cDNA中克隆得到了10个基因中的8个(PAL、F3H、DFR、ANS、CHI、CHS1、CHS2、CHS3、C4H和UFGT)的全长cDNA序列,其中查尔酮合酶基因(CHS)有3个成员,并通过BLAST的比对和系统发育分析,验证了它们分别属于相应基因家族中的一员。实时定量分析显示10个基因在所有组织(叶、花、种子)中都有表达,其中9个基因均在叶中的表达量最高,推测花色素合成所需的中间产物可能主要在叶中合成,然后运输到花等器官中,而CHI基因在种子中表达最高,推测CHI可能在种子中还参与了其他类黄酮物质的合成。在花发育的3个阶段(花芽、半开放、全开放),CHS1、CHS2和CHS3的表达量在花芽中最高,PAL、CHI、F3H和UFGT在半开放的时候最高,DFR和ANS的表达随着花的发育逐渐升高,在全开放阶段达到最大。与其他物种相比,浙江红山茶花不同发育阶段这些基因的表达模式既有相似之处,也有不一致的地方,表明不同物种花青素的合成模式和调控机制可能有所不同。这些有待进一步研究。
     3、从EST数据中检测到脂肪酸合成通路中12个基因中的11个,其中β-酮脂酰ACP合酶基因(KAS)有3个成员,利用RACE技术,克隆得到了13个基因(BC、BCCP、ACAT、ACP、KASⅠ、KASⅡ、KASⅢ、KR、HD、ER、KCS、SAD和FAD2)的cDNA全长序列。生物信息学分析证实了它们的正确性。通过qRT-PCR分析表明,除FAD2在第二阶段表达最高,随后一直维持低表达外,其他基因几乎都是在种子发育的中期(第三至第五阶段)表达最高,其中半数基因的表达在第五阶段达到最大,只有ACP、KASⅡ和KASⅢ在第三阶段比第五阶段表达水平略高,KASⅠ和SAD到第四阶段表达较高。
     利用气相色谱技术,对浙江红山茶种子不同发育阶段的主要脂肪酸的含量进行了检测。种子发育过程中的脂肪酸相对含量变化很大,在发育初期,亚油酸和亚麻酸的总含量明显高于油酸,随后油酸所占比例逐渐增加,从第三阶段后就成为最主要脂肪酸成分,到第七阶段时油酸含量高达75%以上,而亚油酸和亚麻酸的总含量下降到了12.5%左右。而饱和脂肪酸(棕榈酸和硬脂酸)相对含量随着种子发育逐步下降,从第二阶段的45%左右至第七阶段时已降至12%以下。SAD和FAD2为脂肪酸去饱和基因,其中SAD与油酸形成有关,FAD2与亚油酸或亚麻酸合成有关。种子不同发育阶段的油酸、亚油酸和亚麻酸变化趋势与SAD和FAD2表达量变化基本相对应,只是相应不饱和脂肪酸的含量的变化有一个滞后过程。尽管饱和脂肪酸合成相关基因基本在第三至第五阶段表达最高,而饱和脂肪酸的相对含量却在逐步下降,这是由于产生的饱和脂肪酸被SAD和FAD2转化成了不饱和脂肪酸。
Camellia chekiangoleosa is an important species of genus Camellia belonging to thefamily Theaceae. The economic value of C.chekiangoleosa is largely due to its beautifulornamental flower. The flower is red which generally blooms between February and March. Inaddition, C.chekiangoleosa is used to produce high-quality edible oil from its seeds. Its oil isrich in unsaturated fatty acid. The economic value of its oil is the same as oil palm, olive,coconut, and is commonly known as “eastern olive oil”. In this research, the key enzyme genesof anthocyanins and fatty acid biosynthetic pathway were cloned, and their expression patternswere investigated. The main results were showed as following:
     1、454GS FLX Titanium platform was used to generate an EST dataset. About46,279sequences were obtained, and24,593were annotated. Fifty-six functional groups including17,952sequences were classified according to their molecular function, biological process, andcellular component ontologies. A total of3844unigenes assigned to285metabolic pathwaywere identified against the KEGG database. Using Blast search against the AGRIS,1,740unigenes were found homologous to599Arabidopsis transcription factor genes.
     2、Based on the transcriptome dataset, ten anthocyanin biosynthesis pathway genes (PAL,C4H, CHS1, CHS2, CHS3, CHI, F3H, DFR, ANS, and UFGT) were identified and cloned. Themultiple alignment and phylogenetic analysis demonstrated that each gene was a member ofcorresponding gene family. Relatively high expression levels of all the genes were observed inthe leaf except CHI, whose expression was abundant in the seeds. Hence, it was hypothesizedthat the anthocyanins were mainly synthesized in the leaves and transport to the flowers andseeds. The temporal expression analysis showed that CHS1, CHS2, and CHS3were highlyexpressed in the bud stage; F3H, CHI, PAL, and UFGT were maximally expressed in thesemi-open stage; and the expression of DFR and ANS gradually increased with flowerdevelopment. There are many similar or different patterns in various species, This could beattributed to some important differences between the types of anthocyanins produced by eachspecies and their regulatory mechanism.
     3、Thirteen complete-length cDNAs encoding BC, BCCP, ACAT, ACP, KASⅠ,KASⅡ,KASⅢ, KR, HD, ER, KCS, SAD and FAD2were isolated from seed by RACE. The sequenceanalysis validate their correctness. Almost all genes were highly expressed in the middle ofseed development (Ⅲ toⅤ) except FAD2. FAD2was maximally expressed in the second stage,its expression level in other stages is very low.
     Study of fatty acid accumulation pattern in seed development by gas chromatographyindicated that contents of fatty acids changed a lot. In the early stages, the total content oflinoleic acid and linolenic acid was higher than oleic acid, but they declined withthe subsequent development of the seed and the proportion of oleic acid increased gradually.The content of palmitic acid and stearic acid were gradual declined in seed development. SADand FAD2involved in the the formation of unsaturated fatty acids, wherein SAD catalyzed oleic acid formation and FAD2relating to the synthesis of linoleic acid or linolenic acid. Theirexpression quantities are roughly identical to the change trend of oleic acid linoleic acid andlinolenic acid. Although genes were highly expressed in the third to fifth stage, the relativecontent of saturated fatty acids was decreased gradually. This is due to SAD and FAD2convertsaturated fatty acids to unsaturated fatty acids.
引文
[1]陈永忠,王德斌.湖南省油茶良种选育及推广应用概况[J].湖南林业科技,2001,28(03):23-27.
    [2]邵群,边际.功能性油脂—共轭亚油酸研究进展[J].食品科学,2002,23(002):164-166.
    [3]王苹,王春荣.茶油对动物血脂和血小板功能的影响[J].营养学报,1993,15(004):377-384.
    [4]雷治国,黄永芳,何会蓉.油茶及其种质资源研究进展[J].经济林研究,2003,21(4):123-125.
    [5]江苏新医学院.中药大辞典[M].上海科学技术出版社,上海,2000.
    [6]丘金兴,徐林初.油茶群体产量结构和结实规律研究[J].经济林研究,1991,9(001):17-22.
    [7]刘子雷,杨水平,姚小华.浙江红花油茶果实形态变异研究[J].林业科学研究,2007,20(2):263-266.
    [8]魏兆兆,谢云,孟辉,等.3种类型浙江红山茶的花粉形态学研究[J].浙江农林大学学报,2012,29(4):634—638.
    [9]佘祥威,阳玉珍,雷继雨.油茶过氧化物同工酶的研究[J].林业科技通讯,1983,(8):15-18.
    [10]唐绍清,施苏华,陈月琴.金花茶与近源种的RAPD分析及分类意义[J].中山大学学报,1998,37(4):28-32.
    [11]陈永忠,张智俊,谭晓风.油茶优良无性系的RAPD分子鉴别[J].中南林学院学报,2005,25(4):40-45.
    [12]黄永芳,陈锡,庄雪影.油茶种质资源遗传多样性分析[J].林业科学,2006,42(4):38-43.
    [13]温强,叶金山,雷小林.油茶ISSR反应体系建立及优化[J].中南林学院学报,2006,26(6):22-26,43.
    [14]张国武,钟文斌,乌云塔娜.油茶优良无性系ISSR分子鉴别[J].林业科学研究,2007,20(2):278-282.
    [15]胡芳名,谭晓风,仇键,等.油茶种子表达的主要储藏蛋白基因及其分析[J].中南林学院学报,2005,25(004):24-26.
    [16]谭晓风,王威浩,刘卓明,等.油茶ACP基因的全长cDNA克隆及序列分析[J].中南林业科技大学学报:自然科学版,2008,28(4):8-14.
    [17]张党权,谭晓风,陈鸿鹏,等.油茶SAD基因的全长cDNA克隆及生物信息学分析[J].林业科学,2008,2.
    [18]李魏.2009.油茶β-酮脂酰-CoA合酶基因的全长cDNA克隆[D].中南林业科技大学.
    [19]王威浩.2009.油茶FatB基因的全长cDNA克隆[D].中南林业科技大学.
    [20]胡姣.2010.油茶AACT基因和FAD6基因的全长cDNA克隆及原核表达[D].中南林业科技大学.
    [21]Vallee, B. Introduction to metallothionein[J]. Methods in Enzymology,1991,(205):3-7.
    [22]田晓明,谭晓风,胡孝义,等.油茶苯丙氨酸解氨酶基因的cDNA克隆与序列分析[J].南京林业大学学报:自然科学版,2009,33(004):24-28.
    [23]罗茜,谢禄山,谭晓风,等.油茶丙酮酸激酶基因全长cDNA克隆及序列分析[J].中南林业科技大学学报:自然科学版,2010,30(005):85-90.
    [24]Sanger, F., Nicklen, S., Coulson, A.R. DNA sequencing with chain-terminating inhibitors[J]. Proceedingsof the National Academy of Sciences,1977,74(12):5463-5467.
    [25]Wall, P.K., Leebens-Mack, J., Chanderbali, A., et al. Comparison of next generation sequencingtechnologies for transcriptome characterization[J]. BMC Genomics,2009,10(1):347.
    [26]Church, G. The Race for the$1000Genome[J].
    [27]Hudson, M.E. Sequencing breakthroughs for genomic ecology and evolutionary biology[J]. MolecularEcology Resources,2008,8(1):3-17.
    [28]Rothberg, J.M., Leamon, J.H. The development and impact of454sequencing[J]. Nat Biotechnol,2008,26(10):1117-1124.
    [29]Metzker, M.L. Sequencing technologies—the next generation[J]. Nature Reviews Genetics,2009,11(1):31-46.
    [30]Metzker, M.L. Emerging technologies in DNA sequencing[J]. Genome Res,2005,15(12):1767-1776.
    [31]Turcatti, G., Romieu, A., Fedurco, M., et al. A new class of cleavable fluorescent nucleotides: synthesis andoptimization as reversible terminators for DNA sequencing by synthesis[J]. Nucleic Acids Res,2008,36(4):e25-e25.
    [32]Gupta, P. Ultrafast and low-cost DNA sequencing methods for applied genomics research[J]. Proceedingsof the Indian National Science Academy-Part B: Biological Sciences,2008,7891-102.
    [33]Shendure, J., Ji, H. Next-generation DNA sequencing[J]. Nat Biotechnol,2008,26(10):1135-1145.
    [34]Fox, S., Filichkin, S., Mockler, T.C.2009. Applications of ultra-high-throughput sequencing. Plant SystemsBiology. Springer, pp.79-108.
    [35]Br utigam, A., Gowik, U. What can next generation sequencing do for you? Next generation sequencing asa valuable tool in plant research[J]. Plant Biology,2010,12(6):831-841.
    [36]Ossowski, S., Schneeberger, K., Clark, R.M., et al. Sequencing of natural strains of Arabidopsis thalianawith short reads[J]. Genome Res,2008,18(12):2024-2033.
    [37]Cheung, F., Haas, B.J., Goldberg, S.M., et al. Sequencing Medicago truncatula expressed sequenced tagsusing454Life Sciences technology[J]. BMC Genomics,2006,7(1):272.
    [38]Rafalski, J.A. Novel genetic mapping tools in plants: SNPs and LD-based approaches[J]. Plant Sci,2002,162(3):329-333.
    [39]Nordborg, M., Weigel, D. Next-generation genetics in plants[J]. Nature,2008,456(7223):720-723.
    [40]Barbazuk, W.B., Emrich, S.J., Chen, H.D., et al. SNP discovery via454transcriptome sequencing[J]. ThePlant Journal,2007,51(5):910-918.
    [41]Hajjar, R., Hodgkin, T. The use of wild relatives in crop improvement: a survey of developments over thelast20years[J]. Euphytica,2007,156(1-2):1-13.
    [42]Velculescu, V.E., Zhang, L., Vogelstein, B., et al. Serial analysis of gene expression[J].Science-AAAS-Weekly Paper Edition,1995,270(5235):484-486.
    [43]Bentley, D.R. Whole-genome re-sequencing[J]. Current opinion in genetics&development,2006,16(6):545-552.
    [44]Weber, A.P., Weber, K.L., Carr, K., et al. Sampling the Arabidopsis transcriptome with massively parallelpyrosequencing[J]. Plant physiology,2007,144(1):32-42.
    [45]Emrich, S.J., Barbazuk, W.B., Li, L., et al. Gene discovery and annotation using LCM-454transcriptomesequencing[J]. Genome Res,2007,17(1):69-73.
    [46]Cronn, R., Liston, A., Parks, M., et al. Multiplex sequencing of plant chloroplast genomes using Solexasequencing-by-synthesis technology[J]. Nucleic Acids Res,2008,36(19): e122-e122.
    [47]Handelsman, J. Metagenomics: application of genomics to uncultured microorganisms[J]. Microbiologyand Molecular Biology Reviews,2004,68(4):669-685.
    [48]Huse, S.M., Huber, J.A., Morrison, H.G., et al. Accuracy and quality of massively parallel DNApyrosequencing[J]. Genome Biol,2007,8(7): R143.
    [49]Jex, A.R., Hu, M., Littlewood, D.T.J., et al. Using454technology for long-PCR based sequencing of thecomplete mitochondrial genome from single Haemonchus contortus (Nematoda)[J]. BMC Genomics,2008,9(1):11.
    [50]Huang, S., Li, R., Zhang, Z., et al. The genome of the cucumber, Cucumis sativus L[J]. Naturegenetics,2009,41(12):1275-1281.
    [51]Wicker, T., Schlagenhauf, E., Graner, A., et al.454sequencing put to the test using the complex genome ofbarley[J]. BMC Genomics,2006,7(1):275.
    [52]Mardis, E.R. ChIP-seq: welcome to the new frontier[J]. Nature methods,2007,4(8):613-613.
    [53]Lister, R., O'Malley, R.C., Tonti-Filippini, J., et al. Highly Integrated Single-Base Resolution Maps of theEpigenome in Arabidopsis [J]. Cell,2008,133(3):523-536.
    [54]Peer, W., Bandyopadhyay, A., Blakeslee, J., et al. Variation in expression and protein localization of thePIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport inArabidopsis thaliana[J]. The Plant Cell,2004,(16):1898-1911.
    [55]Koes, R.E., Quattrocchio, F., Mol, J.N.M. The flavonoid biosynthetic pathway in plants: function andevolution[J]. BioEssays,1994,16(2):123-132.
    [56]Buer, C., Muday, G. The transparent testa4mutation prevents flavonoid synthesis and alters auxin transportand the response of Arabidopsis roots to gravity and light[J]. The Plant cell,2004,(16):1191-1205.
    [57]Buer, C., Sukumar, P., Muday, G. Ethylene modulates flavonoid accumulation and gravitropic responses inroots of Arabidopsis[J]. Plant Physiology,2006,(140):1384-1396.
    [58]Debeaujon, I., Léon-Kloosterziel, K., Koornneef, M. Influence of the testa on seed dormancy, germination,and longevity in Arabidopsis[J]. Plant Physiology,2000,(122):403-413.
    [59]Wasson, A., Pellerone, F., Mathesius, U. Silencing the flavonoid pathway in Medicago truncatula inhibitsroot nodule formation and prevents auxin transport regulation by rhizobia[J]. The Plant cell,2006,(18):1617-1629.
    [60]Treutter, D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis[J]. PlantBiology,2005,(7):581-591.
    [61]Shen, F., Weber, G. Synergistic action of quercetin and genistein in human ovarian carcinoma cells[J].Oncology research,1997,(9):597-560.
    [62]Caltagirone, S., Rossi, C., Poggi, A., et al. Flavonoids apigenin and quercetin inhibit melanoma growth andmetastatic potential[J]. Int J Cancer,2000,87(4):595-600.
    [63]Harborne, J.B., Williams, C.A. Advances in flavonoid research since1992[J]. Phytochemistry,2000,55(6):481-504.
    [64]Wang, H.K. The therapeutic potential of flavonoids[J]. Expert Opin Investig Drugs,2000,9(9):2103-2119.
    [65]Rice-Evans, C. Flavonoid antioxidants[J]. Curr Med Chem,2001,8(7):797-807.
    [66]Zhou, Y., Mi, M.T. Genistein stimulates hematopoiesis and increases survival in irradiated mice[J]. J RadiatRes (Tokyo),2005,46(4):425-433.
    [67]Zhu, G., Li, C., Cao, Z. Inhibitory effect of flavonoid baicalin on degranulation of humanpolymorphonuclear leukocytes induced by interleukin-8: potential role in periodontal diseases[J]. JEthnopharmacol,2007,109(2):325-330.
    [68]Rive-Evans, C., Miller, N. Structure-antioxidant activity relationships of flavonoids and isoflavonoids[J].1998.
    [69]Bloor, S., Falshaw, R. Covalently linked anthocyanin-flavonol pigments from blue Agapanthus flowers[J].Phytochemistry,2000,53(5):575-579.
    [70]Derksen, J., van Wezel, R., Knuiman, B., et al. Pollen tubes of flavonol-deficient Petunia show strikingalterations in wall structure leading to tube disruption[J]. Planta,1999,207(4):575-581.
    [71]Richard, A., Daneel, F. Molecules of interest genistein[J]. phytochem,2002,60205-211.
    [72]Tanner, G.J., Francki, K.T., Abrahams, S., et al. Proanthocyanidin biosynthesis in plants[J]. Journal ofBiological Chemistry,2003,278(34):31647.
    [73]Punyasiri, P., Abeysinghe, I., Kumar, V., et al. Flavonoid biosynthesis in the tea plant Camellia sinensis:properties of enzymes of the prominent epicatechin and catechin pathways[J]. Archives of Biochemistryand Biophysics,2004,431(1):22-30.
    [74]Olsen, K.M., Lea, U.S., Slimestad, R., et al. Differential expression of four Arabidopsis PAL genes; PAL1and PAL2have functional specialization in abiotic environmental-triggered flavonoid synthesis[J]. Journalof plant physiology,2008,165(14):1491-1499.
    [75]Lister, C.E., Lancaster, J.E., Walker, J.R. Phenylalanine ammonia-lyase (PAL) activity and its relationshipto anthocyanin and flavonoid levels in New Zealand-grown apple cultivars[J]. Journal of the AmericanSociety for Horticultural Science,1996,121(2):281-285.
    [76]Arakawa, O. Photoregulation of anthocyanin synthesis in apple fruit under UV-B and red light[J]. Plant andCell Physiology,1988,29(8):1385-1389.
    [77]Given, N., Venis, M., Grierson, D. Phenylalanine ammonia-lyase activity and anthocyanin synthesis inripening strawberry fruit[J]. Journal of plant physiology,1988,133.
    [78]Chapple, C. Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases[J]. Annualreview of plant biology,1998,49(1):311-343.
    [79]Ro, D.K., Mah, N., Ellis, B.E., et al. Functional characterization and subcellular localization of poplar(Populus trichocarpa×Populus deltoides) cinnamate4-hydroxylase[J]. Plant physiology,2001,126(1):317-329.
    [80]Achnine, L., Blancaflor, E.B., Rasmussen, S., et al. Colocalization of L-phenylalanine ammonia-lyase andcinnamate4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis[J]. The Plant CellOnline,2004,16(11):3098-3109.
    [81]Hamberger, B., Hahlbrock, K. The4-coumarate: CoA ligase gene family in Arabidopsis thaliana comprisesone rare, sinapate-activating and three commonly occurring isoenzymes[J]. P Natl Acad Sci USA,2004,101(7):2209-2214.
    [82]Takeuchi, A., Matsumoto, S., Hayatsu, M. Chalcone synthase from Camellia sinensis: isolation of thecDNAs and the organ-specific and sugar-responsive expression of the genes[J]. Plant and CellPhysiology,1994,35(7):1011.
    [83]Ferrer, J.-L., Jez, J.M., Bowman, M.E., et al. Structure of chalcone synthase and the molecular basis ofplant polyketide biosynthesis[J]. Nature Structural&Molecular Biology,1999,6(8):775-784.
    [84]杨俊波,田欣,李德铢,等.山茶属CHS基因家族的组成和分子进化初探[J].植物学报:英文版,2003,45(006):659-666.
    [85]Niesbach-Kl sgen, U., Barzen, E., Bernhardt, J., et al. Chalcone synthase genes in plants: a tool to studyevolutionary relationships[J]. Journal of molecular evolution,1987,26(3):213-225.
    [86]Takeuchi, A., Matsumoto, S., Hayatsu, M. Effects of shading treatment on the expression of the genes forchalcone synthase and phenylalanine ammonia-lyase in tea plant (Camellia sinensis)[J]. Bulletin of theNational Research Institute of Vegetables, Ornamental Plants and Tea. Series B.(Japan),1995.
    [87]Walter, M.H. The induction of phenylpropanoid biosynthetic enzymes by ultraviolet light or fungal elicitorin cultured parsley cells is overriden by a heat-shock treatment[J]. Planta,1989,177(1):1-8.
    [88]赵云鹏,陈发棣,郭维明.观赏植物花色基因工程研究进展[J].植物学通报,2003,20(1):51-58.
    [89]Elomaa, P., Honkanen, J., Puska, R., et al. Agrobacterium-mediated transfer of antisense chalcone synthasecDNA to Gerbera hybrida inhibits flower pigmentation[J]. Nat Biotechnol,1993,11(4):508-511.
    [90]Shimada, N., Aoki, T., Sato, S., et al. A cluster of genes encodes the two types of chalcone isomeraseinvolved in the biosynthesis of general flavonoids and legume-specific5-deoxy (iso) flavonoids in Lotusjaponicus[J]. Plant physiology,2003,131(3):941-951.
    [91]van Tunen, A.J., Hartman, S.A., Mur, L.A., et al. Regulation of chalcone flavanone isomerase (CHI) geneexpression inPetunia hybrida: the use of alternative promoters in corolla, anthers and pollen[J]. Plantmolecular biology,1989,12(5):539-551.
    [92]Muir, S.R., Collins, G.J., Robinson, S., et al. Overexpression of petunia chalcone isomerase in tomatoresults in fruit containing increased levels of flavonols[J]. Nat Biotechnol,2001,19(5):470-474.
    [93]Shen, G., Pang, Y., Wu, W., et al. Cloning and characterization of a flavanone3-hydroxylase gene fromGinkgo biloba[J]. Bioscience reports,2006,26(1):19-29.
    [94]张龙,李卫华,姜淑梅,等.花色素苷生物合成与分子调控研究进展[J].园艺学报,2008,35(6):909-916.
    [95]Owens, D.K., Crosby, K.C., Runac, J., et al. Biochemical and genetic characterization of Arabidopsisflavanone3β-hydroxylase[J]. Plant Physiology and Biochemistry,2008,46(10):833-843.
    [96]Charrier, B., Coronado, C., Kondorosi, A., et al. Molecular characterization and expression of alfalfa(Medicago sativa L.) flavanone-3-hydroxylase and dihydroflavonol-4-reductase encoding genes[J]. Plantmolecular biology,1995,29(4):773-786.
    [97]Lu, Q.N., Yang, Q. cDNA cloning and expression of anthocyanin biosynthetic genes in wild potato(Solanum pinnatisectum)[J]. African Journal of Biotechnology,2009,5(10):811-818.
    [98]Kim, S.H., Lee, J.R., Hong, S.T., et al. Molecular cloning and analysis of anthocyanin biosynthesis genespreferentially expressed in apple skin[J]. Plant Sci,2003,165(2):403-413.
    [99]Croft, K.D. The chemistry and biological effects of flavonoids and phenolic acidsa[J]. Annals of the NewYork Academy of Sciences,1998,854(1):435-442.
    [100]Meyer, P., Heidmann, I., Forkmann, G., et al. A new petunia flower colour generated by transformation ofa mutant with a maize gene[J].1987.
    [101]Tanner, G.J., Francki, K.T., Abrahams, S., et al. Proanthocyanidin biosynthesis in plants purification oflegume leucoanthocyanidin reductase and molecular cloning of its cDNA[J]. Journal of BiologicalChemistry,2003,278(34):31647-31656.
    [102]Robertson, D.S. Molecular cloning of the al locus of Zea mays using the transposable elements En andMul[J]. The EMBO journal,1985,4(4):877-882.
    [103]Petit, P., Granier, T., d'Estaintot, B.L., et al. Crystal structure of grape dihydroflavonol4-reductase, a keyenzyme in flavonoid biosynthesis[J]. Journal of molecular biology,2007,368(5):1345-1357.
    [104]李春雷,崔国新,许志茹,等.植物二氢黄酮醇4-还原酶基因的研究进展[J].生物技术通讯,2009,20(3):442-445.
    [105]Huits, H.S., Gerats, A.G., Kreike, M.M., et al. Genetic control of dihydroflavonol4‐reductase geneexpression in Petunia hybrida[J]. The Plant Journal,1994,6(3):295-310.
    [106]Nakatsuka, A., Izumi, Y., Yamagishi, M. Spatial and temporal expression of chalcone synthase anddihydroflavonol4-reductase genes in the Asiatic hybrid lily[J]. Plant Sci,2003,165(4):759-767.
    [107]Aida, R., Yoshida, K., Kondo, T., et al. Copigmentation gives bluer flowers on transgenic torenia plantswith the antisense dihydroflavonol-4-reductase gene[J]. Plant Sci,2000,160(1):49-56.
    [108]Rosati, C., Cadic, A., Duron, M., et al. Molecular characterization of the anthocyanidin synthase gene inForsythia×intermedia reveals organ-specific expression during flower development[J]. Plant Sci,1999,149(1):73-79.
    [109]Shimada, S., Inoue, Y.T., Sakuta, M. Anthocyanidin synthase in non‐anthocyanin‐producingCaryophyllales species[J]. The Plant Journal,2005,44(6):950-959.
    [110]王惠聪,黄旭明,胡桂兵,等.荔枝果皮花青苷合成与相关酶的关系研究[J].中国农业科学,2004,37(12):2028-2032.
    [111]Ju, Z., Liu, C., Yuan, Y. Activities of chalcone synthase and UDPGal: flavonoid-3-o-glycosyltransferase inrelation to anthocyanin synthesis in apple[J]. Scientia Horticulturae,1995,63(3):175-185.
    [112]Boss, P.K., Davies, C., Robinson, S.P. Expression of anthocyanin biosynthesis pathway genes in red andwhite grapes[J]. Plant molecular biology,1996,32(3):565-569.
    [113]李兴国,于泽源.花青苷的研究进展[J].北方园艺,2003,46-8.
    [114]Mol, J., Grotewold, E., Koes, R. How genes paint flowers and seeds[J]. Trends in Plant Science,1998,3(6):212-217.
    [115]Paz-Ares, J., Ghosal, D., Wienand, U., et al. The regulatory c1locus of Zea mays encodes a protein withhomology to myb proto-oncogene products and with structural similarities to transcriptional activators[J].The EMBO journal,1987,6(12):3553-3558.
    [116]Nesi, N., Jond, C., Debeaujon, I., et al. The Arabidopsis TT2gene encodes an R2R3MYB domain proteinthat acts as a key determinant for proanthocyanidin accumulation in developing seed[J]. The Plant CellOnline,2001,13(9):2099-2114.
    [117]Vom Endt, D., Kijne, J.W., Memelink, J. Transcription factors controlling plant secondary metabolism:what regulates the regulators?[J]. Phytochemistry,2002,61(2):107-114.
    [118]Tohge, T., Nishiyama, Y., Hirai, M.Y., et al. Functional genomics by integrated analysis of metabolomeand transcriptome of Arabidopsis plants over‐expressing an MYB transcription factor[J]. The PlantJournal,2005,42(2):218-235.
    [119]Bharti, A.K., Khurana, J.P. Mutants of Arabidopsis as tools to understand the regulation ofphenylpropanoid pathway and UVB protection mechanisms[J]. Photochemistry and photobiology,1997,65(5):765-776.
    [120]Christie, P.J., Alfenito, M.R., Walbot, V. Impact of low-temperature stress on general phenylpropanoid andanthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maizeseedlings[J]. Planta,1994,194(4):541-549.
    [121]Moalem-Beno, D., Tamari, G., Leitner-Dagan, Y., et al. Sugar-dependent gibberellin-induced chalconesynthase gene expression in petunia corollas[J]. Plant physiology,1997,113(2):419.
    [122]Hipskind, J., Wood, K., Nicholson, R. Localized stimulation of anthocyanin accumulation and delineationof pathogen ingress in maize genetically resistant toBipolaris maydisrace O[J]. Physiological andmolecular plant pathology,1996,49(4):247-256.
    [123]Beno-Moualem, D., Vinokur, Y., Prusky, D. Cytokinins increase epicatechin content and fungal decayresistance in avocado fruits[J]. Journal of Plant Growth Regulation,2001,20(1):95-100.
    [124]Deikman, J., Hammer, P.E. Induction of anthocyanin accumulation by cytokinins in Arabidopsisthaliana[J]. Plant physiology,1995,108(1):47-57.
    [125]Jiang, C., Gao, X., Liao, L., et al. Phosphate starvation root architecture and anthocyanin accumulationresponses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis[J]. Plantphysiology,2007,145(4):1460-1470.
    [126]Woltering, E., Somhorst, D. Regulation of anthocyanin synthesis in Cymbidium flowers: effects ofemasculation and ethylene[J]. Journal of plant physiology,1990,136(3):295-299.
    [127]Gollop, R., Even, S., Colova‐Tsolova, V., et al. Expression of the grape dihydroflavonol reductase geneand analysis of its promoter region[J]. Journal of Experimental Botany,2002,53(373):1397.
    [128]Gollop, R., Farhi, S., Perl, A. Regulation of the leucoanthocyanidin dioxygenase gene expression in Vitisvinifera[J]. Plant Sci,2001,161(3):579-588.
    [129]Lloyd, J.C., Zakhleniuk, O.V. Responses of primary and secondary metabolism to sugar accumulationrevealed by microarray expression analysis of the Arabidopsis mutant, pho3[J]. Journal of ExperimentalBotany,2004,55(400):1221.
    [130]Buchanan, B.B., Gruissem, W., Jones, R.L. Biochemistry and molecular biology of plants[M]. AmericanSociety of Plant Physiologists,2000.
    [131]Schulte, W., T pfer, R., Stracke, R., et al. Multi-functional acetyl-CoA carboxylase from Brassica napus isencoded by a multi-gene family: indication for plastidic localization of at least one isoform[J].Proceedings of the National Academy of Sciences,1997,94(7):3465.
    [132]Shorrosh, B.S., Roesler, K.R., Shintani, D., et al. Structural analysis, plastid localization, and expressionof the biotin carboxylase subunit of acetyl-coenzyme A carboxylase from tobacco[J]. Plantphysiology,1995,108(2):805.
    [133]Schulte, W., Schell, J., T pfer, R. A gene encoding acetyl-coenzyme A carboxylase from Brassica napus[J].Plant physiology,1994,106(2):793.
    [134]Page, R.A., Okada, S., Harwood, J.L. Acetyl-CoA carboxylase exerts strong flux control over lipidsynthesis in plants[J]. Biochim Biophys Acta,1994,1210(3):369-372.
    [135]Post-Beittenmiller, D., Roughan, G., Ohlrogge, J.B. Regulation of plant Fatty Acid biosynthesis: analysisof acyl-coenzyme a and acyl-acyl carrier protein substrate pools in spinach and pea chloroplasts[J]. PlantPhysiol,1992,100(2):923-930.
    [136]Roesler, K., Shintani, D., Savage, L., et al. Targeting of the Arabidopsis homomeric acetyl-coenzyme Acarboxylase to plastids of rapeseeds[J]. Plant Physiol,1997,113(1):75-81.
    [137]Madoka, Y., Tomizawa, K.I., Mizoi, J., et al. Chloroplast transformation with modified accD operonincreases acetyl-CoA carboxylase and causes extension of leaf longevity and increase in seed yield intobacco[J]. Plant and Cell Physiology,2002,43(12):1518.
    [138]王镜岩,朱圣庚,徐长法.生物化学[M].高等教育出版社,北京,2002.
    [139]Hlousek-Radojcic, A., Post-Beittenmiller, D., Ohlrogge, J.B. Expression of constitutive and tissue-specificacyl carrier protein isoforms in Arabidopsis[J]. Plant Physiol,1992,98(1):206-214.
    [140]Bonaventure, G., Ohlrogge, J.B. Differential regulation of mRNA levels of acyl carrier protein isoforms inArabidopsis[J]. Plant Physiol,2002,128(1):223-235.
    [141]Siggaard-Andersen, M., Kauppinen, S., von Wettstein-Knowles, P. Primary structure of acerulenin-binding beta-ketoacyl-[acyl carrier protein] synthase from barley chloroplasts[J]. Proc Natl AcadSci U S A,1991,88(10):4114-4118.
    [142]Slabas, A.R., Fawcett, T. The biochemistry and molecular biology of plant lipid biosynthesis[J]. Plant MolBiol,1992,19(1):169-191.
    [143]Reith, M. A beta-ketoacyl-acyl carrier protein synthase III gene (fabH) is encoded on the chloroplastgenome of the red alga Porphyra umbilicalis[J]. Plant Mol Biol,1993,21(1):185-189.
    [144]Dehesh, K., Tai, H., Edwards, P., et al. Overexpression of3-ketoacyl-acyl-carrier protein synthase IIIs inplants reduces the rate of lipid synthesis[J]. Plant Physiol,2001,125(2):1103-1114.
    [145]蔡双莲,李敏.多不饱和脂肪酸的研究进展[J].生命科学研究,2003,(04):289-292.
    [146]Damude, H.G., Zhang, H., Farrall, L., et al. Identification of bifunctional delta12/omega3fatty aciddesaturases for improving the ratio of omega3to omega6fatty acids in microbes and plants[J]. Proc NatlAcad Sci U S A,2006,103(25):9446-9451.
    [147]Taylor Mark, A., Arif Siti, A. Mad, Pearce Stephen R, Davies Howard V, Kumar Amar, George Lesley A.Differential Expression and Sequence Analysis of Ribosomal Protein Genes Induced in Stolon Tips ofPotato (Solanum tuberosum L.) during the Early Stages of Tuberization[J]. Plant Physiol,1992,100(3):1171-1176.
    [148]Knutzon, D.S., Thompson, G.A., Radke, S.E., et al. Modification of Brassica seed oil by antisenseexpression of a stearoyl-acyl carrier protein desaturase gene[J]. Proceedings of the National Academy ofSciences,1992,89(7):2624.
    [149]Hornung, E., Pernstich, C., Feussner, I. Formation of conjugated Delta11Delta13-double bonds byDelta12-linoleic acid (1,4)-acyl-lipid-desaturase in pomegranate seeds[J]. Eur J Biochem,2002,269(19):4852-4859.
    [150]Pirtle, I.L., Kongcharoensuntorn, W., Nampaisansuk, M., et al. Molecular cloning and functionalexpression of the gene for a cotton Delta-12fatty acid desaturase (FAD2)[J]. Biochim Biophys Acta,2001,1522(2):122-129.
    [151]Heppard, E.P., Kinney, A.J., Stecca, K.L., et al. Developmental and growth temperature regulation of twodifferent microsomal omega-6desaturase genes in soybeans[J]. Plant Physiol,1996,110(1):311-319.
    [152]Dyer, J.M., Chapital, D.C., Kuan, J.C., et al. Molecular analysis of a bifunctional fatty acidconjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity[J]. PlantPhysiol,2002,130(4):2027-2038.
    [153]Iba, K., Gibson, S., Nishiuchi, T., et al. A gene encoding a chloroplast omega-3fatty acid desaturasecomplements alterations in fatty acid desaturation and chloroplast copy number of the fad7mutant ofArabidopsis thaliana[J]. Journal of Biological Chemistry,1993,268(32):24099-24105.
    [154]何东平.中国植物油料油脂加工科技发展探讨[J].粮食科技与经济,2004,(3):35-37.
    [155]林平,姜玉梅,陈瑛.几种油料作物中脂肪酸组成的研究及探讨[J].江西科学,2000,18(2):116-119.
    [156]李晓丹,肖玲,吴刚,等.芝麻种子发育过程中脂肪酸积累模式的研究[J].中国油料作物学报,2008,30(1):84-89.
    [157]李晓丹,曹应龙,胡亚平,等.花生种子发育过程中脂肪酸累积模式研究[J].中国油料作物学报,2009,31(2):157r162.
    [158]Berardini, T.Z., Mundodi, S., Reiser, L., et al. Functional annotation of the Arabidopsis genome usingcontrolled vocabularies[J]. Plant physiology,2004,135(2):745-755.
    [159]谭晓风,胡芳名,谢禄山,等.油茶种子EST文库构建及主要表达基因的分析[J].林业科学,2006,42(001):43-48.
    [160]Clegg, M.T., Durbin, M.L. Flower color variation: a model for the experimental study of evolution[J].Proceedings of the National Academy of Sciences,2000,97(13):7016-7023.
    [161]Johnson, E.T., Yi, H., Shin, B., et al. Cymbidium hybrida dihydroflavonol4‐reductase does notefficiently reduce dihydrokaempferol to produce orange pelargonidin‐type anthocyanins[J]. The PlantJournal,1999,19(1):81-85.
    [162]Johnson, E.T., Ryu, S., Yi, H., et al. Alteration of a single amino acid changes the substrate specificity ofdihydroflavonol4‐reductase[J]. The Plant Journal,2001,25(3):325-333.
    [163]Prescott, A.G., John, P. Dioxygenases: molecular structure and role in plant metabolism[J]. Annual reviewof plant biology,1996,47(1):245-271.
    [164]Forkmann, G. Biosynthesis of flavonoids[J].1993.
    [165]Winkel-Shirley, B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, andbiotechnology[J]. Plant physiology,2001,126(2):485-493.
    [166]Holton, T.A., Cornish, E.C. Genetics and biochemistry of anthocyanin biosynthesis[J]. The Plant cell,1995,7(7):1071.
    [167]Farzad, M., Griesbach, R., Hammond, J., et al. Differential expression of three key anthocyaninbiosynthetic genes in a color-changing flower, Viola cornuta cv. Yesterday, Today and Tomorrow[J]. PlantSci,2003,165(6):1333-1342.
    [168]Nakatsuka, T., Nishihara, M., Mishiba, K., et al. Temporal expression of flavonoid biosynthesis-relatedgenes regulates flower pigmentation in gentian plants[J]. Plant Sci,2005,168(5):1309-1318.
    [169]Nakatsuka, A., Mizuta, D., Kii, Y., et al. Isolation and expression analysis of flavonoid biosynthesis genesin evergreen azalea[J]. Scientia Horticulturae,2008,118(4):314-320.
    [170]Hasegawa, H., Fukasawa-Akada, T., Okuno, T., et al. Anthocyanin accumulation and related geneexpression in Japanese parsley (Oenanthe stolonifera, DC.) induced by low temperature[J]. Journal ofplant physiology,2001,158(1):71-78.
    [171]Pang, Y., Shen, G., Wu, W., et al. Characterization and expression of chalcone synthase gene from Ginkgobiloba[J]. Plant Sci,2005,168(6):1525-1531.
    [172]卢善发.植物脂肪酸的生物合成与基因工程[J].植物学通报,2000,17(6):481-491.
    [173]邬贤梦,官春云,李栒.油菜脂肪酸品质改良的研究进展[J].作物研究,2003,17(3):152-158.
    [174]Somerville, C. Plant lipids: metabolism, mutants, and membranes[J]. Science,1991,252(5002):80-87.
    [175]郭华,谭惠元,周建平.红花油茶果的主要成分及其种子油的脂肪酸组成测定[J].浙江大学学报:农业与生命科学版,2010,36(006):662-669.
    [176]Zhang, Y. I-TASSER server for protein3D structure prediction[J]. BMC bioinformatics,2008,9(1):40.
    [177]Holm, L., Park, J. DaliLite workbench for protein structure comparison[J]. Bioinformatics,2000,16(6):566-567.
    [178]Alban, C., Baldet, P., Douce, R. Localization and characterization of two structurally different forms ofacetyl-CoA carboxylase in young pea leaves, of which one is sensitive to aryloxyphenoxypropionateherbicides[J]. Biochemical Journal,1994,300(Pt2):557.
    [179]Lassner, M.W., Lardizabal, K., Metz, J.G. A jojoba beta-Ketoacyl-CoA synthase cDNA complements thecanola fatty acid elongation mutation in transgenic plants[J]. The Plant Cell Online,1996,8(2):281-292.
    [180]Shorrosh, B.S., Roesler, K.R., Shintani, D., et al. Structural analysis, plastid localization, and expressionof the biotin carboxylase subunit of acetyl-coenzyme A carboxylase from tobacco[J]. Plantphysiology,1995,108(2):805-812.
    [181]Schulte, W., T pfer, R., Stracke, R., et al. Multi-functional acetyl-CoA carboxylase from Brassica napus isencoded by a multi-gene family: indication for plastidic localization of at least one isoform[J].Proceedings of the National Academy of Sciences,1997,94(7):3465-3470.
    [182]罗佳,周建平,谭惠元.红花油茶的主要成分分析[J].现代食品科技,2010,(001):109-113.
    [183]何东平.中国植物油料油脂加工科技发展探讨[J].粮食科技与经济,2004,335-37.
    [184]戴晓峰.2006.油菜脂肪酸合成关键基因的克隆与脂肪酸积累模式研究.武汉:中国农业科学院硕士学位论文.
    [185]Baud, S., Boutin, J.-P., Miquel, M., et al. An integrated overview of seed development in Arabidopsisthaliana ecotype WS[J]. Plant Physiology and Biochemistry,2002,40(2):151-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700