有机酸尿症临床及实验室研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     有机酸尿症(organic aciduria)又称有机酸血症(organic acidemia),是儿童遗传代谢性疾病中较常见的病种,目前已发现50余种。有机酸尿症临床表现复杂多样,多导致严重神经系统损害,给家庭和社会带来沉重的负担。气相色谱/质谱联用(gas chromatography/mass spectrometry, GC/MS)尿有机酸分析是确诊有机酸尿症的有效方法。早期诊断、早期治疗可有效改善预后。但由于条件限制,目前此类疾病不能进行全面筛查,所以熟悉有机酸尿症临床和实验室特征是及时进行GC/MS尿有机酸分析、早期诊断及合理治疗的前提及关键,从而为降低患儿致残率、改善生活质量奠定基础。
     方法:
     对26例甲基丙二酸尿症(methylmalonic acaduria, MMA)、5例戊二酸尿症Ⅰ型(glutaric acaduria type I,GA1)、4例丙酸血症(propionic academia,PA)共35例有机酸尿症患儿就发病年龄、起病方式、临床表现、家族史、既往史、诊断和鉴别诊断、治疗及预后等临床特征进行分析;同时分析患儿血液生化、气相色谱/质谱联用尿有机酸、影像学、脑电图及脑干电测听等实验室检查。
     结果:
     1 35例患儿中22例1岁前发病,平均发病年龄8个月。
     2 28例患儿急性起病,其中24例发病前有感染或高蛋白饮食。
     3主要临床表现:精神运动发育或智力落后26例,其中精神运动发育倒退5例。有间断呕吐病史18例,喂养困难16例,伴有抽搐12例,呼吸急促9例,发作性嗜睡8例,面色苍白8例,肌张力减低8例,肌张力增高7例,营养不良6例,意识障碍6例,共济失调5例,锥体外系症状5例,大头畸形5例(均为戊二酸尿症Ⅰ型),消化道出血3例,瘫痪2例。
     4 18例患儿既往被当地医院诊断为“胃肠炎、胰腺炎、脱水”,“脑积水”,“脑炎”,“脑瘫”,“蛛网膜囊肿”。
     5 12例患儿有母亲不明原因流产、死胎史,同胞死亡史,精神运动发育落后或智力低下等异常家族史。
     6实验室检查:全部患儿气相色谱/质谱联用(GC/MS)尿有机酸分析异常。35例患儿中,代谢性酸中毒25例,贫血12例,乳酸增高11例,肝功能异常10例,高氨血症6例,肾功能异常6例,粒细胞减少5例,血小板减少4例。头颅MRI检查30例,均异常,表现为脑外间隙增宽28例,脑室增宽24例,髓鞘发育延迟16例,基底节异常信号12例,硬膜下积液6例,颅内出血3例。脑电图检查35例,异常25例,表现为背景慢活动增多、癫痫样放电。脑干电测听检查15例,异常9例,表现为外周或脑干段异常,听阈升高。
     7治疗及预后:急性期主要是改善内环境、保证热量、控制感染、惊厥。30例患儿接受长期治疗,包括低蛋白饮食、左旋肉碱、维生素B2、维生素B12治疗,随访1月~5年,18例精神运动发育明显好转,3例仍有抽搐发作,1例死亡。5例失访。
     结论:
     有机酸尿症临床表现复杂多样,多数1岁内急性起病,诱因多为感染、高蛋白饮食,其临床表现及实验室特征为精神运动发育落后或倒退、呕吐、喂养困难、肌张力异常、惊厥、锥体外系症状、代谢性酸中毒、高氨血症、肝功能异常、贫血等,多导致严重神经系统损害。头影像学、普通血生化检查可提供有价值的诊断线索,对于原因不明的智力运动障碍、惊厥、代谢异常等患儿应及早进行GC/MS尿有机酸检查。早期诊断、早期治疗是改善预后的关键。
Objective
     Organic aciduria, also called organic acidemia, is the most frequent inherited metabolic disease among children. So far, more than 50 types of organic acidemias have been found. With complicated and diverse clinical manifestations, most of organic acidemias impair the nervous system seriously and bring heavy burden to the family and society. GC/MS is a very useful method for the screening and diagnosis for organic acidemias. Early diagnosis and adequate treatment contribute a lot to improve the neurological prognosis of the patients. However, due to constraints, we can not present a comprehensive screening of organic acidurias, so getting familiar with the clinical and laboratory characteristics of organic acidurias is premise and key to the timely GC/MS, early diagnosis and proper treatment, so as to lay the foundation of reducing the disability rate of children and also improving life quality.
     Methods
     A total of 35 cases of organic aciduria children (including 26 cases of methyl-malonic aciduria,5 cases of glutaric aciduria type I and 4 cases of propionic acidemia) were analyzed with a series of clinical characteristics including onset age, type of onset, clinical manifestations, family history, past history, diagnosis and differential diagnosis, treatment and prognosis; Also biochemistry examination, urinary organic acids detected by gas chromatography/mass spectrometry(GC/MS), imaging, EEG and BAEP were analyzed.
     Results
     1.22 cases of children precipitated before first year of life, and the average onset age is 8 months.
     2.28 patients had gone through acute onset,24 cases of which had infection or high-protein diet before onset.
     3. The main clinical manifestations are:psychomotor development or mental retardation (n=26), psychomotor development back(n=5), a history of intermittent vomiting(n=18), feeding difficulties (n=16), seizures (n=12), shortness of breath (n=9), attacks of drowsiness (n=8), pale (n=8), muscle tension reducing(n=8), muscular hypertonia (n=7), malnutrition(n=6), disturbance of consciousness(n=6), ataxia(n=5), extrapyramidal symptoms(n=5), abnormal bigness of the head in 5 cases (all of them are glutaric aciduria type I), gastrointestinal bleeding (n=3) and paralysis(n=2).
     4.18 cases of children were once diagnosed as"gastroenteritis, pancreatitis, dehydration, hydrocephalus, encephalitis, cerebral palsy or arachnoid cyst" by local hospitals.
     5. Mothers of 12 patients had unexplained miscarriage, stillbirth history, siblings death history psychomotor retardation, or family history of mental retardation and other abnormalities.
     6. Laboratory examination:the urinary organic acids of all patients analyzed by gas chromatography/mass spectrometry were presented abnormalities. Abnormal biochemistry examination including:metabolic acidosis (n=25), anemia(n=12), lactic acid increased (n=11), liver dysfunction (n=10). hyperammonemia (n=6), renal dysfunction (n=6), neutropenia (n=5), thrombocytopenia(n=4). Abnormal cranial MRI examination of 30 cases including:brain extracellular space widened (n=28), ventricles widened (n=24), delayed myelination (n=16), abnormal signal in basal ganglia (n=12), subdural effusion (n=6), intracranial bleeding (n=3). The EEG showed that a 25 of total presented slow activity.spike and slowly discharge. The BAEP showed that 9 cases in 20 presented abnormalities in section of the peripheral or brain stem, and increased hearing threshold.
     7. Treatment and prognosis:during the acute phase, improving the internal environment, guaranteeing the heat, controlling infection and convulsions are essential.30 cases of children, followed up for 1 month to 5 years, accepted long-term treatment including the low-protein diet, carnitine, vitamin B2, vitamin B12 treatment,18 cases showed significant improvement in psychomotor development; 3 cases are still with convulsion; 1 patient died and 5 cases withdrew.
     Conclusion
     With complicated and diverse clinical manifestations, most patients of organic acidemias have acute onset with inducements of infection and high-protein diet. The clinical and laboratory features of organic acidemias are psychomotor retardation or regression, vomiting, feeding difficulties, abnormal muscle tone, convulsions, extrapyramidal symptoms, metabolic acidosis, hyperammonemia, abnormal liver function, anemia etc. Organic acidemia can cause serious neurological damage. Cephalometry and blood biochemical tests can provide valuable diagnostic clues,, those who had unknown-reasoned intellectual and movement disorders, seizures and metabolic abnormalities shall be carried GC/MS examination of urine organic acids early. Early diagnosis and adequate treatment contribute a lot to improve the neurological prognosis of the patients.
引文
[1]山口清次,清水信雄,渡边宏雄,等.有机酸代谢异常症の发症时期と预后[J].日本小儿科学会志,1992,96:1058-1064.
    [2]Rezvani I, Rosenblatt DS. Valine, leucine, isoleucine, and related organic acidemias. In:Behrman RE, Kliegman RM, Jenson HB. Nelson textbook of pediatrics[M].16th edition. Singapore:Harccourt Publishers Limited,2000: 354-362.
    [3]Swaiman KF. Pediatric neurology-principle & practice[M].3th edition. St. Louis:Mosby Inc,1999:377-410.
    [4]杨艳玲.有机酸代谢病.见:吴希如,林庆.小儿神经系统疾病基础与临床[M].第2版.北京:人民卫生版社,2009:627-631.
    [5]William LN, Pinar TO. Methylmalonic acidemia. In:Atlas of Metabolic Diseases [M]. Spain: Chapman & Hall Medical,1998,13-23.
    [6]Fenton WA, Gravel RA, Rosenblatt DS. Disorders of propionate and methylmalonate metabolism.In: Scriver CR, Beaudet AL, Sly WS, et al. The metabolic and molecular basis of inherited disease [M].8th edition.NewYork:Me Graw Hill 2001:2165-2193.
    [7]Brorke Monsen AL,Ueland PM, Vollset SE, et al. Determinants of cobalamin status in newborns[J]. Pediatrics,2001,108(3):624-630.
    [8]Heinemann MK, Tomaske M, Trefz FK, et al. Ventricular septal defect closure in a neonate with combined methylmalonic aciduria/homocystinuria [J]. Ann Thorac Surg,2001,72(4):1391-1392.
    [9]罗小平.有机酸代谢障碍.见:左启华主编,小儿神经系统疾病[M].第2版.北京:人民卫生出版社,2003:484-487.
    [10]Watkins D, Matiaszuk N, Rosenblatt DS. Complementation studies in the CblA class of inborn error of Cobalamin metabolism:evidence for interallelic complementation and for a new complementation class(CblH). J. Med. Genet.2000 (37):510-513.
    [11]Campeau E, Desviat LR, Leclerc D, et al. Structure of the PCCA gene and distribution of mutations causing propionic acidemia[J]. Mol Genet Metab, 2001,74(1-2):238-247.
    [12]Yang X, Sakamoto O, Matsubara Y, et al. Mutation spectrum of the PCCA and PCCB genes in Japanese patients with propionic acidemia[J]. Mol Genet Metab, 2004,81(4):335-342.
    [13]Perez B, Desviat LR, Rodriguez-Pombo P, et al. Propionic acidemia: Identification of twenty-four novel mutations in Europe and North America[J]. Mol Genet Metab,2003,78(1):59-67.
    [14]Yorifuji T, Kawai M, Muroi J, et al. Unexpectedly high prevalence of the mild form of propionic acidemia in Japan:Presence of a common mutation and possible clinical implications[J]. Hum Genet,2002,111(2):161-165.
    [15]Kim SN, Ryu KH, Lee EH, et al. Molecular analysis of PCCB gene in Korean patients with propionic acidemia[J]. Mol Genet Metab,2002,77(3): 209-216.
    [16]Greenberg CR, Duncan AM, Gregory CA, et al. Assignment of human glutaryl-CoA dehydrogenase gene (GCDH) to the short arm of chromosome 19(19p13.2)by in situ hybridization and somatic cell hybrid analysis [J]. Genomics, 1994,21(1):289-290.
    [17]Van der Watt G, Owen EP, Berman P. et al. Glutaric aciduria type 1 in South Africa-high incidence of glutaryl-CoA dehydrogenase deficiency in black South Africans[J]. Mol Genet Metab.2010,101(2-3):178-82.
    [18]Park JD, Lim B, Kim KJ, et al. Glutaric aciduria type 1 in Korea: report of two novel mutations[J]. J Korean Med Sci.2010,25(6):957-60.
    [19]Korman SH, J akobs C, Darmin PS, et al. Glutaric aciduria type 1: clinical, biochemical and molecular findings in patients from Israel [J]. Eur J Paediatr Neurol,2007,11 (2):81-89.
    [20]Ledley FD,Levy HL,Shihve,et al. Benign methylmalonic aciduria[J].New Engl J Med,1984,311:1015.
    [21]杨艳玲,张月华,山口清次等.六例丙酸血症的诊断和治疗分析[J].中华儿科杂志,2001,39(3):170-171.
    [22]Strauss KA, Puffenberger EG, Robinson DL, et al. Type Ⅰ glutaric aciduria, part 1:natural history of 77 patients[J]. Am J Med Genet C Semin Med Genet, 2003,15,121C(1):38-52.
    [23]Gitiaux C, Roze E, Kinugawa K, et al. Spectrum of movement disorders associated with glutaric aciduria type 1:a study of 16 patients[J]. Mov Disord.2008, 23(16):2392-2397.
    [24]丁一峰,顾学范.气相色谱-质谱联用技术在医学检验中的应用进展[J].国际检验医学杂志,2009,30(2):135-136.
    [25]钱宁,杨艳玲.有机酸代谢障碍的研究进展[J].中国优生与遗传杂志,2003,11(4):6-8.
    [26]黄尚志.遗传病的生化与分子诊断和遗传咨询.见:吴希如,林庆.小儿神经系统疾病基础与临床[M].第2版.北京:人民卫生版社,2009:114-116.
    [27]陈娟,李玉华.儿童有机酸代谢性疾病的神经影像学研究进展[J].国际医学放射学杂志,2008.,31(2):99-101.
    [28]Deodato F,Boenzi S, Santoreli FM,et al. Methylmalonic and propionic aciduria [J]. Am J Med Genet C Semin Med Genet,2006,142 (2):104-112.
    [29]Trinh BC,Melhem ER,Barker PB.Multi-slice proton MR spectroscopy and diffusion- weighted imaging in methylmalonic acidemia: report of two cases and review of the literature[J].AJNR,2001,22(5):831-833.
    [30]Michel SJ,Given CA 2nd, Robertson WC Jr.Imaging of the brain,including diffusion-weighted imaging in methylmalonic acidemia[J].Pediatr Radiol,2004, 34(7):580-582.
    [31]刘丽英,邹丽萍,王旭,等.戊二酸尿症Ⅰ型11例诊断及治疗分析[J].临床儿科杂志,2009,27(12):1115-1117.
    [32]Bishop FS, Liu JK, McCall TD, et al. Glutaric aciduria type 1 presenting as bilateral subdural hematomas mimicking nonaccidental trauma. Case report and review of the literature[J]. J Neurosurg.2007,106(3 Suppl):222-226.
    [33]Georg F. Hoffmann, William L. Nyhan, Johannes Zschocke, et al.Organic Acid Analysis:Approach to the Diagnosis of Organic Acidurias. In:Inherited Metabolic Diseases [M]. Philadelphia:Lippincott Williams & Wilkins.,2002:319-327.
    [34]Elia M. Oral or parenteral therapy for B12 deficiency [J]. Lancet,1998,352 (9142):1721-1722.
    [35]钱宁,侯新琳,杨艳玲等.母亲维生素B12缺乏导致婴儿继发性甲基丙二酸 尿症的诊断与治疗分析[J].中华围产医学杂志,2005,8(3):179-182.
    [36]王益超.有机酸尿症43例误诊为小儿脑瘫分析[J].临床误诊误治,2008,,21(11):53-55.
    [37]Chalmers RA:Disorders of Organic Acid Metabolism. The Inherited Metabolic Diseases[M]. London:ChuchiIl livingstone,1987:141-214.
    [38]Johannes Zschocke, Georg F. Hoffmann. Classical Organic Acidurias, In: Vademecum Metabolicum (Manual of Metabolic Paediatrics) [M]. New York:Stuttgart, 1999:42-44.
    [39]高柳正树.有机酸血症の食事疗法[J],小儿内科,1994,26(增刊号):126-131.
    [40]杨艳玲,张月华,袁向东,等.甲基丙二酸血症的诊断与治疗分析[J].中华围产杂志,2000,1:30-32.
    [41]Ogier de Baulny H, Saudubray JM. Branched-chain organic acidurias[J]. Semin Neonatol,2002,7:65-74.
    [42]杨艳玲,山口清次,田上泰子,等.有机酸尿症71例临床分析[J].北京大学学报医学版,2002,34(3):214-218.
    [1]山口清次,清水信雄,渡边宏雄,等.有机酸代谢异常症の发症时期と预后[J].日本小儿科学会志,1992,96:1058-1064.
    [2]Rezvani I, Rosenblatt DS. Valine, leucine, isoleucine, and related organic acidemias[A]. In:Behrman RE, Kliegman RM, Jenson HB. Nelson textbook of pediatrics[M].16th edition. Singapore:Harccourt Publishers Limited,2000: 354-362.
    [3]Swaiman KF. Pediatric neurology-principle & practice[M].3th edition. St. Louis:Mosby Inc,1999:377-410.
    [4]杨艳玲.有机酸代谢病[A].见:吴希如,林庆.小儿神经系统疾病基础与临床 [M].第2版.北京:人民卫生出版社.2009.627-628.
    [5]罗小平.有机酸代谢障碍[A].见:左启华.小儿神经系统疾病[M].第2版.北京:人民卫生出版社,2003,484-487.
    [6]Watkins D, Matiaszuk N, Rosenblatt DS. Complementation studies in the CblA class of inborn error of Cobalamin metabolism:evidence for interallelic complementation and for a new complementation class(CblH) [J]. Med.Genet.2000, 37:510-513.
    [7]张尧,宋金青,刘平,等.甲基丙二酸尿症合并同型半胱氨酸血症57例临床分析[J].中华儿科杂志,2007,45:513-517.
    [8]胡宇慧,韩连书.甲基丙二酸血症基因突变和发病机制的研究进展[J].国际儿科学杂志,2007,34:364-367.
    [9]Acquaviva C, Benoist JF, Pereira S, et al. Molecular basis of methylmalonyl-CoAmutase apoenzyme defect in 40 European patients affected by mut0 and mut" forms of methylmalonic acidemia:identification of 29 novel mutation in the MUT gene[J]. Hum Mutat,2005,25:167-176.
    [10]Junga JW, Hwangb IT, Parka JE, et al. Mutation analysis of the MCM gene in Korean patients with MMA[J]. Mol Genet Metab,2005,84:367-370.
    [11]Worgan LC, Niles K, Tirone JC. Spectrum of Mutations in mut Methylmalonic Acidemia and Identification of a Common Hispanic Mutation and Haplotype[J] Hum Mutat,2006,27:31-43.
    [12]Dobson CM, Wai T, Leclerc D, Wilson A, et al. Identification of the gene responsible for the cblA complementation group of vitamin B12-responsive methylmalonic acidemia based on analysis of prokaryotic gene arrangements [J]. Proc Natl AcadSci USA,2002,99:15554-15559.
    [13]Lerner-Ellis JP, Dobson CM, Wai T, et al. Mutations in the MMAA gene in patients with the cblA disorder of vitamin B12 metabolism[J]. Hum Mutat,2004, 24:509-516.
    [14]Martinez MA, Rincon A, Desviat LR, et al. Genetic analysis of three genes causing isolated methylmalonic acidemia:identification of 21 novel allelic variants[J]. Mol Genet Metab,2005,84:317-325.
    [15]Yang X, Sakamoto O, Matsubara Y, et al. Mutation analysis of the MMAA and MMAB genes in Japanese patients with vitamin B12-responsive methylmalonic acidemia:identification of a prevalent MMAA mutation[J]. Mol Genet Metab, 2004,82:329-333.
    [16]Dobson CM, Wai T, Leclerc D, et al. Identification of the gene responsible for the cblB complementation group of vitamin B12-dependent methylmalonic aciduria[J]. Hum Mol Genet,2002,11:3361-3369.
    [17]Lerner-Ellis JP, Gradinger AB, Watkins D, et al. Mutation and biochemical analysis of patients belonging to the cbl B complementation class of vitamin B12-dependent methylmalonic aciduria[J]. Mol Genet Metab,2006,87:219-225.
    [18]常会波,吴建新,刘哲伟,等.甲基丙二酸血症患儿mut基因两个新遗传突变的发现和鉴证[J].中华神经科杂志,2006,39:742-744.
    [19]Lerner-Ellis JP, Tirone JC, Pawelek PD, et al. Identification of the gene responsible for methylmalonic aciduria and homocystinuria, cbl C type[J]. Nat Genet, 2006,38:93-100.
    [20]Coelho D, Suormala T, Stucki M. et al. Gene identification for the cblD defect of vitamin B12 metabolism[J]. N Engl J Med,2008,358:1454-1464.
    [21]Rutsch F, Gailus S, Miousse IR, et al. Identification of a putative lysosomal cobalamin exporter altered in the cbl F defect of vitamin B12 metabolism[J]. Nat Genet.2009,41:234-239.
    [22]William LN, Pinar TO. Methylmalonic acidemia. In:Atlas of Metabolic Diseases[M]. Spain:Chapman & Hall Medical,1998:13-23.
    [23]Elia M. Oral or parenteral therapy for B12 deficiency[J]. Lancet.1998, 352(9142):1721-1722.
    [24]Brorke Monsen AL,Ueland PM, Vollset SE, et al. Determinants of cobalamin status in newborns[J]. Pediatrics,2001,108(3):624-630.
    [25]Heinemann MK, Tomaske M, Trefz FK, et al. Ventricular septal defect closure in a neonate with combined methylmalonic aciduria/homocystinuria [J]. Ann Thorac Surg,2001,72(4):1391-1392.
    [26]CampeauE, Desviat LR, Leclerc D, et al. Structure of the PCCA gene and distribution of mutations causing propionic acidemia[J]. Mol Genet Metab, 2001,74(1-2):238-247.
    [27]Yang X, Sakamoto O, Matsubara Y, et al. Mutation spectrum of the PCCA and PCCB genes in Japanese patients with propionic acidemia[J]. Mol Genet Metab, 2004,81(4):335-342.
    [28]Perez B, Desviat LR, Rodriguez-Pombo P, et al. Propionic acidemia: Identification of twenty-four novel mutations in Europe and North America[J]. Mol Genet Metab,2003,78(1):59-67.
    [29]Yorifuji T, Kawai M, Muroi J, et al. Unexpectedly high prevalence of the mild form of propionic acidemia in Japan:Presence of a common mutation and possible clinical implications[J]. Hum Genet,2002,111(2):161-165.
    [30]Kim SN, Ryu KH, Lee EH, et al. Molecular analysis of PCCB gene in Korean patients with propionic acidemia[J]. Mol Genet Metab,2002,77(3).-209-216.
    [31]Greenberg CR, Duncan AM, Gregory CA, et al.. Assignment of human glutaryl-CoA dehydrogenase gene (GCDH) to the short arm of chromosome 19(19p13.2)by in situ hybridization and somatic cell hybrid analysis [J]. Genomics, 1994,21(1):289-290.
    [32]Kafil-Hussain NA, Monavari A, Bowell R, et al. Ocular findings in glutaric type 1 [J]. J Pediatr Ophthalmol Strabismus,2000,37 (5):289-293.
    [33]Van der Watt G, Owen EP, Berman P, et al. Glutaric aciduria type 1 in South Africa-high incidence of glutaryl-CoA dehydrogenase deficiency in black South Africans[J]. Mol Genet Metab.2010,101(2-3):178-82.
    [34]Park JD, Lim B, Kim KJ. et al. Glutaric aciduria type 1 in Korea:report of two novel mutations[J]. J Korean Med Sci.2010,25(6):957-60.
    [35]Korman SH, J akobs C, Darmin PS, et al. Glutaric aciduria type 1 clinical, biochemical and molecular findings in patients from Israel [J]. Eur J Paediatr Neurol,2007,11 (2):81-89.
    [36]Fenton WA, Gravel RA, Rosenblatt DS. Disorders of propionate and methylmalonate metabolism[A].In:Scriver CR, Beaudet AL, Sly WS, et al. The metabolic and molecular basis of inherited disease[M].8th edition.NewYork:Me Graw-Hill,2001.2165-2193.
    [37]Kenneth F, Swaiman. Aminoacidopathies and Organic Acidemias Resulting from Deficiency of Enzyme Activity and Transport Abnomalities.Pediatric Neurology.Principle & Practice[M].3th edition.Mosby,Inc.1999:377-410.
    [38]Wajner M, Coelho JC. Neurological dysfunction in methylmalonic acidaemia is probably related to the inhibitory efect of methylmalonate on brain energy production[J]. J Innher Metab Dis.1997,20(6):761-768.
    [39]Roehrs C, Garrido-sanabria ER, Siliva AC, et al. Succinate Increases neuronal post-synaptic excitatory potentials in vitro and induces convulsive behavior through N-methyl-D-aspartate-mediated mechanism [J].Neuroscience,2004,125(4):965-971.
    [40]Saad LO,Mirandola SR,Maciel EN.et al.Lactate dehydorgenase activity is inhibited by methylmalonate in vitor[J].Neurochem Res,2006,31(4):541-548.
    [41]Petenuzzo LF.Ferreira GC,Schmidt AL,et al.Differential inhibitory effects of methylmalonic acid on respiratory chain complex activities in rat tissue[J]. Int J Dev Neurosci,2006,24(1):45-52.
    [42]Brusque AM.Rosa RB,Schuck PF,et al.Inhibition of the mitochondrial respiratory chain complex activities in rat cerebral cortex by methylmalonic acid[J]. Neurochem Int.2002,40(7):593-601
    [43]Schuck PF,Rosa RB, Pettenuzzo LF,et al.Inhibition of mitochondrial creatine kinase activity from rat cerebral cortex by methylmalonic acid [J].Neurochem Int.2004,45(5):661-667.
    [44]Okun JG, Horster F, Farkas LM, et al. Neurodegeneration in methylmalonic aciduria involves inhibition of complex Ⅱ and the tricarboxylic acid cycle, and synergistically acting excitotoxicity [J]. J Biol Chem,2002,277(17):14674-14680.
    [45]Almeida LM,Funchal C,Pelaez PL,et al.Effect of propionic and methylmalonic acids on the in vitro phosphorylation of intermediate filaments from cerebral cortex of rats during development[J].Metab Brain Dis,2003,18(3):207-219.
    [46]Loureiro SO, Pelaez PL, Heimfarth L, et al. Propionic and methylmalonic acids increase cAMP levels in slices of cerebral cortex of young rats via adrenergic and glutamatergic mechanisms[J].Biochim Biophy Acta,2005,1740(3):460-466.
    [47]Matos-Dutra A, Freitas MS, Schr der N, et al. Methylmalonic acid reduces the in vitro phosphorylation of cytoskeletal protein in the cerebral cortex of rats[J] Brain Res,1997,763(2):221-231.
    [48]McLaughlin BA, Nelson D,Sliver I A,et al.Methylmalonate toxicity in primary neuronal cultures[J].Neuorscience,1998,86(l):279-290.
    [49]Kanaumi T.Takashima S,Hiorse S,et al.Neuorpathology of methylmalonic acidemia in a child[J].Pediatr Neuro,2006,34(2):156-159.
    [50]Rossi A, Cerone R, Biancheri R, et al. Early-onset combined methylmalonic aciduria and homocystinuria:Neuroradiologic Findings[J]. AJNR Am J Neuorradiol, 2001,22(3):554-563.
    [51]姜西,王静敏,姜玉武.发育中突触可塑性相关分子的研究进展[J].国际病理科学与临床杂志,2006,26(6):515-518.JIANG Xi, WANG Jin-min,JIANG Yu-wu.Synaptic plasticity associated molecules [J] int J Pathol Clin Med.2006,26 (6).515-518.
    [52]Trindade VM, Brusque AM, Raasch JR, et al. Ganglioside alterations in the central nervous system of rats chronically injected with methylmalonic and propionic acids[J].Metab Brain Dis,2002,17 (2):93-102.
    [53]Brusque AM,Rottam LN,Tavares RG,et al.Effects of methylmalonic and propionic acids on glutamate up take by synaptosomes and synaptic vesicles and on glutamate release by synaptosomes from cerebral cortex of rats[J].Brain Res,2001, 920(1-2):194-201.
    [54]Gebhardt B, Dittrich S, Parbel S, et al. N-Carbamyl glutamate protects patients with decompensated propionic aciduria from hyperammonaemia[J]. Inherit Metab DIS,2005,28(2):241-244.
    [55]Filipowiez HR, Ernst SL, Ashurst CL, et al. Metabolic changes associated with hyperammonemia in patients with propionic acidemia[J]. Mol Cenet Metab, 2006,88(2):123-130.
    [56]Malfatti CR,Perry ML,Schweigert ID,et al.Convulsions induced by methylmalonic acid are associated with glutamic acid decarboxylase inhibition in rats:A role for GAB A In the seizures presented by methylmalonic acidemia patients?[J]. Neuroscience,2007,146 (4):1879-1887.
    [57]Pettnuzzo LF, Wyse AT, Wannmacher CM, et al. Evaluation of the effect of chronic administration of drugs on rat behavior in the water maze task[J].Brain Res Protoc,2003,12(2):109-115
    [58]Vasques V,Birnco F,V iegas CM.Creatine prevents behavioral alterations cause by methylmalonic acid administration into the hippocampus of rats in the open field task[J]. J Neural Sci,2006,244 (1-2):23-29.
    [59]Pettenuzzo IF,Schuck PF,Wyse AT,et al.Ascorbic acid prevents water maze behavioral deficits caused by early postnatal methylmalonic acid administration in the rat[J]. Brain Res,2003,976 (2):234-242.
    [60]Baumgartner D, Seholl-Burgi S, Sass JO, et al. Prolonged QTc intervals and decreased left ventricular contractility in patients with propionic acidemia[J]. J Pediatr,2007,150(2):192-197.
    [61]Mardach R, Verity MA, Cederbaum SD, et al. Clinical, pathological, and biochemical studies in a patient with propionic acidemia and fatal cardiomyopathy [J]. Mol Genet Metab,2005,85(4):286-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700