纳米金属氧化物对六氟丙烷热分解性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高氢氟烃灭火剂的灭火性能,为氢氟烃灭火剂与添加剂的协同灭火作用研究提供参考,在系统分析和总结前人研究的基础上,本文设计并搭建了一套具有原料定量输送、程序控制升温及在线色谱分析等功能的热分解实验系统,采用气相色谱(GC)、气相色谱质谱联用(GC/MS)、傅里叶变换红外光谱(FTIR)、氟离子选择电极法、离子色谱法等分析和测试技术研究了六氟丙烷(HFC-236fa)在不同反应温度、不同驻留时间下的热分解产物及特点,尤其探讨了相同条件下加入纳米氧化镁(MgO)和纳米氧化铈(CeO2)后HFC-236fa热分解反应过程及产物发生的变化,采用X射线衍射仪(XRD)、FTIR等方法分析了纳米MgO和纳米CeO2加入前后表面成分变化,分析其对热分解反应产生影响及原因,主要研究结果如下:
     (1)HFC-236fa性能稳定,在500℃时不发生分解,600℃开始发生微弱分解,700℃、800℃发生强烈分解。HFC-236fa在热分解过程中主要发生脱氟化氢的反应,HFC-236fa的分解率随反应温度升高及驻留时间增长而增加。此外,700℃以上HFC-236fa分解时在反应器壁上观察到焦炭的生成。
     (2)在反应器中加入纳米MgO后HFC-236fa的分解率提高,说明纳米MgO能促进HFC-236fa热分解。反应后部分纳米MgO转化成MgF2,随温度升高,MgF2生成量增加,使热分解气体中HF的含量减少的同时,对热分解起到进一步促进作用。
     (3)加入纳米CeO2后,HFC-236fa分解率加大,但比相同条件下加入纳米MgO后分解率低,热分解产物种类比加入纳米MgO后多,检测到F3—CF(CF3)—CF2—CF3等新物质,同时纳米CeO2表面生成CeF3,随温度升高,CeF3的粒径而不断变大,晶格逐渐趋向完善。
To improve fire extinguishing performance of HFCs extinguishing and give reference to the research on its extinguishing fire in cooperation, an experiment research system with functions that supplying raw material according to requirements, programmed temperature and gas chromatography was designed on the basis of former research. The products of thermal decomposition of HFC-236fa at different temperatures and residence times were analyzed through using gas chromatography (GC), gas chromatography/mass spectrometry (GC/MS), Fourier transform infrared spectrum (FTIR), fluoride ion-selective electrode (FISE) and ion chromatography. The changes of products and process in the thermal decomposition after adding to Nano-MgO and Nano-CeO2 were specially investigated. The changes of the composition of Nano-MgO were studied by using X-ray diffraction and FTIR for further research. The reasons of the changes in the thermal decomposition were studied seriously. The conclusions were summarized as following:
     (1)HFC-236fa was steady at 500 degree. It started to decompose at 600 degree and has the intense decomposition at 700 or 800 degree. Fluoride elimination was the most feasible reaction in thermal decomposition of HFC-236fa.The decomposition of HFC-236fa became stronger with the increase of the temperatures and the enhancement of residence times.
     (2)The decomposition of HFC-236fa became stronger after adding to Nano-MgO. This illustrated that Nano-MgO make the thermal decomposition stronger. MgF2 was found on the Nano-MgO after reaction and the concentration of the MgF2 increased with the increase of the temperatures, it made that the concentration of the HF produced from the decomposition was obviously decreased.
     (3)The decomposition of HFC-236fa became stronger after adding to Nano-CeO2, the decomposition rate was lower than that adding to Nano-MgO, but the products were more. F3C—CF(CF3)—CF2—CF3 was first found. CeF3 was found on the Nano-CeO2, its size was larger and more perfect as the increase of the temperature.
引文
[1]张海峰,孙岚,申秀乾.电信机房常用气体灭火剂简介[J].邮电设计技术.2004(006):57-61.
    [2]单晓东.洁净气体灭火性能分析与工程应用[J].襄樊学院学报.2008,29(005):51-54.
    [3]徐晓楠.灭火剂与应用[M].化学工业出版社,2006.
    [4]万芳.环境科学发展初探[J].
    [5]王剑锋.浅谈制冷剂与环境保护[J].内蒙古环境保护.2005,17(001):61-64.
    [6]联合国.联合国气候变化框架公约[J].1992.
    [7]Angel P, Imagawa M, Chiu R, et al. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor[J]. Cell.1987,49(6):729-739.
    [8]朱渝生.对几种哈龙灭火剂替代品性能的初探[J].消防技术与产品信息.2003(004):40-43.
    [9]杨光成,冒爱琴,毛燕超.三氟碘甲烷气相合成催化剂分析[J].工业催化.2009,17(11).
    [10]李亚峰,林晓刚.几种新型灭火剂的性能及灭火原理[J].沈阳建筑工程学院学报.2001,17(001):47-49.
    [11]胡永华,李疏芬.2-氢七氟丙烷在不同温度下的热分解[J].光谱学与光谱分析.2007,27(012):2413-2416.
    [12]张永丰.洁净高效混合气体灭火有效性模拟研究[D].合肥:中国科学技术大学,2006.
    [13]山边正险松尾仁.含氟材料的研究开发[G].第一版ed.上海:华东理工大学出版社,2003.
    [14]时龙彬.气体灭火系统中几种灭火剂的比较[J].工程建设与设计.2007(009):73-76.
    [15]Tanaka Y, Matsuo S, Taya S. Gaseous thermal conductivity of difluoromethane (HFC-32), pentafluoroethane (HFC-125), and their mixtures[J]. International Journal of Thermophysics.1995,16(1):121-131.
    [16]段远源,王忠伟.氢氟烃混合物气液相平衡研究进展[J].流体机械.2004,32(002):28-30.
    [17]Laesecke A, Defibaugh D R. Viscosity of 1,1,1,2,3,3-Hexafluoropropane and 1,1,1, 3,3,3-Hexafluoropropane at Saturated-Liquid Conditions from 262 K to 353 K[J]. J. Chem. Eng. Data.1996,41(1):59-62.
    [18]Perkins R, Cusco L, Howley J, et al. Thermal conductivities of alternatives to CFC-11 for foam insulation [J]. J. Chem. Eng. Data.2001,46(2):428-432.
    [19]黄勇.六氟丙烷灭火系统的应用[J].消防技术与产品信息.2006(011):24-26.
    [20]程胜,蒋琦.HFC-236fa的生产与市场前景[J].化工科技市场.2005,28(012):30-32.
    [21]丛北华,齐飞,廖光煊.三氟甲烷抑制CH4/02低压预混平面火焰的实验研究[J].科学通报.2005,50(016):1789-1793.
    [22]Politanskii S F, U S V. Thermal conversion of fluoromethane[J]. Kinetics and Catalysis.
    [23]Richter H, Vandooren J, Van T P. Structure of a lean hydrogen-oxygen flame seeded or by trifluoromethane[J]. Bull. Soc. Chim. Belg.1990,99:491-501.
    [24]Yamamoto T, Yasuhara A, Shiraishi F, et al. Thermal decomposition of halon alternatives[J]. Chemosphere.1997,35(3):643-654.
    [25]Walravens B, Battin-leclerc F, Come G M, et al. Inhibiting effect of brominated compounds on oxidation reactions[J]. Combustion and Flame.1995,103(4):339-342.
    [26]Ritter E. Experimental Study on 2H-Heptafluoropropane Pyrolysis[J]. CHEMICAL AND PHYSICAL PROCESSES IN COMBUSTION.1997:209-212.
    [27]Reneke J E, Blumer K J, Courchesne W E, et al. The carboxy-terminal segment of the yeast [alpha]-factor receptor is a regulatory domain[J]. Cell.1988,55(2):221-234.
    [28]Kim A, Liu A, Crampton G. Explosion suppression of an armoured vehicle crew compartment[C].2004.
    [29]李海军,乔学亮,陈建国.不同形态纳米氧化镁的制备和应用研究进展[J].材料导报.2007,21(F05):139-142.
    [30]Mishakov I V, Bedilo A F, Richards R M, et al. Nanocrystalline MgO as a dehydrohalogenation catalyst[J]. Journal of Catalysis.2002,206(1):40-48.
    [31]罗改霞,路战胜,杨宗献.M (Al, Cu, Pd, Pt, Rh, Zr)掺杂Ce02的第一性原理研究[J].中国稀土学报.2007,1.
    [32]姜亚昌,王巧梅,李华.稀土纳米材料的应用及生产技术[J].稀土信息.2002(008).
    [33]Tschuikow-roux E, Millward G E, Quiring W J. Kinetics of the shock wave pyrolysis of pentafluoroethane[J]. The Journal of Physical Chemistry.1971,75(23):3493-3498.
    [34]Okamoto Y, Tomonari M. Ab initio calculations on reactions of CHF3 with its fragments[J]. Journal of Physical Chemistry A.2000,104(12):2729-2733.
    [35]Edwards J W, Small P A. Kinetics of the pyrolysis of chlorodifluoromethane[J]. Industrial and Engineering Chemistry Fundamentals.1965(4):396-400.
    [36]Aviyente V, Inel Y. Analysis of the kinetics of the thermal decomposition of pentafluoroethane[J]. Canadian Journal of Chemistry.1990,68(8):1332-1337.
    [37]Appadoo D R, Robertson E G, Mcnaughton D. High resolution FTIR spectroscopic study of the ν 4 band of CH3CHF2 (R152a) enclosed in a flow of cold N2 gas[J]. Fourier Transform Spectroscopy.
    [38]Gao H, Wang Y, Wan S Q, et al. Theoretical investigation of the hydrogen abstraction from CF3CH2CF3 by OH radicals, F, and Cl atoms:A dual-level direct dynamics study[J]. Journal of Molecular Structure:THEOCHEM.2009.
    [39]Rice J K, Wyatt J R, Pasternack L. Selective catalytic activity toward hydrofluorocarbon refrigerants in mixed oxides of manganese and copper[J]. Applied Catalysis B: Environmental.2000,24(2):107-120.
    [40]Barnes R B, Gore R C, Stafford R W, et al. Qualitative organic analysis and infrared spectrometry[J]. Analytical Chemistry.1948,20(5):402-410.
    [41]Babushok V I, Mcnesby K L, Miziolek A W, et al. Modeling of synergistic effects in flame inhibition by 2-H heptafluoropropane blended with sodium bicarbonate[J]. Combustion and Flame.2003,133(1):201-206.
    [42]张明千,刘崇娅,刘俊声.乙烷在碱土金属氧化物催化剂上的氧化脱氢:Ⅰ.碱金 属氯化物的添加效果[J].石油化工.1993,22(009):590-593.
    [43]胥会祥,吕剑.Cr/MgF2氟化催化剂活性物种的研究[J].催化学报.2002,23(004):345-348.
    [44]范杰,徐秀峰,牛宪军.CF4在A1203基金属氧化物上的分解反应[J].物理化学学报.2008,24(007):1271-1276.
    [45]Lee C H. Enhanced efficiency and durability of organic electroluminescent devices by inserting a thin insulating layer at the Alq3/cathode interface[J]. Synthetic Metals.1997, 91(1-3):125-127.
    [46]Wojciechowska M, Omnicki S, Gut W. Selective oxidation of toluene ando-xylene on MgF 2-supported monolayer vanadium oxide catalyst[J]. Catalysis Letters.1993,20(3): 305-316.
    [47]Park Y, Lee J, Lee S K, et al. Photoelectron spectroscopy study of the electronic structures of Al/MgF/tris-(8-hydroxyquinoline) aluminum interfaces[J]. Applied Physics Letters.2001,79:105.
    [48]曹玉萍,李玉国,孙钦军.氧化镁纳米粉体的制备与表征[J].山东师范大学学报:自然科学版.2007,22(001):69-70.
    [49]王宝和,景殿策,王增辉.氧化镁纳米棒的晶格畸变及反常红外特性[J].河南化工.2008,25(01 0):25-27.
    [50]叶锡生,刘清.纳米氧化镁晶粒微结构的尺寸效应[J].浙江大学学报:自然科学版.2000,34(001):1-4.
    [51]Prescott H A, Li Z J, Kemnitz E, et al. New magnesium oxide fluorides with hydroxy groups as catalysts for Michael additions[J]. Journal of Materials Chemistry.2005,15(43): 4616-4628.
    [52]许苏越,续冬晨.卤代烃灭火剂产生酸性气体的毒害性[J].武警学院学报.2007,23(004):5-8.
    [53]袁慎忠,鞠文鹏,张燕.纳米氧化铈的制备及其催化性能的研究[J].中国稀土学报.2003,2.
    [54]孔祥晋,潘湛昌,肖楚民.纳米氧化铈催化作用研究探讨[J].化学与生物工程.2005,22(002):1-3.
    [55]徐宏,田德余.纳米氧化铈的制备及其催化性能研究[J].深圳大学学报:理工版.2002,19(002):13-16.
    [56]El F J, Boujana S, Dexpert H, et al. Redox Processes on Pure Ceria and on Rh/CeO2 Catalyst Monitored by X-Ray Absorption (Fast Acquisition Mode)[J]. The Journal of Physical Chemistry.1994,98(21):5522-5533.
    [57]王少成,陈庚,曹勇.纳米氧化铈催化苯甲酸甲酯催化氢化合成苯乙酮[J].复旦学报:自然科学版.2004,43(004):615-620.
    [58]段国荣,杨绪杰,陆路德.超微氧化铈粉体的表面改性及分散性能研究[J].材料科学与工艺.2007,15(005):682-684.
    [59]潘超.氧化铈催化剂的合成及其在苯甲酸甲酯催化加氢中的应用[D].上海:复旦大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700