改性Al-MCM-41分子筛催化气相贝克曼重排反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对改性Al-MCM-41分子筛上气相贝克曼重排反应进行了研究。采用等体积浸渍法,制备了磷酸和硼酸改性的Al-MCM-41分子筛催化剂。使用固定床反应器,对催化剂的活性进行了评价,并采用XRD,SEM,N2吸附,FT-IR,NH_3-TPD,MAS NMR,UV-Vis,XPS,TGA以及GC-MS等表征手段对反应前后的催化剂进行了一系列的表征,研究了催化剂表面的积碳情况和催化剂的活性位点,并采用化学计算的方法,探索了磷改性Al-MCM-41分子筛的结构以及气相贝克曼重排可能的反应历程。
     磷改性Al-MCM-41分子筛提高了催化剂的活性,己内酰胺的选择性由64%提高至80%左右。腈类和酮类是气相贝克曼重排的主要副产物,随着反应温度的升高,腈类增多,酮类减少。在所考察的40小时内,催化剂的活性基本没有发生改变,磷改性Al-MCM-41分子筛有着良好的稳定性。提高弱酸中心的数量有利于提高己内酰胺的选择性。
     硼改性Al-MCM-41分子筛也提高了催化剂的活性,己内酰胺的选择性最大可达到78%。硼的引入可以提高己内酰胺的选择性,但其选择性与硼加入量并不成线性关系。硼在分子筛中积聚会降低己内酰胺的选择性并容易导致催化剂失活。己内酰胺的选择性与分子筛中弱酸中心,尤其是弱Br(?)nsted酸中心有密切关系,它是气相贝克曼重排的活性中心。
     积碳是催化剂失活的主要因素。积碳在催化剂表面以无定形形态存在,主要以软积碳和硬积碳两种类型沉积在催化剂的表面;积碳优先在催化剂的酸中心上形成,尤其是较强的酸中心上;反应后催化剂表面积碳的成分主要是脂肪烃类,而不是芳香烃类化合物;由于脱氢和聚合反应,分子筛表面形成脱氢碳物种或者碳结焦产物,堵塞了活性位点或者孔道,从而导致催化剂失活。
     通过计算化学分析,构型B是磷改性Al-MCM-41分子筛的可能结构;Nguyen等人提出的气相贝克曼重排的反应机理是合理的。但是,烷基基团的迁移是该反应的速率决定步骤,而1,2-H转移反应不是决定步骤。
Vapor phase Beckmann rearrangement reaction of cyclohexanone oxime to caprolactam was studied over modified Al-MCM-41 catalysts in this thesis. A series of phosphorus (P) and boron (B) modified Al-MCM-41 molecular sieves were prepared using impregnation method. The activity of these catalysts was studied by a continuous flow fixed-bed reactor. All the catalysts were characterized by XRD, SEM, N_2 adsorption, FT-IR, NH3-TPD, MAS NMR, UV-Vis, XPS, TGA, and GC-MS. The coke and catalytic activity sites of the catalyst were also studied. The possible molecular structure of P modified Al-MCM-41 catalyst and the possible reaction mechanism was investigated by computational chemistry method.
     P modified Al-MCM-41 catalyst can improve the selectivity for caprolactam. It increased from 64% to 80%. Nitriles and ketones are main side products. With increased temperature, more nitriles and less ketones were generated. No conversion decline was observed during the 40 hours process time, indicating the high stability of PAM-3 catalyst. More weak acid sites are favorable for caprolactam selectivity.
     B modified Al-MCM-41 catalyst can also improve the selectivity for caprolactam. It can reach 78% in this work. Boron can improve caprolactam selectivity. However, boron content does not linearly influence caprolactam selectivity. The acitivity of boron modified Al-MCM-41 catalyst was influenced by boron distribution in the catalyst. The conglomeration of boron on the catalyst decreased the selectivity of caprolactam and finally led to catalyst deactivation. There is a close relationship between caprolactam and weak acid sites, especially weak Br?nsted acid sites. And these acid centers are acitive sites.
     Coke formation on the catalyst is the main reason for its deactivation. The coke was mainly amorphous structure. Both soft coke and hard coke were deposited on the used boron modified Al-MCM-41 catalyst. And the coke was deposited preferentially on acid sites, especially the strong acid sites. The coke deposited on the catalyst is mainly aliphatic-type carbonaceous compounds and no aromatic-type coke formed. The catalyst deacitivition was attributed to the pore and active sites being blocked by the excessive dehydrogenated carbon species.
     The Computational Chemistry results reveal that the Geometry B is the possible structure of P modified Al-MCM-41 catalyst. The vapor phase Beckmann rearrangement reaction mechanism proposed by Nguyen et al is reasonable. A transfer of R1 group is a rate determining step, wihle 1,2-H shift reaction is not.
引文
[1]王雪梅,己内酰胺生产技术及应用,河北化工,2005,(5):27~30
    [2]高庆,蔡俊峰,国内己内酰胺市场分析及产业发展战略,化学工业与工程技术,2007,28:39~50
    [3]金栋,吕效平,己内酰胺生产技术及国内外市场前景,化学工业,2007,25(10):20~27
    [4]刘浩,杨锋,肖朝晖,PA6工程塑料的生产及市场概况与展望,中国塑料,2003,17(1):10~14
    [5] http://baike.baidu.com/view/121875.htm
    [6]吴执中,职业病,北京:人民卫生出版社,1984. 504
    [7]劳动人事部《职业卫生与安全百科全书》译审委员会,职业卫生与安全百科全书,北京:中国大百科全书出版社,1987. 1577
    [8]陈海潮,一起己内酰胺中毒报告,中国职业医学,2002,29(2):61~61
    [9]张琳,邵运南,李郑等,低浓度己内酰胺对作业工人健康影响的调查,化工劳动保护,1998,19(3):98~101
    [10]晓铭,2010年我国己内酰胺的生产、进出口以及市场价格情况,精细化工原料及中间体,2011,(4):35~41
    [11]崔小明,国内外己内酰胺的供需现状及发展前景,合成技术以应用,2010,25(4):37~42
    [12]庞晓华,亚洲己内酰胺价格一路飙升,中国化工报,2010-4-27,第005版
    [13]王孝弟,己内酰胺高位盘整态势不改,中国化工报,2011-8-15,第003版
    [14] Gerd Dahlhoff, John P. M. Niederer, Wolfgang F. Hoelderich, ?-Caprolactam: new by-product free synthesis routes, Catalysis Reviews, 2001, 43 (4): 381~441
    [15]杨华,国外己内酰胺工艺进展,精细化工原料及中间体,2003,(6):34~35
    [16]孙洁华,毛伟,己内酰胺生产工艺及技术特点,化学工程师,2009,160(1):38~41
    [17]崔小明,国内外己内酰胺生产工艺研究新进展,中国石油和化工,2005,(9):56~60
    [18]汤立新,季锦林,己内酰胺生产工艺的研究进展,化学工程师,2008,22(11):36~39
    [19]赵爱华,己内酰胺的工艺现状及发展趋势,河南化工,2010,27(5):28~30
    [20]冷晓梅,己内酰胺生产技术的比较及发展趋势,江苏化工,2008,36(5):46~54
    [21] Patrick Michael Burke, Production of 3-pentenoic acid, an intermediate for caprolactam and adipic acid, US patent, 5962732-A, 1999-10-05
    [22]劲松,己内酰胺的技术进展,精细化工原料及中间体,2011,(1):38~43
    [23]韩涤非,王安杰,MCM-41介孔分子筛在精细有机合成非均相催化中的应用,化学进展,2002,14(2):98~106
    [24] England D. C, Process for manufacturing caprolactam, US Patent, 2634269, 1953-04-07 [ 25 ] Curtin T., Mcmonagle J.B., Ruwet M., et al., Factors affecting selectivity in the rearrangement of cyclohexanone oxime to caprolactam over modified aluminas, Applied Catalysis A: General, 1992, 93(1): 75~89
    [26] Curtin T., Mcmonagle J.B., Ruwet M., et al., Deactivation and Regeneration of Alumina Catalysts for the Rearrangement of Cyclohexanone Oxime into Caprolactam, Journal of Catalysis, 1993, 142(1): 172~181 [ 27 ] Naonobu Katada, Takahiro Tsubouchi, Miki Niwa, et al., Vapor-phase Beckmann rearrangement over silica monolayers prepared by chemical vapor desorption, Applied Catalysis A: General, 1995, 124(1): 1~7 [ 28 ] Takashi Ushikubo, Keisuke Wada, Vapor Phase Beckmann Rearrangement over Silica-Supported Tantalum Oxide Catalysts, Journal of Catalysis, 1994, 148(1): 138~148
    [29] Bo-Qing Xu, Shi-Biao Cheng, Shan Jiang, et al., Gas phase Beckmann rearrangement of cyclohexanone oxime over zirconia-supported boria catalyst, Applied Catalysis A: General, 1999, 188(1-2): 361~368 [ 30 ] Dongsen Mao, Guanzhong Lu, Qingling Chen, et al., Catalytic performance of B2O3/TiO2–ZrO2 for vapor-phase Beckmann rearrangement of cyclohexanone oxime: the effect of boria loading, Catalysis Letters, 2001, 77(1-3): 119 ~ 124 [ 31 ] M. Ghiaci, A. Abbaspur, R.J. Kalbasi, Vapor-phase Beckmann rearrangement of cyclohexanone oxime over H3PO4/ZrO2-TiO2, Applied Catalysis A: General, 2005, 287(1): 83~88
    [32] Benjaram M. Reddy, Gunugunuri K. Reddy, Komateedi N. Rao, et al., Influence of alumina and titania on the structure and catalytic properties of sulfated zirconia: Beckmann rearrangement, Journal of Molecular Catalysis A: Chemical, 2009, 306(1-2): 62~68
    [33] Barrer R M, Synthesis of a zeolitic mineral with chabazite-like sorptive properties, Journal of the Chemical Society, 1948, 127~132
    [34] Loewenstein, W, American Mineralogist, 1954, 39(1-2): 92~96
    [35] Takeshige Takahashi, Makoto Nishi, Yuichi Tagawa, et al., Catalyst deactivation of high-silica HZSM-5 in the Beckmann rearrangement reaction of cyclohexanone oxime, Microporous Materials, 1995, 3(4-5): 467~471
    [36] Takeshige Takahashi, Mohammad Noor Alsadat Nasution, Takami Kai, Effects of acid strength and micro pore size on ?-caprolactam selectivity and catalyst deactivation in vapor phase Beckmann rearrangement over acid solid catalysts, Applied Catalysis A: General, 2001, 210(1-2): 339~344
    [37] Tatsuki Yashima, Nahoko Oka, Takayuki Komatsu, Vapor phase Beckmann rearrangement of cyclohexanone oxime on the zeolite catalysts, Catalysis Today, 1997, 38(2): 249~253
    [38] J. R?seler, G. Heitmann, W.F. H?lderich, Vapour-phase Beckmann rearrangement using B-MFI zeolites, Applied Catalysis A: General, 1996, 144(1-2): 319~333
    [39] Hiroshi Ichihashi, Masaya Ishida, Akinobu Shiga, et al., The catalysis of vapor-phaseBeckmann rearrangement for the production of ?-caprolactam, Catalysis Surveys from Asia, 2003, 7(4): 261~270
    [40] G. P Heitmann, G. Dahlholf, W. F. H?lderich, Catalytically Active Sites for the Beckmann Rearrangement of Cycloheanone Oxime to ?-Caprolactam, Journal of Catalysis, 1999, 186(1): 12~19
    [41] Yifeng Bu, Yaquan Wang, Yongjie Zhang, et al., Influences of ethylenediamine treatment of Silicalite-1 on the catalytic vapor-phase Beckmann rearrangement of cyclohexanone oxime, Catalysis Communications, 2007, 8(1): 16~20
    [42] Regina Palkovits, Wolfgang Schmidt, Yasemin Ilhan, et al., Crosslinked TS-1 as stable catalyst for the Beckmann rearrangement of cyclohexanone oxime, Microporous and Mesoporous Materials, 2009, 117(1-2): 228~232
    [43] Jung-Che Chang, An-Nan Ko, Beckmann Rearrangement of Cyclohexanone oxime to ?-caprolactam using Mesoporous Molecular Sieves Al-SBA-15, Reaction Kinetics and Catalysis Letters, 2004, 83(2): 283~290
    [44] G. P. Heitmann, G. Dahlhoff, W. F. H?lderich, Modified Beta zeolites as catalysts for the Beckmann rearrangement of cyclohexanone oxime, Applied Catalysis A: General, 1999, 185(1): 99~108
    [45] Yongjie Zhang, Yaquan Wang, Yifeng Bu, Vapor phase Beckmann rearrangement of cyclohexanone oxime on Hβ-zoelites treated by ammonia, Microporous and Mesoporous Materials, 2008, 107(3): 247~251
    [46] Lian-Xin Dai, Katsuyuki Koyama, Mitsunori Miyamoto, et al., Highly selective vapor phase Beckmann rearrangement over H-USY zeolites, Applied Catalysis A: General, 1999, 189(2): 237~242
    [47] P. O’Sullivan, L. Forni and B. K. Hodnett, The Role of Acid Site Strength in the Beckmann Rearrangement, Industrial and Engineering Chemistry Research, 2001, 40(6):1471~1475
    [48] K. Chaudhari, Rajaram Bal, A. J. Chandwadkar, et al., Beckmann rearrangement of cyclohexanone oxime over mesoporous Si-MCM-41 and Al-MCM-41 molecular sieves, Journal of Molecular Catalysis A: Chemical, 2002, 177(2): 247~253 [ 49 ] L. Forni, C. Tosi, G. Fornasari, et al., Vapor-phase Beckmann rearrangement of cyclohexanone-oxime over Al-MCM-41 type mesostructured catalysts, Journal of Molecular Catalysis A: Chemical, 2004, 221(1-2): 97~103
    [50] H. Jung, K. D. Jung, O. S. Joo, et al., Synthesis and Catalytic Application of Mesoporous Molecular Sieves MCM-41 Containing Niobium and Tantalum, Solid State Phenomena, 2007, 124-126: 1761~1764
    [51] M. Anilkumar, W. F. H?lderich, Highly active and selective Nb modified MCM-41 catalysts for the Beckmann rearrangement of cyclohexanone oxime to ?-caprolactam, Journal of Catalysis, 2008, 260(1): 17~29
    [52] L. Y. Chen, Z. Ping, G. K. Chuah, et al., A comparison of post-synthesis alumination andsol-gel synthesis of MCM-41 with high framework aluminum content, Microporous and Mesoporous Materials, 1999, 27(2-3): 231~242
    [53] Caihua Liu, Xinyu Yu, Jianguo Yang, et al., Preparation of mesoporous Al-MCM-41 with stable tetrahedral aluminum using ionic liquids as a single template, Materials Letters, 2007, 61(30): 5261~5264
    [54] K. R. Kloetstra, H. W. Zandbergen, H. Bekkum, MCM-41 type materials with low Si/Al ratios, Catalysis Letters, 1995, 33(1-2): 157~163 [ 55 ] A. Aucejo, M. C. Burguet, A. Corma, et al., Beckmann Rearrangement of cyclohexanone-oxime on HnaY Zeolites: Kinetic and Spectroscopic Studies, Applied Catalysis, 1986, 22(2): 187~200
    [56] Sreejarani K. Pillai, Omanakkutty Gheevarghese, Sankaran Sugunan, Catalytic properties of V2O5/SnO2 towards vapour-phase Beckmann rearrangement of cyclohexanone oxime, Applied Catalysis A: General, 2009, 353(1): 130~136
    [57] Nicholas Kob, Russell S. Drago, Catalysis of the formation of ?-caprolactam from cyclohexanone oxime by tungsten oxide solid acids, Catalysis Letters, 1997, 49(3-4): 229-234
    [58] Peter Albers, Klaus Seibold, Thomas Haas, et al., SIMS/XPS Study on the Deactivation and Reactivation of B-MFI Catalysts Used in the Vapour-Phase Beckmann Rearrangement, Journal of Catalysis, 1998, 176(2): 561~568
    [59]徐如人,庞文琴,于吉红等,分子筛与多孔材料化学,北京:科学出版社,2004,420~421
    [60]汪树军,梁娟,郭文硅等,HZSM-5沸石水热脱铝规律的研究,天然气化工,1991,16(4):17 ~ 22
    [61] S. Vishnu Priya, J. Herbert Mabel, M. Palanichamy, et al. Catalytic activity of MAPO-36 and ion-exchanged MAPO-36 in Beckmann rearrangement, Proceedings of 4th International FEZA Conference, 2008, 1147 ~ 1150
    [62]王志萍,于世涛,孙学,中孔分子筛PO 34-/Zr-MCM-41催化α-蒎烯水合反应,青岛科技大学学报,2004,25(6):484~489
    [63] Dongsheng Zhang, Rijie Wang, Xiaoxia Yang, Effect of P content on the catalytic performance of P-modified HZSM-5 catalysts in the dehydration of ethanol to ethylene, Catalysis Letters, 2008, 124(3-4): 384~391
    [64] Limin Huang, Quanzhi Li, Enhanced Acidity and Thermal Stability of Mesoporous Materials with Post-treatment with Phosphoric Acid, Chemistry Letters, 1999, 28(8): 829~830
    [65] G. P. Heitmann, G. Dahlhoff, J. P. M. Niederer, et al., Active Sites of a [B]-ZSM-5 Zeolite Catalyst for the Beckmann Rearrangement of Cyclohexanone Oxime to Caprolactam, Journal of Catalysis, 2000, 194(1): 122~129
    [66] J.M. Campelo, T.D. Conesa, D. Luna, et al., A.A. Romero, Improved catalytic activity and selectivity of (Al+B)-MCM-41 mesoporous materials treated with ammonium fluoride in the vapor-phase Beckmann rearrangement of cyclohexanone oxime, Studies in Surface Science and Catalysis, 2005, 158(Part B): 1421~1428
    [67] L. Forni, G. Fornasari, F. Trifirò, et al., Calcination and deboronation of B-MFI applied to the vapour phase Beckmann rearrangement, Microporous and Mesoporous Materials, 2007, 101(1-2): 161~168
    [68]辛勤,固体酸催化剂的研究方法,上册,北京:科学出版社,2004,168~169
    [69] S. Ajaikumar, A. Pandurangan, Esterificaion of alkyl acids with alkanols over MCM-41 molecular sieves: Influence of hydrophobic surface on condensation reaction, Journal of Molecular Catalysis A: Chemical, 2007, 266(1-2): 1~10
    [70] T. D. Conesa, R. Mokaya, J. M. Campelo, et al., Sythesis and characteriztion of novel mesoporous aluninosilicate MCM-41 containing aluminophosphate building units, Chemical Communications, 2006, 1839~1841
    [71] M. Ghiaci, R. N. Esfahani, H. Aghaei, Efficient dehydration of cinnamaldoxime to cinnamonitrile over H3PO4/Al-MCM-41, Catalysis Communications, 2009, 10(6): 777~780
    [72]于世涛,刘福胜,固体酸与精细化工,北京:化学工业出版社,2006,77~79
    [73] H. Kosslick, G. Lischke, B. Parlitz, et al., Acidity and active sites of Al-MCM-41, Applied Catalysis A: General, 1999, 184(1): 49~60
    [74] K. Góra-Marek, J. Datka, IR studies of OH groups in mesoporous aluminosilicates, Applied Catalysis A: General, 2006, 302(1): 104~109
    [75] J. A. Lercher, G. Rumplmayr, Controlled decrease of acid strength by orthophosphoric acid on ZSM-5, Applied Catalysis, 1986, 25(1-2): 215~222
    [76]张东升,P改性HZSM-5分子筛上乙醇脱水制乙烯反应的催化性能研究:[博士论文],天津;天津大学,2009
    [77] http://srdata.nist.gov/xps/EngElmSrchQuery.aspx?EType=PE&CSOpt=Retri_ex_dat&Elm=P
    [78] B. Viswanathan, Alex C. Pulikottil, Surface properties of ZSM-5 modified by phosphorus, Catalysis Letters, 1993, 22(4): 373~379
    [79] G. Caeiro, P. Magnoux, J. M. Lopes, et al., Stabilization effect of phosphorus on steamed H-MFI zeolites, Applied Catalysis A: General, 2006, 314(2): 160~171
    [80] Zhong-Yong Yuan, Tie-Hong Chen, Jing-Zhang Wang, et al., Synthesis and characterization of silicon and cobalt substituted mesoporous aluminophosphates, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 179(2-3): 253~259
    [81] Nianhua Xue, Xiangke Chen, Lei Nie, et al., Understanding the enhancement of catalytic performance for olefin cracking: Hydrothermally stable acids in P/HZSM-5, Journal of Catalysis, 2007, 248(1): 20~28
    [82] Zhimin Yan, Ding Ma, Jianqin Zhuang, et al., On the acid-dealumination of USY zeolite: a solid state NMR investigation, Journal of Molecular Catalysis A: Chemical, 2003, 194(1-2): 153~167
    [83] M. Ghiaci, H. Aghaei, M. Oroojeni, et al., Synthesis of paracetamol by liquid phase Beckmann rearrangement of 4-hydroxyacetophenone oxime over H3PO4/Al-MCM-41, Catalysis Communications, 2009, 10(11): 1486~1492
    [84] Pekka Tynj?l?, Tuula T. Pakkanen, Modification of ZSM-5 zeolite with trimethyl phosphite part 1. structure and acidity, Microporous and Mesoporous Materials, 1998, 20(4-6): 363~369
    [85] J. Caro, M. Bülow, M. Derewinski, et al., NMR and IR Studies of Zeolite H-ZMSM-5 Modified with Orthophosphoric Acid, Journal of Catalysis, 1990, 124(2): 367~375
    [86] V.N. Romanikov, A.J. Tissler, R. Thome, Alkylation of aromatic on p-containing ZSM-5 zeolites, Reaction Kinetics and Catalysis Letters, 1993, 51(1): 125~134
    [87] N. Kob, R. S. Drago, Catalysis of the formation of ?-caprolactam from cyclohexanone oxime by tungsten oxide solid acids, Catalysis Letters, 1997, 49(3-4): 229~234
    [88] G. Dahlhoff, U. Barsnick, W.F. H?lderich, The use of MCM-22 as catalyst for the Beckmann rearrangement of cyclohexanone oxime to ?-caprolactam, Applied Catalysis A: General 2001, 210(1-2): 83~95
    [89]章永洁,改性β沸石催化环己酮肟气相Beckmann重排反应的研究:[博士学位论文],天津;天津大学,2004
    [90] Yongjie Zhang, Yaquan Wang, Yifeng Bu, et al., Beckmann rearrangement of cyclohexanone oxime over Hβzeolite and Hβzeolite-supported boride, Catalysis Communications, 2005, 6(1): 53~56
    [91] D. Trong On, S. M. J. Zaidi, S. Kaliaguine, Stability of mesoporous aluminosilicate MCM-41 under vapor treatment, acidic and basic conditions, Microporous and Mesoporous Materials, 1998, 22(1-3): 211~224
    [92] T. Curtin, J. B. McMonagle, B. K. Hodnett, Influence of boria loading on the acidity of B2O3/Al2O3 catalysts for the conversion of cyclohexanone oxime to caprolactam, Applied Catalysis A: General, 1992, 93(1): 91~101
    [93]辛勤,固体催化剂研究方法,北京:科学出版社,2004,268~269
    [94] A. S. Tenney, J. Wong, Vibrational, Spectra of Vapor-Deposited Binary Borosilicate Glasses, The Journal of Chemical Physics, 1972, 56(11): 5516~5523 [ 95 ] Youssef Saih, Kohichi Segawa, Catalytic activity of CoMo catalysts supported on boron-modified alumina for the hydrodesulphurization of dibenzothiophene and 4,6-dimethyldibenzothiophene, Applied Catalysis A: General, 2009, 353(2): 258~265
    [96]孙锦宜,工业催化剂的失活与再生,北京:化学工业出版社,2006. 14~15
    [97] Larisa A. Arkatova, The deposition of coke during carbon dioxide reforming of methane over intermetallides, Catalysis Today, 2010, 157(1-4): 170~176
    [98] A. S. A Al-Fatish, A. A. Ibrahim, A. H. Fakeeha, et al., Coke formation during CO2 reforming of CH4 over alumina-supported nickel catalysts, Applied Catalysis A: General, 2009, 364(1-2): 150~155
    [99] Songbo He, Chenglin Sun, Xu Yang, et al., Chareacterization of coke deposited on spent catalysts for long-chain-paraffin dehydrogenation, Chemical Engineering Journal, 2010, 163(3): 389~394
    [100] T. D. Conesa, J. M. Campelo, D. Luna, et al., Development of mesoporous Al,B-MCM-41materials: Effect of reaction temperature on the catalytic performance of Al,B-MCM-41 materials for the cyclohexanone oxime rearrangement, Applied Catalysis B: Environmental, 2007, 70(1-4): 567~576 [ 101 ] Chao-Chen Tsai, Cheng-Yuan Zhong, Ikai Wang, et al., Vapor phase Beckmann rearrangement of cyclohexanone oxime over MCM-22, Applied Catalysis A: General, 2004, 267(1-2): 87~94
    [102] C. A. Querini, S. C. Fung, Coke characterization by temperature programmed techniques, Catalysis Today, 1997, 37(3): 277~283
    [103] M. Rozwadowski, M. Lezanska, J. Wloch, et al., Investigation of Coke Deposits on Al-MCM-41, Chemistry of Materials, 2001, 13(5): 1609~1616
    [104] Ji Won Park, Gon Seo, IR study on methanol-to-olefin reaction over zeolites with different pore structures and acidities, Applied Catalysis A: General, 2009, 356(2): 180~188
    [105] Pedro Casta?o, Gorka Elordi, Martin Olazar, et al., Insights into the coke deposited on HZSM-5, Hβand HY zeolites during the cracking of polyethylene, Applied Catalysis B: Environmental, 2011, 104(1-2): 91~100
    [106] Lutz Becker, Horst F?rster, Investigation of coke deposits formed during deep oxidation of benzene over Pd and Cu exchanged Y-type zeolites, Applied Catalysis A: General, 1997, 153(1-2): 31~34
    [107]齐国祯,谢在库,刘红星等,甲醇制烯烃反应过程中SAPO-34分子筛催化剂的积碳行为研究,石油化工,2006,35(1):29~32
    [108]蒙根,孔德金,祁晓岚等,甲苯歧化与烷基转移催化剂的积碳行为,物理化学学报,2010,26(11):3017~3022
    [109] H. G. Karge, W. Nieβn, H. Bludau, In-situ FTIR measurements of diffusion in coking zeolite catalysts, Applied Catalysis A: General, 1996, 146(2): 339~349
    [110] Michael Hunger, Applications of in situ spectroscopy in zeolite catalysis, Microporous and Mesoporous Materials, 2005, 82(3): 241~255
    [111] A. de Lucas, P. Canizares, A. Durán, et al., Coke formation, location, nature and regeneration on dealuminated HZSM-5 type zeolites, Applied Catalysis A: General, 1997, 156(2): 299~317
    [112] Bao Khanh Vu, Myoung Bok Song, In Young Ahn, et al., Location and structure of coke generated over Pt-Sn/Al2O3 in propane dehydrogenation, Journal of Industrial and Engineering Chemistry, 2011, 17(1): 71~76
    [113] Li Xiancai, Li Shuigen, Yang Yifeng, et al., Studies on coke formation and coke species of nickel-based catalysts in CO2 reforming of CH4, Catalysis Letters, 2007, 118(1-2): 59~63
    [114] Bert M. Weckhuysen, Michael P. Rosynek, Jack H. Lunsford, Characterization of surface carbon formed during the conversion of methane to benzene over Mo/H-ZSM-5 catalysts, Catalysis Letters, 1998, 52(1-2): 31~36
    [115] Antonio N. Pinheiro, Antoninho Valentini, JoséM. Sasaki, et al., Highly stable dealuminatedzeolite support for the production of hydrogen by dry reforming of methane, Applied Catalysis A: General, 2009, 355(1-2): 156~168
    [116] Safia Hamoudi, Fa??al Larachi, Alain Adnot, et al., Characterization of Spent MnO2/CeO2 Wet Oxidation Catalyst by TPO-MS, XPS, and S-SIMS, Journal of Catalysis, 1999, 185(2): 333~344
    [117] S. R. Kelemen, M. Afeworki, M. L. Gorbaty, et al., XPS and 15N NMR Study of Nitrogen Forms in Carbonceous Solids, Energy and Fuels, 2002, 16(6): 1507~1515
    [118] Yijiao Jiang, Jun Huang, V.R. Reddy Marthala, et al., In situ MAS NMR-UV/Vis investigation of H-SAPO-34 catalysts partially coked in the methanol-to-olefin conversion under continuous-flow conditions and of their regeneration, Microporous and Mesoporous Materials, 2007, 105 (1-2) 132~139
    [119] M. Guisnet, P. Magnoux, Coking and Deactivation of Zeolites: Influence of the pore structure, Applied Catalysis, 1989, 54(1): 1~27
    [120] S. M. Holmes, A. Garforth, B. Maunders, et al., A solvent extraction method to study the location and concentration of coke formed on zeolite catalysts, Applied Catalysis A: General, 1997, 151(2): 355~372
    [121] Hiroshi Ichihashi, Masaru Kitamura, Some aspects of the vapor phase Beckmann rearrangement for the production ofε-caprolactam over high silica MFI zeolites, Catalysis Today 2002, 73(1-2): 23~28
    [122]卢翠英,计算化学研究进展,榆林学院学报,2004,14(3):48~51
    [123]郑文锐,计算化学在化学化工中的应用(下),上海化工,2010,35(1):23~26
    [124]王宝山,侯华,分子模拟实验,北京:高等教育出版社,2010. 5~6
    [125]吕仁庆,直接法ZSM-5的改性及水热活性稳定性研究:[博士学位论文],天津;南开大学,2003
    [126] J. Sauer, P. Ugliengo, E.Garrone, et al., Theoretical study of van der waals complexes at surface sites in comparison with the experiment, Chemical Reviews., 1994, 94(7): 2095~2160
    [127] Paul Geerlings, Nicholas Tariel, Alain Botrel, et al., Interaction of surface hydroxyls with adsorbed molecules. A quantum-chemical study, The Journal of Physical Chemistry, 1984, 88(23): 5752~5758
    [128] Jerzy Datka, Paul Geerlings, Wilfried Mortier, et al., Influence of the overall composition on zeolite properties. 1. The framework: an infrared spectroscopic and quantum chemical study, The Journal of Physical Chemistry, 1985, 89(16): 3483~3488
    [129] S. Kawi, S. C. Shen, P. L. Chew, Generation of Br?nsted acid sites on Si-MCM-41 by grafting of phosphorus species, Journal of Materials Chemistry, 2002, (12): 1582~1586
    [130] Y. Murakami, Y. Saeki, K. Ito, Vapor Phase Beckmann Rearrangement of Cyclohexanone Oxime over Solid Acid Catalysts, Nippon Kagaku Kaishi, 1978, 1978(1): 21~26
    [131] P. S. Landies, P. B. Venuto, Organic reactions catalyzed by crystalline aluminosilicates: IV.Beckmann rearrangement of ketoximes to amides, Journal of Catalysis, 1966, 6(2): 245~252
    [132] Minh Tho Nguyen, Greet Raspoet, Luc G. Vanquickenborne, A New Look at the Classical Beckmann Rearrangement: A Strong Case of Active Solvent Effect, Journal of the American Chemical Society, 1997, 119(10): 2552~2562
    [133] Minh Tho Nguyen, Greet Raspoet, Luc G. Vanquickenborne, Important role of the Beckmann rearrangement in the gas phase chemistry of protonated formaldehyde oximes and their [CH4NO]+ isomers, Journal of the Chemical Society, Perkin Transactions 2, 1995, 1791~1795
    [134] Minh Tho Nguyen, L. G. Vanquickenborne, Mechanism of the Beckmann rearrangement of formaldehyde oxime and formaldehyde hydrazone in the gas phase, Journal of the Chemical Society, Perkin Transactions 2, 1993, 1969~1972
    [135] Y. Shinohara, S. Mae, D. Shouro, et al., A quantum chemical study of vapor-phase Beckmann rearrangement mechanisms on oxide catalysts, Journal of Molecular Structure (Theochem), 2000, 497(1-3): 1~9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700