新型样品前处理技术在环境有机污染物分析检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境介质中有机或无机污染物的分析测定是环境分析化学的一个重要分支。目前已经发展了一系列的仪器分析方法如高效液相色谱法、气相色谱法、毛细管电泳、化学发光法、电化学法、原子吸收光谱和原子发射光谱等用于环境基质中有机或无机污染物的残留测定。但复杂环境基体中有毒污染物的浓度通常较低且成分复杂,需要应用适当的前处理技术对样品进行分离、富集和净化才能进行分析检测。可以说,样品前处理技术的优劣决定了分析方法的可靠性,对于定性定量检测具有至关重要的意义。传统的样品前处理技术如液液萃取和索氏提取等操作繁琐,且消耗大量有毒有害有机溶剂,易对环境造成二次污染,不能满足环境分析工作的要求。因而有必要开发简单、快速、高效、绿色环保的样品前处理技术来促进分析技术的发展。近年来,新型样品前处理技术的开发已经成为环境科学领域的研究热点之一。目前已开发的新型样品前处理技术包括浊点萃取、固相萃取、固相微萃取、液相微萃取、加压流体萃取、基质固相分散、搅拌棒吸附萃取等,其中固相萃取技术由于富集效率高、有机溶剂用量少、易于自动化、操作模式多样化等优点而被用于环境及生物样品前处理。液相微萃取是最近几十年发展起来的一种新型样品前处理技术,因其微型化操作、萃取速度快、萃取效率高、萃取溶剂用量小等优点备受亲睐。对于固相萃取而言,吸附剂的选择是影响固相萃取效率最重要的因素之一,目前己实现商品化的固相萃取吸附剂有C8、C18、OasisHLB、石墨化碳黑等等,而近年来纳米材料和生物材料在固相萃取中的应用引起人们的广泛关注。对于液相微萃取而言,操作模式以及萃取溶剂的选择是萃取成功与否的关键。基于此,本文建立了一系列基于固相萃取技术和液相微萃取技术的新型分析方法,并考察其在环境有机污染物分析检测中的应用。论文共分为六章:
     第一章:综述了近年来新型样品前处理技术在环境污染物分析检测中的应用进展。
     第二章:本章采用香烟过滤嘴做为固相萃取吸附剂,结合反相高效液相色谱分析技术,建立了环境水样中六种氟喹诺酮类抗生素药物氟罗沙星(FLE)、左氧氟沙星(LEV)、诺氟沙星(NOR)、环丙沙星(CIP)、加替沙星(GAT)和莫西沙星(MOX)残留的同时分析新方法。实验系统考察了洗脱剂种类和体积、样品溶液流速、样品溶液酸度和样品体积等因素对固相萃取效率的影响。实验结果表明,在最佳固相萃取条件下六种目标分析物均能够得到有效富集。所建立分析方法的检测限为2-5ng L-1,重复实验相对标准偏差为4.1%-6.3%,实际样品加标回收率为76%-112%。实际水样检测结果表明,香烟过滤嘴材料可有效萃取水溶液中氟喹诺酮抗生素药物,所建立的分析方法简便、快速、准确、灵敏度高、重现性好,适用于环境水样中六种氟喹诺酮类抗生素药物残留分析。
     第三章:本章采用溶剂热共沉淀法成功制备了磁性多壁碳纳米管复合材料,以此作为磁性固相萃取吸附剂结合高效液相色谱法检测环境水样中阴离子表面活性剂线性烷基苯磺酸盐(LAS)。系统研究了影响萃取效率的因素如吸附剂用量、吸附时间及温度、样品溶液pH、离子强度、腐殖酸浓度以及共存污染物等。在最优萃取条件下,所建立分析方法的富集倍数为500,检测限为0.013-0.021μg L-1,线性范围为0.5-100μg L-1(LAS总浓度),线性相关系数为0.9938-0.9998。相同实验条件下6次平行测定相对标准偏差为2.4-5.6%。实际样品加标回收率高达87.3-106.3%。重复使用结果表明,50次吸附-解吸周期后,本文所合成磁性碳纳米管复合物对LAS的萃取回收率仍保持95%以上。最后,将本文所建立的分析方法用于环境水样包括废水样和河水样中线性烷基苯磺酸盐(LAS)的分析检测,实验结果令人满意。
     第四章:本章建立了分散辅助-悬浮固化-液相微萃取技术结合高效液相色谱-紫外方法检测环境水样及食品样品中的苏丹红染料(苏丹红Ⅰ-Ⅳ)的新方法。实验系统优化了萃取剂种类及体积、分散剂种类及体积、离子强度、萃取时间、萃取温度以及样品溶液pH等影响萃取效率的因素。得到的最佳萃取条件:离子强度,10%NaCl(w/v);样品溶液pH,7.0;萃取时间,20min;萃取温度,70℃;样品体积,10mL;萃取剂种类及体积,100μL十二醇;分散剂种类及体积,400μL乙醇。在最佳实验条件下,四种目标分析物的检测限均为0.03μgL-1,线性范围为0.2-500μgL-1,六次重复实验的相对标准偏差为3.1-5.2%,实际水样及食品样品的加标回收率分别为91.1-108.6%和92.6-106.6%,三次测定结果的相对标准偏差小于10%。实验结果表明,本文所建立的分析方法具有快速、灵敏、操作简单等优点,可应用于环境水样和食品样品中苏丹红染料的分析测定,实验结果令人满意。
     第五章:本章通过戊二醛化学交联法将阳离子聚合物聚乙烯亚胺(Polyethylenimine, PEI)接枝到氨基化磁性纳米颗粒表面,制备得到对阴离子表面活性剂线性烷基苯磺酸盐(LAS)具有强烈吸附性能的复合吸附剂(Fe3O4/NH2/PEI)。利用傅立叶变换红外光谱(FT-IR)、X射线衍射(XRD)、热重分析(TGA)、BET比表面等分析手段对其进行了表征,并研究了其对水溶液中线性烷基苯磺酸盐(LAS)的吸附去除性能。考察了PEI负载量、吸附剂用量、吸附介质pH值以及离子强度等因素对LAS吸附容量的影响;系统研究了LAS在Fe304/NH2/PEI上的吸附动力学、吸附热力学以及吸附等温线。结果表明,PEI大分子链中大量质子化的胺基氮原子与线性烷基苯磺酸盐(LAS)分子结构中磺酸基阴离子之间产生的静电相互作用是Fe304/NH2/PEI对LAS吸附去除的主要机理。Fe3O4/NH2/PEI对LAS具有强烈的吸附去除能力,初始浓度为20和50mg L-1,吸附时间为3小时时LAS吸附去除率均可达100%。吸附动力学实验表明,LAS吸附反应过程符合准二级动力学方程。等温吸附数据符合Langmuir模型。该吸附剂具有超顺磁性以及良好的吸附能力,能有效去除水溶液中线性烷基苯磺酸盐(LAS),且吸附剂很容易从废水中分离出来。因此,该材料可作为高效吸附剂材料吸附去除水溶液中其他阴离子污染物。
     第六章:本章通过水热法合成磁性多壁碳纳米管复合物,并对其进行一系列的表征。以合成的磁性多壁碳纳米管为吸附剂进行水溶液中两种喹诺酮类抗生素(莫西沙星和诺氟沙星)的静态吸附试验,考查了吸附热力学、吸附动力学、吸附等温线以及水化学因素等对磁性碳纳米管吸附性能的影响。实验结果表明,磁性碳纳米管对莫西沙星和诺氟沙星的吸附是一个先快速后缓慢的过程,吸附过程均符合准二级反应动力学方程,10h可达吸附平衡;莫西沙星和诺氟沙星的等温吸附数据均能较好地用Langmuir吸附等温方程进行拟合;中性pH条件下吸附效果最佳,主要靠分子状态的莫西沙星和诺氟沙星与磁性多壁碳纳米管表面之间的疏水性相互作用以及碳纳米管表面与吸附质分子结构中芳香苯环之间的π-π相互作用机理而吸附去除。本文所合成的纳米复合物同时具有磁性材料易于分离以及多壁碳纳米管超强吸附性能的性质,操作简单、稳定、重复使用性好,是一种优良的吸附剂,可作为高效吸附剂用于水溶液中其他污染物的去除。
The determination of organic and inorganic contaminants in environmental matrix has been an important branch in environmental analytical chemistry. Various instrumental analysis approaches such as high performance liquid chromatography (HPLC), gas chromatography (GC), chemiluminescence, electrochemical analysis, atomic absorption spectroscopy (AAS) and atomic emission spectroscopy (AES) have been developed to determine the residues of organic and inorganic contaminants. However, due to fact that the concentration level of the toxic contaminants in the complex matrix is low and the chemical compositions are rather complicated, it is impossible to directly determinate the real concentration of the target compounds. So the sample preparation steps including separation, enrichment and purification of the target from the studied matrix are so critical for quantitative analysis. In some sense, the reliability of the analytical method depends on the quality of the sample pretreatment procedures, and it is of vital significance to qualitative and quantitative detection.
     Traditional sample pre-treatment technologies, such as liquid-liquid extraction and Soxhlet extraction, is tedious and consume large amounts of toxic and hazardous organic solvents, easy to cause secondary pollution to the environment, and can not meet the requirements of the environmental analysis. So it is necessary to develop simple, rapid, efficient and green sample pretreatment techniques to promote the development of analytical technology. The study on the sample pretreatment has become one of the hotspots in the field of environmental science. So far, lots of novel sample preparation methods including cloud point extraction (CPE), solid-phase extraction (SPE), solid-phase microextraction (SPME), liquid-phase microextraction (LPME), pressuried fluid extraction (PFE), matrix solid-phase dispersion (MSPD), Stir Bar Sorptive Extraction (SBSE) have been widely used. Among which, SPE was usually used for the pretreatment of environmental and biological samples for its high efficient enrichment, low organic solvent consumption, ease automation, diversification of operation modes and other advantages. LPME is one of the newly developed sample pretreatment techniques, and has received great attention due to its characteristics of miniaturization operation, high enrichment efficiency, high extraction speed and little reagent-consuming. As for SPE, one of the key factors affecting extraction efficiency is the choice of adsorbents. Commercial SPE adsorbents including C8, C18, Oasis HLB, graphitizede carbonb, etc have shortcomings in adsorptive selection and reusability, which led to the demand of exploring new adsorptive materials. In recent years, nanomaterials and biomaterials have attracted widespread interest in the field of SPE due to their unique structures and properties. As for LPME, the operation mode and the choice of extraction solvent are keys to the success of extraction. In this thesis, we established a series of novel analytical methods based on SPE and LPME, and investigated their application in the determination of environmental organic pollutants. It is maily composed of six chapters:
     The first chapter:In this chapter, we summarized the applications of novel sample preparation techniques in the field of environmental analysis.
     The second chapter:In this chapter, the potential use of cigarette filters (CFs) as SPE adsorbents for the preconcentration of six fluoroquinolones (FQs) antibacterial agents prior to liquid chromatography was examined. In order to find a suitable procedure for extraction of the target FQs in one single step, various parameters probably affecting the extraction efficiency including the eluent kind and volume, sample flow rate, pH of sample solution, ion strength and sample volume were systematically optimized. Under the optimized conditions, the target FQs could be easily extracted by the proposed SPE cartridge. Combination of SPE with HPLC/UV provided detection limits for different FQs of2-5ng L-1when500mL of water sample was processed. The precision of the method, expressed as relative standard deviation, ranged from4.1to6.3%for2.5μg L-1FQs. The recoveries of FQs spiked in environmental water samples ranged from76to112%. The results obtained from the proposed method demonstrated that CFs-based solid-phase extraction combined with HPLC/UV was suitable for analyzing fluoroquinolones in water samples at ng L-concentration level.
     The third chapter:In this chapter, the magnetic multiwalled carbon nanotubes (MMWCNTs) have been successfully prepared using one-pot solvothermal coprecipitation method, in which magnetic nanoparticles (MNPs) were deposited onto multiwalled carbon nanotubes (MWCNTs) by in situ high temperature decomposition of the magnetic precursor of iron (III) in ethylene glycol media. A novel procedure for extraction of linear alkylbenzene sulfonates (LAS) as model compound was thus developed in an off-line extraction system with detection by HPLC. In order to achieve optimal preconcentration, predominant factors that probably affected the extraction efficiency including the type and volume of eluent solvent, pH of sample solution, sorption time and temperature, ultrasonification desorption time, the content of the electrolyte (NaCl), humic acid concentration, amount of adsorbents and the volume of sample solution were systematically investigated and optimized in terms of recoveries of target analytes. Under the optimized conditions, LAS homologues could be easily extracted by the proposed magnetic SPE. On the basis of high-performance liquid chromatography separation and UV detection of LAS homologues, the favorable limits of detection (LOD) for LAS homologues were in the range from0.013to0.021μg L-1with a linear calibration range from0.5to100μg L-1(total concentration of LAS), and the relative standard deviations (RSDs) were2.4-5.6%for50μg L-1LAS (n=6), and the recoveries of LAS homologues in the spiked environmental water samples ranged from87.3to106.3%. Stability testing demonstrated that the MMWCNTs remained95.0%recovery for the target LAS even after a run of50adsorption and desorption cycles, showing their super operational stability. The MMWCNTs are promising adsorbents, suitable for the long-term repetitive sorption/desorption of target compounds in environmental water samples.
     The fourth chapter:In this chapter, a novel analytical method based on dispersion assisted solidification of floating organic drop LPME coulped with high performance liquid chromatography (DLPME-SFO-HPLC) was established for the determination of Sudan (I-IV) dyes in environmental water samples and food samples. Predominant factors that probably affected the extraction efficiency including the extractant and its volumn, dispersant and its volume, ionic strength, extraction time and temperature, pH of sample solution and volume of sample solution were systematically investigated and optimized in terms of recoveries of target analytes. On the basis of the experimental obtained in the optimization procedures, the optimized conditions are as follows:100μL1-dodecanol as extractant,400μL ethanol as dispersant, sample solution pH7, extraction time20min, extraction temperature70℃, ionic strength (10%NaCl, w/v). Then the optimized extraction conditions were applied to evaluate the analytical performances such as linearity, detection limits and precision of the established method. On the basis of high-performance liquid chromatography separation and UV detection of sudan dyes, the favorable limits of detection (LOD) were0.03μg L-1with a linear calibration range from0.2to500μg L-1, and the relative standard deviations (RSDs) were below10%for20μg L-1sudan (I-IV)(n=6), and the recoveries of sudan (I-IV) in the spiked environmental water samples and food samples were in the range of91.1-108.6%and92.6-106.6%, respectively. The experimental results demonstrated that the established method exhibited high recovery of Sudan dyes. As well as the proposed method is a rapid, precise, green and convenient enrichment method, therefore, can be successfully applied for the analysis of sudan dyes in aqueous environmental samples and food samples.
     The fifth chapter:In this chapter, cationic polymer polyethylenimine (PEI) was grafed to the surface of aminated magnetic nanoparticles through PEl-glutaradehyde cross-linking reaction and the composite adsorbent (Fe3O4/NH2/PEI) were obtained. In order to demonstrate the reliability of the synthetic method, the products were characterized by FT-IR, XRD, TGA and BET surface area. Then the adsorption capacity of the obtained nanocomposite was evaluated for LAS in aqueous solution. Different factors which may affect the adsorption capacity have been taken into account, such as the amounts of PEI, the dosage of adsorbents, pH value of medium and ionic strength. The adsorption kinetics, adsorption thermodynamics and adsorption isotherm were studied systematically. The results showed that the Fe3O4/NH2/PEI has very high affinity to LAS. The removal rate could reach to100%within3h with the initial concentration of20or50mg L-1LAS. Based on the experimental results, we could speculate that the adsorption of LAS molecules on the surface of Fe3O4/NH2/PEI at acid medium was driven by electrostatic interaction between the aminated N atoms and the sulfonic group of LAS molecules. Because of its excellent magnetic properties and adsorption properties, the adsorbent can remove LAS from aqueous solution effectively. What's more, the adsorbent can be separated from the waste water easily under extra magnet field. The represented parameters fitted using Langmuir and Freundlich adsorption models indicated that the Langmuir model effectively describes the adsorption data with larger R2, suggesting a better fit of the Langmuir isotherm with the experimental data compared to the Freundlich isotherm. The pseudo-first-order and pseudo-second-order equations were used to obtain the adsorption kinetic data. The results showed that the adsorption kinetics follows the pseudo-second-order model.
     The sixth chapter: In this chapter, the magnetic multiwalled carbon nanotubes (MMCNTs) were synthesized by a rapid hydrothermal method and then characterized using a series of analytical methods. The obtained magnetic nanocomposites were used to remove two fluoroquinolne antibiotics (moxifloxacin and norfloxacin) from aqueous media through static adsorption experimentals. The adsorption thermodynamics, adsorption kinetics, adsorption isotherm and effect of water quality parameter on adsorption were investigated systematically. The results obtained from adsorption kinetics turned out that the procedure of adsorption was very quickly at the first stage and then tend to slow down as the adsorption time increased. And the adsorption behavior of moxifloxacin and norfloxacin on MMWCNTs fitted the pseudo-second-order kinetics model. The adsorption isotherm of moxifloxacin and norfloxacin can well fit Langmuir model. The maximum adsorption capacity of moxifloxacin and norfloxacin on MMWCNTs were obtained at neutral pH conditions. The hydrophobic interaction between fluoroquinolne molecules and the surface of MMWCNTs dominates probably the adsorption process as well as strong π-π interaction between the benze of FQs and the surface of MMWCNTs. The fabricated magnetic nanocomposites, combining the magnetic properties of MNPs and the extremely high sorption capacity of MWCNTs, exhibited high adsorption efficiency to fluoroquinolne antibiotics and could be easily isolated from water solution after extraction. Thus, it is an excellent adsorbent and could be used as promising adsorbent for removal of other pollutants in aqueous solution.
引文
[1]Pico, Y.; Fernandez, M.; Ruiz, M. J.; Font, G. Current trends in solid-phase-based extraction techniques for the determination of pesticides in food and environment. J. Biochem. Biophys. Methods 2007,70 (2):117-131.
    [2]Hennion, M. C. Solid-phase extraction:method development, sorbents, and coupling with liquid chromatography. J. Chromatogr. A 1999,856 (1-2):3-54.
    [3]Iijima, S. Helical microtubules of graphitic carbon. Nature 1991,354 (7):56-58.
    [4]武春霞;王春;王志.碳纳米管在分离科学中的应用研究进展.色谱2011,29(1):6-14.
    [5]Pyrzynska, K. Carbon nanotubes as a new solid-phase extraction material for removal and enrichment of organic pollutants in water. Sep. Purif. Technol.2008,37 (4):372-389.
    [6]Long, R. Q.; Yang, R. T. Carbon nanotubes as superior sorbent for dioxin removal J. Am. Chem. Soc.2001,123 (9):2058-2059.
    [7]Zhou, Q.; Xiao, J.; Wang, W.; Liu, G.; Shi, Q.; Wang, J. Determination of atrazine and simazine in environmental water samples using multiwalled carbon nanotubes as the adsorbents for preconcentration prior to high performance liquid chromatography with diode array detector. Talanta 2006,68 (4):1309-1315.
    [8]Zhou, Q.; Ding, Y.; Xiao, J. Simultaneous Determination of Cyanazine, Chlorotoluron and Chlorbenzuron in Environmental Water Samples with SPE Multiwalled Carbon Nanotubes and LC. Chromatographia 2007,65 (1-2):25-30.
    [9]Zhou, Q.; Wang, W.; Xiao, J. Preconcentration and determination of nicosulfuron, thifensulfuron-methyl and metsulfuron-methyl in water samples using carbon nanotubes packed cartridge in combination with high performance liquid chromatography. Anal. Chim. Acta.2006,559 (2):200-206.
    [10]Zhou, Q.; Xiao, J.; Wang, W.; Liu, G.; Shi, Q.; Wang, J. Comparison of Multiwalled Carbon Nanotubes and a Conventional Absorbent on the Enrichment of Sulfonvlurea Herbicides in Water Samples. Anal. Sci.2007,23 (2):189-192.
    [11]Al-Degsa, Y. S.; Al-Ghouti, M. A.; El-Sheikh, A. H. Simultaneous determination of pesticides at trace levels in water using multiwalled carbon nanotubes as solid-phase extractant and multivariate calibration. J. Hazard. Mater 2009,169(1-3):128-135.
    [12]Ravelo-Perez, L. M.; Hernandez-Borges, J.; Rodriguez-Delgado, M. A. Multi-walled carbon nanotubes as efficient solid-phase extraction materials of organophosphorus pesticides from apple, grape, orange and pineapple fruit juices. J. Chromatogr. A 2008,1211 (1-2):33-42.
    [13]Suarez, B.; Santos, B.; Simonet, B. M.; Cardenas, S.; Valcarcel, M. Solid-phase extraction-capillary electrophoresis-mass spectrometry for the determination of tetracyclines residues in surface water by using carbon nanotubes as sorbent material. J. Chromatogr. A 2007,1175(1):127-132.
    [14]Zhao, H.; Wang, L.; Qiu, Y.; Zhou, Z.; Zhong, W. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of three barbiturates in pork by ion trap gas chromatography-tandem mass spectrometry (GC/MS/MS) following microwave assisted derivatization. Anal. Chim. Acta 2007,586 (1-2):399-406.
    [15]Wang, L.; Zhao, H.; Qiu, Y.; Zhou, Z. Determination of four benzodiazepine residues in pork using multiwalled carbon nanotube solid-phase extraction and gas chromatography-mass spectrometry. J. Chromatogr. A 2006,1136 (1):99-105.
    [16]Cruz-Vera, M.; Lucena, R.; Cardenas, S.; Valcarcel, M. Combined use of carbon nanotubes and ionic liquid to improve the determination of antidepressants in urine samples by liquid chromatography. Anal. Bioanal. Chem.2008,391 (1):1139-1145.
    [17]Cai, Y.; Jiang, G.; Liu, J.; Zhou, Q. Multiwalled Carbon Nanotubes as a Solid-Phase Extraction Adsorbent for the Determination of Bisphenol A,4-n-Nonylphenol, and 4-tert-Octylphenol. Anal. Chem.2003,75 (10):2517-2521.
    [18]Cai, Y. Q.; Cai, Y. E.; Mou, S. F.; Lu, Y Q. Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples. J. Chromatogr. A 2005,1081 (2):245-247.
    [19]Wang, W. D.; Huang, Y M.; Shu, W. Q.; Cao, J. Multiwalled carbon nanotubes as adsorbents of solid-phase extraction for determination of polycyclic aromatic hydrocarbons in environmental waters coupled with high-performance liquid chromatography. J. Chromatogr. A 2007,1173 (1-2):27-36.
    [20]Fang, G. Z.; He, J. X.; Wang, S. Multiwalled carbon nanotubes as sorbent for on-line coupling of solid-phase extraction to high-performance liquid chromatography for simultaneous determination of 10 sulfonamides in eggs and pork. J. Chromatogr, A 2006,1127 (1-2):12-17.
    [21]Cai, Y.; Jiang, G.; Liu, J.; Zhou, Q. Multiwalled Carbon Nanotubes as a Solid-Phase Extraction Adsorbent for the Determination of Bisphenol A,4-n-Nonylphenol, and 4-tert-Octylphenol. Anal. Chem.2003,75 (10):2517-2521.
    [22]Cai, Y.; Jiang, G.; Liu, J.; Zhou, Q. Multiwalled Carbon Nanotubes as a Solid-Phase Extraction Adsorbent for the Determination of Bisphenol A,4-n-Nonylphenol, and 4-tert-Octylphenol. Anal. Chem.2003,75 (10):2517-2521.
    [23]Li, Q. L.; Yuan, D. X.; Lin, Q. M. Evaluation of multi-walled carbon nanotubes as an adsorbent for trapping volatile organic compounds from environmental samples. J. Chromatogr. A 2004,1026 (1-2):283-288.
    [24]Liang, P.; Liu, Y.; Guo, L.; Zeng, J.; Lu, H. Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom.2004,19 (11): 1489-1492.
    [25]El-Sheikh, A. H.; Sweileh, J. A.; Al-Degs, Y. S. Effect of dimensions of multi-walled carbon nanotubes on its enrichment efficiency of metal ions from environmental waters. Anal. Chim. Acta 2007,604 (2):119-126.
    [26]Zang, Z.; Hu, Z.; Li, Z.; He, Q.; Chang, X. Synthesis, characterization and application of ethylenediamine-modified multiwalled carbon nanotubes for selective solid-phase extraction and preconcentration of metal ions. J. Hazard. Mater.2009,172 (2-3):958-963.
    [27]T, S.; A., M. Application of modified multiwalled carbon nanotubes as a sorbent for simultaneous separation and preconcentration trace amounts of Au(Ⅲ) and Mn(Ⅱ). J. Hazard. Mater.2009,168 (2-3):1548-1553.
    [28]Munoz, J.; Gallego, M.; Valcarcel, M. Speciation of Organometallic Compounds in Environmetal Samples by Gas Chromatography after Flow Preconcentration on Fullerenes and Nanotubes. Anal. Chem.2005,77 (16):5389-5395.
    [29]Herrera-Herrera, A. V.; Ravelo-Perez, L. M.; Hernandez-Borges, J.; Afonso, M. M.; Palenzuela, J. A.; Rodriguez-Delgado, M.,29-Oxidized multi-walled carbon nanotubes for the dispersive solid-phase extraction of quinolone antibiotics from water samples using capillary electrophoresis and large volume sample stacking with polarity switching. J. Chromatogr. A 2011,1218 ((31):5352-5361.
    [30]XIAO, J.; ZHOU, Q.; BAI, H. Application of multiwalled carbon nanotubes treated by potassium permanganate for determination of trace cadmium prior to flame atomic absorption spectrometry. J. Environ. Sci.2007,19 (10):1266-1271.
    [31]Liu, Y.; Li, Y.; Wu, Z. Q.; Yan, X. P. Fabrication and characterization of hexahistidine-tagged protein functionalized multi-walled carbon nanotubes for selective solid-phase extract Cu2+ and Ni2+. Talanta 2009,79 (5):1464-1471.
    [32]Li, L.; Huang, Y.; Wang, Y.; Wang, W. Hemimicelle capped functionalized carbon nanotubes-based nanosized solid-phase extraction of arsenic from environmental water samples. Anal. Chim. Acta.2009,631 (2):182-188.
    [33]Zang, Z.; Hu, Z.; Li, Z.; He, Q.; Chang, X. Synthesis, characterization and application of ethylenediamine-modified multiwalled carbon nanotubes for selective solid-phase extraction and preconcentration of metal ions. J Hazard Mater.2009,172 (2-3):958-963.
    [34]Q.Liu; Shi, J.; Zeng, L.; Wang, T.; Cai, Y.; Jiang, G. Evaluation of graphene as an advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes. J.Chromatogr.A 2011,1218 (2):197-204.
    [35]Wang, Y.; Gao, S.; Zang, X.; Li, J.; Ma, J. Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples. Anal.Chim.Acta 2012,716 (1):112-118
    [36]Wu, S.; Lan, X.; Cui, L.; Zhang, L.; Tao, S.; Wang, H.; Han, M.; Liu, Z.; Meng, C. Application of graphene for preconcentration and highly sensitive stripping voltammetric analysis of organophosphate pesticide. Anal. Chim. Acta 2011,699 (2):170-176
    [37]Gong, J.; Miao, X.; Zhou, T.; Zhang, L. An enzymeless organophosphate pesticide sensor using Au nanoparticle-decorated graphene hybrid nanosheet as solid-phase extraction. Talanta 2011,85 (3):1344-1349.
    [38]Liu, Q.; Shi, J.; Sun, J.; Wang, T.; Zeng, L.; Jiang, G. Graphene and Graphene Oxide Sheets Supported on Silica as Versatile and High-Performance Adsorbents for Solid-Phase Extraction. Angew. Chem. Int. Ed.2011,50 (26):5913-5917.
    [39]Shi, C.; Meng, J.; Deng, C. Enrichment and detection of small molecules using magnetic graphene as an adsorbent and a novel matrix of MALDI-TOF-MS. Chem. Commun.2012,48 (18):2418-2420.
    [40]Wu, Q.; Zhao, G.; Feng, C.; Wang, C.; Wan, Z. Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples. J. Chromatogr. A 2011,1218 (44):7936-7942.
    [41]Huang, C.; Hu, B. Silica-coated magnetic nanoparticles modified with y-mercaptopropyltrimethoxysilane for fast and selective solid phase extraction of trace amounts of Cd, Cu, Hg, and Pb in environmental and biological samples prior to their determination by inductively coupled plasma mass spectrometry. Spectrochim. Acta, Part B 2008,63 (3):437-444.
    [42]Zhao, X.; Shi, Y.; Cai, Y.; Mou, S. Cetyltrimethylammonium Bromide-Coated Magnetic Nanoparticles for the Preconcentration of Phenolic Compounds from Environmental Water Samples. Environ. Sci. Technol.2008,42 (4):1201-1206.
    [43]Zhao, X.; Cai, Y.; Wang, T.; Shi, Y.; Jiang, G. Preparation of alkanethiolates functionalized core/shell Fe3O4@Au nanoparticles and its interaction with several typical target molecules. Anal. Chem.2008,80 (23):9091-9096.
    [44]Liu, H.; Li, J.; Liu, X.; Jiang, S., A novel multiwalled carbon nanotubes bonded fused-silica fiber for solid phase microextraction-gas chromatographic analysis of phenols in water samples. Talanta 2009,78 (3):929-935.
    [45]Ji, Y.; Yin, J.; Xu, Z.; Zhao, C.; Huang, H.; Zhang, H.; Wang, C. Preparation of magnetic molecularly imprinted polymer for rapid determination of bisphenol A in environmental water and milk samples. Anal. Bioanal. Chem.2009,395 (4):1125-1133.
    [46]Liu, Y.; Li, H.; Lin, J. M. Magnetic solid-phase extraction based on octadecyl functionalization of monodisperse magnetic ferrite microspheres for the determination of polycyclic aromatic hydrocarbons in aqueous samples coupled with gas chromatography-mass spectrometry. Talanta 2009,77 (3):1037-1042.
    [47]Ballesteros-Gomez; Rubio, S. Hemimicelles of Alkyl Carboxylates Chemisorbed onto Magnetic Nanoparticles:Study and Application to the Extraction of Carcinogenic Polycyclic Aromatic Hydrocarbons in Environmental Water Samples. Anal.Chem.2009,81 (21): 9012-9022.
    [48]Zhang, S.; Niu, H.; Cai, Y.; Shi, Y Barium alginate caged Fe3O4@C18 magnetic nanoparticles for the pre-concentration of polycyclic aromatic hydrocarbons and phthalate esters from environmental water samples. Anal. Chim. Acta 2010,665 (2):167-175.
    [49]Song, Y.; Zhao, S.; Tchounwou, P.; Liu, Y M. A nanoparticle-based solid-phase extraction method for liquid chromatography-electrospray ionization-tandem mass spectrometric analysis. J. Chromatogr. A 2007,1166 (1-2):79-84.
    [50]Shen, H. Y.; Zhu, Y.; Wen, X. E.; Zhuang, Y. M. Preparation of Fe3O4-C18 nano-magnetic composite materials and their cleanup properties for organophosphorous pesticides. Anal. Bioanal. Chem.2007,387 (6):2227-2237.
    [51]Morales-Cid, G.; Feket, A.; Simonet, B. M.; Lehmann, R.; Cardenas, S.; Zhang, X.; Valcarcel, M.; P. Schmitt-Kopplin. In Situ Synthesis of Magnetic Multiwalled Carbon Nanotube Composites for the Clean-up of (Fluoro)Quinolones from Human Plasma Prior to Ultrahigh Pressure Liquid Chromatography Analysis. Anal. Chem.2010,82 (7):2743-2752.
    [52]Niu, H.; Zhang, S.; Zhang, X.; Cai, Y. Alginate-polymer-caged, Cl8-functionalized magnetic titanate nanotubes for fast and efficient extraction of phthalate esters from water samples with complex matrix. ACS Appl. Mater. Interfaces 2010,2 (4):1157-1163.
    [53]Sun, L.; Chen, L.; Sun, X.; Du, X.; Yue, Y.; He, D.; Xu, H.; Zeng, Q.; Wang, H.; Ding, L. Analysis of sulfonamides in environmental water samples based on magnetic mixed hemimicelles solid-phase extraction coupled with HPLC-UV detection. Chemosphere 2009, 77(10):1306-1312.
    [54]Sun,L.;Zhang,C.;Chen,L.;Liu,J.;Jin,H.;Xu,H.;Ding,L.Preparation of alumina-coated magnetite nanoparticle for extraction of trimethoprim from environmental water samples based on mixed hemimicelles solid-phase extraction.Anal. Chim. Acta 2009,638(2): 162-168.
    [55]Sun,L.;Sun,X.;Du,X.;Yue, Y., Chen,L.;Xu,H.;Zeng,Q.;Wang,H.;Ding,L. Determination of sulfonamides in soil samples based on alumina-coated magnetite nanoparticles as adsorbent.Anal. Chim. Acta 2010,665(2):185-192.
    [56]Zhang,X.;Niu,H.;Pan,Y.;Shi,Y.;Cai,Y. Chitosan-coated octadecyl一functionalized magnetite nanoparticles:preparation and application in extraction of trace pollutants from environmental water samples.Anal.Chem.2010,82(6):2363-2371.
    [57]Parham,H.;Rahbar,N.Solid phase extraction-spectrophotometric determination of fluoride in water samples using magnetic iron oxide nanoparticles.Talanta 2009,80(2):664-669.
    [58]Zhou,Q.X.;Zhao,X.N.;Xiao,J.P.Preconcentration of nickel and cadmium by TiO2 nanotubes as solid-phase extraction adsotbents coupled with flame atomic absorption spectrometry.Talanta 2009,77(5):1774-1777.
    [59]Kefi,B.B.;Atrache,L.L.E.;Kochkar,H.;Ghorbel,A.TiO2 nanotubes as solid-phase extraction adsorbent for the determination of polycyclic aromatic hydrocarbons in environmental water samples.J.Environ.Sci.2011,23(5):860-867.
    [60]Ezoddin,M.;Shemirani,F.;Abdi,K.;Saghezchi,M.;Jamali,M.Application of modified nano-alumina as a solid phase extraction sorbent for the preconcentration of Cd and Pb in water and herbal samples prior to flame atomic absorption spectrometry determination.J. Hazard.Mater.2010,178(1-3):900-905.
    [61]Ramesh,A.;Devi,B.A.;Hasegawa,H.;Maki,T.;Ueda,K.Nanomete-sized alumina coated with chromotropic acid as solid phase metal extractant from environmental samples and determination by inductively coupled plasma atomic emission spectrometry.Microchem. J. 2007,86(1):124-130.
    [62]Wang, H.; Yu, S.; Campiglia, A. D. Solid-phase nano-extraction and laser-excited time-resolved Shpol'skii spectroscopy forthe analysis of polycyclic aromatic hydrocarbons in drinking water samples. Anal. Biochem. 2009,385(2):249-256.
    [63]Yalcinkaya, O.;Kalfa,O.M.;Turker, A.R.Chelating agent free-solid phase extraction (CAF-SPE)of Co(Ⅱ),Cu(Ⅱ)and Cd(Ⅱ)by new nano hybrid material(ZrO2/B2O3).J. Hazard. Mater.2011,195(0):332-339.
    [64]Liu,S.;Zhang,Z.;Wang,Y.;Wang,F.;Han,M.-Y.Surface-functionalized silica-coated gold nanoparticles and their bioapplications.Talanta 2005,67(3):456-461.
    [65]Mahltig,B.;Arnold,M.;Lothman,P.Surface properties of sol-gel treated thermally modified wood.J.Sol-Gel Sci.Technol.2003,55(2):221-227.
    [66]Kaur, A.; Gupta, U. Preconcentration of Zinc and Manganese using 1-(2-pyridylazo)-2-naphthol Anchored SiO2 Nanoparticles.Eurasian J. Anal. Chem.2009,4 (3):234-244.
    [67]Huang, C.; Hu, B. Silica-coated magnetic nanoparticles modified with γ-mercaptopropyltrimethoxysilane for fast and selective solid phase extraction of trace amounts of Cd,Cu,Hg,and Pb in environmental and biological samples prior to their determination by inductively coupled plasma mass spectrometry.Spectrochimica Acta Part B: Atomic Spectroscopy 2008,63(3):437-444.
    [68]Burguera,J.L.;Burguera,M.Recent on-line processing procedures for biological samples for detelmination oftrace elements by atomic spectrometric methods.Spectrochimica Acta Part B: Atomic Spectroscopy 2009,64(6):451.458.
    [69]Sellergren,B.Direct drug determination by selective sample enrichment on an imprinted polymer.Anal Chem 1994,66(9):1578-1582.
    [70]Zhai,C.;Lu,Q.;Chen,X.;Peng,Y.,Chen,L.;Du,S.Molecularly imprinted layer-coated silica nanoparticles toward highly selective separation of active diosgenin from Dioscorea nipponica Makino.J. Chromatogr.A 2009,1216(12):2254-2262.
    [71]Yoshimatsu,K.;Ye,L.;Lindberg,J.;Chronakis,I.S.Selective molecular adsorption using electrospun nanofiber affinity membranes.Biosens.Bioelectron.2008,23(7):1208-1215.
    [72]Qu,S.;Kong,J.;Yang,P.;Chen.G. Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing.Talanta 2007,71(2007):1096-1102.
    [73]Qiu,L.;Qiu,L.;Yu,J.C.C.;Lai,E.P.C.Molecularly imprinted solid phase extraction in a syringe needle packed with polypyrrole-encapsulated carbon nanotubes for determination of ochratoxin a in red wine.Food Sc.i Techno.l Int 2007,13(5):375-380.
    [741 Cassiano,N.M.;Lima,V.V.;Oliveira,R.V.;Pietro,A.C.d.;Cass,Q.B.Development of restricted-access media supports and their application to the direct analysis of biological fluid samples via high-performance liquid chromatography.Anal Bioanal Chem 2006,384(7-8): 1462-1469.
    [75]Sanbe, H.; Haginaka,J. Restricted access media-molecularly imprinted polymer for propranolol and its application to direct injection analysis of β-blockers in biological fluids. Analyst.2003,128(6):593-597.
    [76]Haginaka,J.;Sanbe,H.;Takehira,H.Uniform-sized molecularly imprinted polymer for (S)-ibuprofen retention properties in aqueous molile phases.J.Chromatogr.A 1999,857 (1-2):117-125.
    [77]Sanbe, H.; Haginaka,J. Restricted access media-molecularly imprinted polymer for propranolol and its application to direct injection analysis of β-blockers in biological fluids. Analyst 2003,128(6):593-597.
    [78]Hoshina,K.;Horiyama,S.;Matsunaga,H.;Haginaka,J.Molecularly imprinted polymers for simultaneous determination of antiepileptics in river water samples by liquid chromatographytandem mass spectrometry.J.Chromatogr.A 2009,1216(25):4957-4962.
    [79]Sun, H.; Qiao, F. Recognmon mechanism of water-compatible molecularly imprinted solid-phase extraction determination of nine quinolones in urine performance liquid chromatography.J.Chromatogr.A 2008,1212(1-2):1-9.
    [80]王学军;许振良;杨座国;邴乃慈.水相识别分子印迹技术.化学进展 2007,19(5):805-812.
    [81]Cobb,Z.;Sellergren,B.;Andersson,L.I.Water-compatible molecularly imprinted polymers for efficient direct injection on-line solid-phase extraction of ropivacaine and bupivacaine from human plasma.Analys,2007,132(12):]262-1271.
    [82]Urraca,J.L.;Hall,A.J.;Moreno-Bondi,M.C.;Sellergren,B.A stoichiometric molecularly imprinted polymet f.or the class-selective recognition of antibiotics in aqueous media.Angew. Chem.Int Ed 2006,45(31):5158-5161.
    [83]Benito-Pena,E.;Urraca,J.L.;Sellergren,B.;Moreno-Bondi,M.C.Solid-phase extraction of fluoroquinolones from aqueous samples using a water-compatible stochiometrically imprinted polymer.J.Chromatogr.A 2008 1208(1-2):62-70.
    [84]Luo,W.;Zhu,L.;Yu,C.;Tang,H.;Yu,H.;Li,X.;Zhang,X.Synthesis of surface molecularly imprinted silica micro-particles in aqueous solution and the usage for selective off-line solid-phase extraction of 2,4-dinitrophenol from water matrixes.Anal. Chim. Acta 2008,618 (2):147-156.
    [85]Rajkumar,R.; Warsinke,A.;Mohwald,H.;Scheller,F.W.;Katterle,M.Analysis of recognition of fructose by imprinted polymers.Talanta 2008,76(5):1119-1123.
    [86]Asanuma,H.;Kakazu,M.;Shibata,M.;Hishiya,T.Molecularly imprinted polymer of[small beta]-cyclodextrin for the efficient recognition of cholesterol.Chem.Commun.1997, (20): 1971.1972.
    [87]Manesiotis,P;Hall,A.J.;Courtois,J.;Irgum,K.;Sellergren,B.An Artificial Riboflavin Receptor Prepared by a Template Analogue Imprinting Strategy.Angew.Chem.Int Ed 2005, 117(25):3970-3974.
    [88]Wang,X.J.;Xu,Z.L.;Feng,J.L.;Bing,N.C.;Yang,Z.G Molecularly imprinted membranes for the recognition of lovastatin acid in aqueous medium by a template analogue imprinting strategy.Journal of Membrane Science 2008,313(1-2):97-105.
    [89]Mapolelo,M.;Torto,N.;Prior,B,Evaluation of yeast strains as possible agents for trace enrichment of metal ions in aquatic environments.Talanta 2005,65(4):930-937.
    [90]Mendil,D.;Tuzen,M.;Usta,C.;Soylak,M.Bacillus thuringiensis var.israelensis immobilized on Chromosorb 101:A new solid phase dxtractant for preconcentration of heavy metal ions in environlnental samples.J. Hazard. Mater.2008,150(2):357-363.
    [91]Tajes-Martinez, P.; Beceiro-Gonzalez, E.; Muniategui-Lorenzo, S.; Prada-Rodriguez,D. Micro-columns packed with Chlorella vulgaris immobilised on silica gel for mercury speciation.Talonta 2006,68(5):1489-1496.
    [92]Tuzen, M.; Uluozlu, O. D.; Usta, C.; Soylak, M. Biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin. Anal. Chim. Acta 2007,581 (2):241-246.
    [93]Mendil, D.; Tuzen, M.; Usta, C.; Soylak, M. Bacillus thuringiensis var. israelensis immobilized on Chromosorb 101:A new solid phase extractant for preconcentration of heavy metal ions in environmental samples. J. Hazard. Mater.2008,150 (2):357-363.
    [94]Raynie, D. E. Modern Extraction Techniques. Anal. Chem.2004,76 (16):4659-4664.
    [95]Wang, C.; Li, C.; Zang, X.; Han, D.; Liu, Z.; Wang, Z. Hollow fiber-based liquid-phase microextraction combined with on-line sweeping for trace analysis of Strychnos alkaloids in urine by micellar electrokinetic chromatography. J.Chromatogr.A 2007,1143 (1-2):270-275.
    [96]Jeannot, M. A.; Cantwell, F. F. Solvent Microextraction into a Single Drop. Anal. Chem.1996, 68 (13):2236-2240.
    [97]Liu, H.; Dasgupta, P. K. Analytical Chemistry in a Drop. Solvent Extraction in a Microdrop. Anal. Chem.1996,68(11):1817-1821.
    [98]Rezaee, M.; Assadi, Y.; Milani Hosseini, M. R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organiccompounds in water using dispersiveliquid-liquid microextraction. J. Chromatogr. A 2006,1116 (1-2):1-9.
    [99]Zanjani, M. R. K.; Yamin, Y.; Shariati, S.; Jonsson, J. A. A new liquid-phase microextraction method based on solidification of floating organic drop. Anal. Chim. Acta 2007,585 (2): 286-293.
    [100]Zanjani, M. R. K.; Yamini, Y.; Shariati, S.; Jonsson, J. A. Anew liquid-phase microextraction method based on solidification of floating organic drop. Anal. Chim. Acta 2007,585 (2): 286-293.
    [101]Zanjani, M. R. K.; Yamini, Y.; Yazdanfar, N.; Shariati, S. Extraction and determination of organophosphorus pesticides in water samples by a new liquid phase microextraction-gas chromatography-flame photometric detection. Anal. Chim. Acta 2008,606 (2):202-208.
    [102]Leong, M. I.; Huang, S. D. Dispersive liquid-liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection. J. Chromatogr. A 2008,1211 (1-2):8-12.
    [103]Mirzaei, M. Simultaneous separation/preconcentration of ultra trace heavy metals in industrial wastewaters by dispersive liquid-liquid microextraction based on solidification of floating organic drop prior to determination by graphite furnace atomic absorption spectrometry. J. Hazard. Mater.2011,186 (2-3):1739-1743.
    [104]Sobhi, H. R.; Yamini, Y.; Esrafili, A.; Abadi, R. H. Suitable conditions for liquid-phase microextraction using solidification of a floating drop for extraction of fat-soluble vitamins established using an orthogonal array experimental design. J. Chromatogr. A 2008,1196-1197:28-32.
    [105]Farahani, H.; Ganjali, M. R.; Dinarvand, R.; Norouzi, P. Screening method for phthalate esters in water using liquid-phase microextraction based on the solidification of a floating organic microdrop combined with gas chromatography-mass spectrometry. Talanta 2008,76 (4): 718-723.
    [106]Faraji, H.; Tehrani, M. S.; Husain, S. W. Pre-concentration of phenolic compounds in water samples by novel liquid-liquid microextraction and determination by gas chromatography-mass spectrometry. J. Chromatogr. A 2009,1216 (49):8569-8574.
    [107]Chang, C. C.; Huang, S. D. Determination of the steroid hormone levels in water samples by dispersive liquid-liquid microextraction with solidification of a floating organic drop followed by high-performance liquid chromatography. Anal. Chim. Acta 2010,662 (1):39-43.
    [108]Leong, M. I.; Huang, S. D. Dispersive liquid-liquid microextraction method based on solidification of floating organic drop for extraction of organochlorine pesticides in water samples. J. Chromatogr. A 2009,1216 (45):7645-7650.
    [109]Campillo, N.; Vinas, P.; Penalver, R.; Cacho, J. I.; Cordoba, M. H. Solid-phase microextraction followed by gas chromatography for the speciation of organotin compounds in honey and wine samples:A comparison of atomic emission and mass spectrometry detectors. Journal of Food Composition and Analysis 2012,25 (1):66-73.
    [110]Bianchi, F.; Dall'Asta, M.; Del Rio, D.; Mangia, A.; Musci, M. Development of a headspace solid-phase microextraction gas chromatography-mass spectrometric method for the determination of short-chain fatty acids from intestinal fermentation. Food Chem.2011,129 (1):200-205.
    [111]Serot, T.; Lafficher, C. Optimisation of solid-phase microextraction coupled to gas chromatography for determination of phenolic compounds in smoked herring. Food Chem. 2003,82 (4):513-519.
    [112]Farhadi, K.; Mamaghanian, M.; Maleki, R. A solgel based solid phase microextraction fiber for analysis of aromatic hydrocarbons. J. Hazard. Mater.2008,152 (2):677-682.
    [113]Chang, S. M.; Doong, R. A. Concentration and fate of persistent organochlorine pesticides in estuarine sediments using headspace solid-phase microextraction. Chemosphere 2006,62 (11): 1869-1878.
    [114]Yang, Y.; Miller, D. J.; Hawthorne, S. B. Solid-phase microextraction of polychlorinated biphenyls. J. Chromatogr. A 1998,800 (2):257-266.
    [115]Barker, S. A.; Long, A. R.; Short, C. R. Isolation of drug residues from tissues by solid phase dispersion. J. Chromatogr. A 1989,475 (2):353-361.
    [116]Barker, S. A. Matrix solid phase dispersion (MSPD).J. Biochem. Bioph. Methods 2007,70 (2): 151-162.
    [117]Bogialli, S.; Corcia., A. D. Matrix solid-phase dispersion as a valuable tool for extracting contaminants from food stuffs. J. Biochem. Bioph. Methods 2007,70 (2):163-179.
    [118]Torres, C. M.; Pico, Y.; Redondo, M. J.; Manes, J. Matrix solid-phase dispersion extraction procedure for multiresidue pesticide analysis in oranges. J. Chromatogr. A 1996,719 (1): 95-103.
    [119]Blasco, C.; Font, G.; Pico, Y. Determination of dithiocarbamates and metabolites in plants by liquid chromatography-mass spectrometry. J. Chromatogr. A 2004,1028 (2):267-276.
    [120]Hu, Y. Y.; Zheng, P.; He, Y. Z.; Sheng, G. P. Response surface optimization for determination of pesticide multiresidues by matrix solid-phase dispersion and gas chromatography. J. Chromatogr. A 2005,1098 (1-2):188-193.
    [121]Kishida, K.; Furusawa, N. Matrix solid-phase dispersion extraction and high-performance liquid chromatographic determination of residual sulfonamides in chicken. J. Chromatogr. A 2001,937 (1-2):49-55.
    [122]Bogialli, S.; Curini, R.; Di Corcia, A.; Lagana, A.; Rizzuti, G. A rapid confirmatory method for analyzing tetracycline antibiotics in bovine, swine, and poultry muscle tissues:matrix solid-phase dispersion with heated water as extractant followed by liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem.2006,54 (5):1564-1570.
    [123]Bogialli, S.; Capitolino, V.; Curini, R.; Di Corcia, A.; Nazzar, i. M.; Sergi, M. Simple and rapid liquid chromatography-tandem mass spectrometry confirmatory assay for determining amoxicillin and ampicillin in bovine tissues and milk. J. Agric. Food Chem.2004,52 (11): 3286-3291.
    [124]Blesa, J.; Soriano, J. M.; Molto, J. C.; Marin, R.; Manes, J. Determination of aflatoxins in peanuts by matrix solid-phase dispersion and liquid chromatography. J. Chromatogr. A 2003, 1011 (1-2):49-54.
    [125]Ruiz, M.; Camean, A.; Moreno,I.; Pico, Y. Determination of microcystins in biological samples by matrix solid-phase dispersion and liquid chromatography-mass spectrometry. J. Chromatogr. A 2005,1073 (1-2):257-262.
    [126]Albero, B.; Sanchez-Brunete, C.; Tadeo, J. L. Determination of polycyclic aromatic hydrocarbons in honey by matrix solid-phase dispersion and gas chromatography/mass spectrometry. JAOAC Int 2003,86 (3):576-582.
    [127]Ramil Criado, M.; Hernanz Fernandez, D.; Rodriguez Pereiro, I.; Cela Torrijos, R. Application of matrix solid-phase dispersion to the determination of polychlorinated biphenyls in fat by gas chromatography with electron-capture and mass spectrometric detection. J Chromatogr A. 2004,1056(1-2):187-194.
    [128]王学翠;刘冰;张璐鑫;季晶晶;施金秋;张航;杨宗惠;吴宏.多壁碳纳米管基质固相分散-高效液相色谱测定牛奶中6种四环素.食品科学 2011,32(14):206-209.
    [129]Yan, H.; Qiao, F.; Row, K. H. Molecularly Imprinted-Matrix Solid-Phase Dispersion for Selective Extraction of Five Fluoroquinolones in Eggs and Tissue. Anal. Chem.2007,79 (21): 8242-8248.
    [130]Sun, H.; Qian, F.; Liu, G.; Liang, S. Simultaneous isolation of six fluoroquinolones in serum samples by selective molecularly imprinted matrix solid-phase dispersion. Anal. Chim. Acta 2008,625(2):154-159.
    [131]王荣艳;王培龙;佘永新;王静;王锡昌;钟耀广.分子印迹基质固相分散-液相色谱法测定牛奶中的氯霉素残留.分析试验室 2009,28(8):26-28.
    [132]King, J. W. Fundamentals and applications of supercritical fluid extraction in chromatographic science. J. Chromatogr. Sci.1989,27 (1):355-364.
    [133]Eisenmenger, M.; Dunford, N. T. Determination of sudan dyes in food samples using supercritical fluid extractioncapillary liquid chromatography. J. Am. Oil Chem. Soc.2008,85: 55.
    [134]Avila, M.; Zougagh, M.; Escarpa, A.; Rios, A. Determination of sudan dyes in food samples using supercritical fluid extraction capillary liquid chromatography. J. Supercrit. Fluids 2011, 55 (3):977-982.
    [135]Chen, C. R.; Wang, C. H.; Wang, L. Y.; Hong, Z. H.; Chen, S. H.; Ho, W. J.; Chang, C. M. Supercritical carbon dioxide extraction and deacidification of rice bran oil. J. Supercrit. Fluids 2008,45 (3):322-331.
    [136]Molnar, P.; Szekely, E.; Simandi, B.; Keszei, S.; Lovasz, J.; Fogassy, E. Enantioseparation of ibuprofen by supercritical fluid extraction. J. Supercrit. Fluids 2006,37 (3):384-389.
    [137]Sovova, H. Steps of supercritical fluid extraction of natural products and their characteristic times. J. Supercrit. Fluids 2012,66:73-79.
    [138]Filho, G. L.; De Rosso, V. V.; Meireles, M. A. A.; Rosa, P. T. V.; Oliveira, A. L.; Mercadante, A. Z.; Cabral, F. A.,139-Supercritical CO2 extraction of carotenoids from pitanga fruits (Eugenia uniflora L.). J. Supercrit. Fluids 2008,46 (1):33-39.
    [139]Alhaj, N. A.; Shamsudin, M. N.; Zamri, H. F.; Abdullah, R. Extraction of Essential Oil from Using Supercritical Carbon Dioxide:Study of Antibacterial Activity. Am. J. Pharm. Toxicol. 2008,3 (4):225-228.
    [140]Wang, J. S.; Chiu, K. Extraction of chromated copper arsenate from wood wastes using green solvent supercritical carbon dioxide. J. Hazard. Mater.2008,158 (2-3):384-391.
    [141]Rezaee, M.; Yamini, Y.; Moradi, M.; Saleh, A.; Faraji, M.; Naeeni, M. H. Supercritical fluid extraction combined with dispersive liquid-liquid microextraction as a sensitive and efficient sample preparation method for determination of organic compounds in solid samples. J. Supercrit. Fluids 2010,1 (11):161-168.
    [142]Abd El-Fatah, S.; Goto, M.; Kodama, A.; Hirose, T. Supercritical fluid extraction of hazardous metals from CCA wood. J. Supercrit. Fluids 2004,28 (1):21-27.
    [143]Lehotay, S. J. Supercritical fluid extraction of pesticides in foods. J. Chromatogr. A 1997,785 (1-2):289-312.
    [144]Guo, X.; Mitra, S. On-line membrane extraction liquid chromatography for monitoring semi-volatile organics in aqueous matrices. J. Chromatogr. A 2000,904 (2):189-196.
    [145]Schellin, M.; Popp, P. Membrane-assisted solvent extraction of polychlorinated biphenyls in river water and other matrices combined with large volume injection-gas chromatography-mass spectrometric detection. J. Chromatogr. A 2003,1020 (2):153-160.
    [146]Schellin, M.; Popp, P. Membrane-assisted solvent extraction of seven phenols combined with large volume injection-gas chromatography-mass spectrometric detection. J. Chromatogr. A 2005,1072(1):37-43.
    [147]Ezzell, J. L.; Richter, B. E.; Felix, W. D.; Black, S. R.; Meikle, J. E. A Comparison of Accelerated Solvent Extraction with Conventional Solvent Extraction for Organophosphorus. LC-GC 1995,13 (5):391-397.
    [148]屈健.加速溶剂萃取技术的原理及应用.中国兽药杂志 2005,39(6):46-48.
    [149]Sporring, S.; B(?)wadt, S.; Svensmark, B.; Bjorklund, E. Comprehensive comparison of classic Soxhlet extraction with Soxtec extraction, ultrasonication extraction, supercritical fluid extraction, microwave assisted extraction and accelerated solvent extraction for the determination of polychlorinated biphenyls in soil. J. Chromatogr. A 2005,1090 (1-2):1-9.
    [150]Wang, P.; Zhang, Q.; Wang, Y.; Wang, T.; Li, X.; Ding, L.; Jiang, G. Evaluation of Soxhlet extraction, accelerated solvent extraction and microwave-assisted extraction for the determination of polychlorinated biphenyls and polybrominated diphenyl ethers in soil and fish samples. Anal Chim Acta 2010,663 (1):43-48.
    [151]Shao,B.;Han,H.;Li,D.;Ma,Y.;Tu,X.;Wu,Y.Analysis of alkylphenol and bisphenol A in meat by accelerated solvent extraction and liquid chromatography with tandem mass spectrometry.Food Chem.2007,105(3):1236-1241.
    [1521 Reid,A.M.;Brougham,C.A.;ogarty,A.M.;Roche,J.J.Accelerated solvent-based extraction and enrichment of selected plasticisers and 4-nonylphenol, and extraction of tin from organotin sources in sediments,sludges and leachate soils.Anal.l Chim. Acta.2009,634(2): 197-204.
    [153]Hossain,M.B.;Barry-Ryan,C.;Martin-Diana,A.B.;Brunton,N.P.Optimisation of accelerated solvent extraction of antioxidant compounds from rosemary (Rosmarinus officinalis L.),marjoram(Origanum majorana L.)and oregano(Origanum vulgare L.)using response surface methodology.Food Chem.2011,126(1):339-346.
    [1541 Shen,Y. D.;Xu,Z.L.;Wang,Y;Lei,H.T.;Wang,H.;Yang,J.Y.;Xiao,Z.L.;Sun,Y M. Simultaneous determination of malachite green,brilliant green and crystal violet in grass carp tissues by a broad-specificity indirect competitive enzyme-linked immunosorbent assay.Anal. Chim.Acta 2011,707(1-2):148-154.
    [155]Yu,H.;Tao,Y.;Chen,D.;Pan,Y.;Liu,Z.;Wang,Y.;Huang,L.;Dai M;Peng,D.;Wang,X.; Yuan,Z.Simultaneous determination of fluoroquinolones in foods of animal origin by a high performance liquid chromatography and a liquid chromatography tandem mass spectrometry with accelerated solvent extraction.J.Chromatogr.B 2012,885-886 150-159.
    [156]Ding, Y.;Zhang,W.;Gu,C.;Xagoraraki,I.;Li,H.Determination of pharmaceuticals in biosolids using accelerated solvent extraction and liquid chromatography/tandem mass spectrometry.J.Chromatogr.A 2011,1218(1):10-16.
    [157]Yusa,V.;Quintas,G.;Pardo,O.;Pastor,A.;Guardia,M.d.1.Determination of PAHs in airborne particles by accelerated solvent extraction and large-volume injectiongas chromatographymass spectrometry.Talanta 2006,69(4):807-815.
    [158]HU,B.;SONG,M;XIE,L.;SHAO,T. Determination of 33 pesticides in tea using accelerated solvent extraction/gel permeation chromatography and solid phase extraction/gas chromatography-mass spectrometry.Chinese Journal of Chromatography 2008,26(1):22-28.
    [159]Wu,G.;Bao,X.;Zhao,S.;Wu,J.;Han,A.Analysis of multi-pesticide residues in the foods of animal origin by GCMS coupled with accelerated solvellt extraction and gel permeation chromatography cleanup.Food Chem.2011,126(2):646-654.
    [160]Chen,L.;Song,D.;Tian,Y.;Ding,L.;Yu,A.;Zhang,H.Application of on-line microwave sample-preparation techniques.TrAC,Trends Anal.Chem.2008,27(2):151-159.
    [161]Papadakis, E. N.; Vryzas, Z.; Papadopoulou-Mourkidou, E. Rapid method for the determination of 16 organochlorine pesticides in sesame seeds by microwave-assisted extraction and analysis of extracts by gas chromatography-mass spectrometry. J. Chromatogr. A 2006,1127(1):6-11.
    [162]Xiong,G.;He,X.;Zhang,Z.Microwave-assisted extraction or saponification coupled with microwave-assisted decomposition applied in the pretreatment of soil or mussel samples for PCBs analysis.Anal.Chim.Acta 2000,413(1-2):49-56.
    [163]Diagne,R.G.;Foster,G. D.;Khan,S.U.Comparison of Soxhlet and Microwave-Assisted Extractions for the Determination of Fenitrothion Residues in Beans.J. Agric. Food.Chem. 2002,50(11):3204-3207.
    [164]Luque-Garci,J.L.;Luque-de-Castro,M.D.Extraction of polychlorinated biphenyls from soils by automated focused microwave-assisted Soxhlet extraction.J. Chromatogr. A 2003,998 (1-2):21-29.
    [165]Spigno, G.; De Faveri, D. M. Microwave-assisted extraction of tea phenols: A phenomenological study.Journal of Food Engineering. 2009,93(2):210-217.
    [166]Dobor,J.;Vargaa,M.;Yao,J.;Chen,H.;Palko,G.;Zaray,G. A new sample preparation method for determination of acidic drugs in sewage sludge applying microwave assisted solvent extraction followed by gas chromatographymass spectrometry.Microchem.J.2010,94 (1):36-41.
    [167]Shu,Y.Y.;Lao,R.C.;Chiu,C.H.;Turle,R.Analysis of polycyclic aromatic hydrocarbons in sediment reference materials by microwave-assisted extraction.Chemosphere 2000,41(11): 1709-1716.
    [168]Bianco Prevot,A.;Gulmini,M.;zelano,V.;Pramauro,E.Microwave-Assisted Extraction of Polycyclic Aromatic Hydrocarbons from Marine Sediments Using Nonionic Surfactant Solutions. Anal. Chem.2001,73 (15):3790-3795.
    [169]Wang, W.; Meng, B.; Lu, X.; Liu, Y.; Tao, S. Extraction of polycyclic aromatic hydrocarbons and organochlorine pesticides from soils:A comparison between Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction techniques. Anal. Chim. Acta 2007,602 (2):211-222.
    [170]Papadakis, E. N.; Vryzas, Z.; Papadopoulou-Mourkidou, E.-Rapid method for the determination of 16 organochlorine pesticides in sesame seeds by microwave-assisted extraction and analysis of extracts by gas chromatography. J. Chromatogr. A 2006,1127 (1-2): 6-11.
    [171]Jia, G.; Lv, C.; Zhu, W.; Qiu, J.; Wang, X.; Zhou, Z. Applicability of cloud point extraction coupled with microwave-assisted back-extraction to the determination of organophosphorous pesticides in human urine by gas chromatography with flame photometry detection. J. Hazard. Mater.2008,159 (2-3):300-305.
    [172]Niell, S.; Pareja, L. a.; Gonzalez, G.; Gonzalez, J. n.; Vryzas, Z.; Cesio, M. V. n.; Papadopoulou-Mourkidou, E.; Heinzen, H. Simple Determination of 40 Organophosphate Pesticides in Raw Wool Using Microwave-Assisted Extraction and GC-FPD Analysis. J. Agric. Food. Chem.2011,59 (14):7601-7608.
    [173]Boldor, D.; Kanitkar, A.; Terigar, B. G.; Leonardi, C.; Lima, M.; Breitenbeck, G. A. Microwave Assisted Extraction of Biodiesel Feedstock from the Seeds of Invasive Chinese Tallow Tree. Environ. Sci. Technol.2010,44 (10):4019-4025.
    [174]Chan, C.-H.; Yusoff, R.; Ngoh, G.-C.; Kung, F. W.-L. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011,1218 (37):6213-6225.
    [175]Proestos, C.; Komaitis, M. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT-Food Science and Technology 2008,41 (4):652-659.
    [176]Zhou, H.-Y.; Liu, C.-Z. Microwave-assisted extraction of solanesol from tobacco leaves. J. Chromatogr. A 2006,1129 (1):135-139.
    [177]Lorenzo, R. A.; Vazquez, M. J. Methylmercury extraction from aquatic sediments:A comparison between manual, supercritical fluid and microwave-assisted techniques. TrAC, Trends Anal. Chem.1999,18 (6):410-416.
    [178]周启星;罗义;王美娥.抗生素的环境残留、生态毒性及抗性基因污染.生态毒理学报2007,2(3):243-251.
    [179]罗义;周启星.抗生素抗性基因(ARGs)-新型环境污染物.环境科学学报 2008,28(8):1-7.
    [180]Graham, D. W.; Olivares-Rieumont, S.; Knapp, C. W.; Lima, L.; Werner, D.; Bowen, E. Antibiotic Resistance Gene Abundances Associated with Waste Discharges to the Almendares River near Havana, Cuba. Environ. Sci. Technol.2011,45 (2):418-424.
    [181]Chung, H. H.; Lee, J. B.; Chung, Y. H.; Lee, K. G. Analysis of sulfonamide and quinolone antibiotic residues in Korean milk using microbial assays and high performance liquid chromatography. Food Chem.2009,113 (1):297-301.
    [182]Ashwin, H.; Stead, S.; Caldow, M.; Sharman, M.; Jacques Stark, A. d. R.; Keely, B. J. A rapid microbial inhibition-based screening strategy for fluoroquinolone and quinolone residues in foods of animal originOriginal. Anal. Chim. Acta 2009,637 (1-2):241-246.
    [183]Marazuela, M. D.; Moreno-Bondi, M. C. Multiresidue determination of fluoroquinolones in milk by column liquid chromatography with fluorescence and ultraviolet absorbance detection. J. Chromatogr. A 2004,1034:25-32.
    [184]Diaz-Alvarez, M.; Turiel, E.; Martin-Esteban, A. Selective sample preparation for the analysis of (fluoro)quinolones in baby food:molecularly imprinted polymers versus anion-exchange resins. Anal. Bioanal. Chem.2009,393 (3):899-905.
    [185]Christodoulou, E. A.; Samanidou, V. F.; Papadoyannis, I. N. Development of an HPLC multi-residue method for the determination of ten quinolones in bovine liver and porcine kidney according to the European Union Decision 2002/657/EC. J. Sep. Sci.2008,31 (1): 119-127.
    [186]Marazuela, M. D.; Moreno-Bondi, M. C. Multiresidue determination of fluoroquinolones in milk by column liquid chromatography with fluorescence and ultraviolet absorbance detection. J. Chromatogr. A 2004,1034 (1):25-32.
    [187]Benito-Pena,E.;Urraca,J.L.;Sellergren,B.;Moreno-Bondi,M.Solid-phase extraction of fluoroquinolones from aqueous samples using a water-compatible stochiometrically imprinted polymer.J.Chromatogr.A 2008,1208(2):62-70.
    [188]Zhao,S.;Jiang,H.;Li,X.;Mi,T.;Li,C.;Shen,J.Simultaneous Determination of Trace Levels of 10 Quinolones in Swine,Chicken,and Shrimp Muscle Tissues Using HPLC with Programmable Fluorescence Detection.J. Agric.Food. Chem.2007,55(10):3829-3834.
    [189]Nakata,H.;Kannan,K.;Jones,P.D.;Giesy.,J.P.Determination offluoroquinolone antibiotics in wastewater effluents by liquid chromatography-mass spectrometry and fluorescence detection.Chemosphere 2005,58(6):759-766.
    [190]Maria,I.;Carlos,G.;Sancho,J.V. Screening of antibiotics in surface and wastewater samples by ultra-high-pressure liquid chromatography coupled to hyb rid quadrupole time-of-flight mass spectrometry.J.Chromatogr.A 2009,1216(12):2529-2539.
    [191]Xiao,Y:;Chang,H.;Jia,A.Trace analysis ofquino]one and fluoroquinolone antibiotics from wastewaters by liquid chromatography electrospray tandem mass spectrometry.J. Chromatogr. A 2008,1214(1-2):100-108.
    [192]Ye,Z.;Weinberg,H.S.;Meyer.,M.T.Trace Analysis of Trimethoprim and Sulfonamide, Macrolide,Quinolone,and Tetracycline Antibiotics in Chlorinated Drinking Water Using Liquid Chromatography Electrospray Tandem Mass Spectrometry.Anal Chem 2007,79(3): 1135-1144.
    [193]Miao,X.S.;Bishay,F.;Chen,M.;Metcalfe,C.D.Occurrence ofAntimicrobials in the Final Effluents of Wastewater Treatment Plants in Canada.Environ.Sci.Technol. 2004,38(13): 3533-3541.
    [194]Renew,J.E.;Huang.,C.H.Simultaneous determination of fluoroquiriolone,sulfonamide,and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography- electrospray mass spectrometry.J. Chromatogr. A 1042,1042(1-2): 113-121.
    [195]Lara,F.J.;Garcia-Campana,A.M.;Ales-Barrero,F.;Bosque-Sendra,J.M.;Garcia-Ayuso.,L. E.Multiresidue method for the determination of quinolone antibiotics in bovine raw milk by capillary electrophoresis-tandem mass spectrometry.Anal.Chem.2006,78(22):7665—7673.
    [196]Norberg,J.;Thordarson,E.;Mathiasson,L.Microporous membrane liquid-liquid extraction coupled on-line with normal-phase liquid chromatography for the determination of cationic surfactants in river and waste water.Jonsson.J.Chromatogr. A 2000,869(1-2):523-529.
    [197]Einsle,T.;Paschke,H.;Bruns,K.;Schrader,S.;P. Popp,M.M.Membrane-assisted liquid-liquid extraction coupled with gas chromatography-mass spectrometry for determination of selected polycyclic musk compounds and drugs in water samples. J. Chromatogr. A 2006,1124(1-2):196-204.
    [198]Tsai,W. H.;Chuang,H.Y.;Chen,H.H.;Huang,J.J.;Chen,H.C.;Cheng,S.H.;Huang,T C. Application of dispersive liquid-liquid microextraction and dispersive micro-solid-phase extraction for the determination of quinolones in swine muscle by high-performance liquid chromatography with diode-array detection.Anal. Chim. Acta 2009,656(1-2):56-62.
    [199]Ravelo-Perez,L.M.;Hernandez-Borges,J.;Asensio-Ramos,M.;Rodriguez-Delgado,M.A. lonic liquid based dispersive liquid-liquid microextraction for the extraction of pesticides from bananas.J.Chromatogr.A 2009,1216(43):7336:7345.
    [200]Sturini,M.;Speltini,A.;Pretali,L.;Fasani,E.;Profumo.,A.Solid-phase extraction and HPLC determination of fluoroquinolones in surface waters.J Sep Sci 2009,32(17):3020-3028.
    [201]Benito-Pena,E.;Urraca,J.L.;Sellergren,B.;Moreno-Bondi,M.C.Solid-phase extraction of fluoroquinolones from aqueous samples using a water-compafible stochiometrically imprinted polymer.J. Chromatogr.A 2008,1208(1-2):62-70.
    [202]Leong,M.I.;Huang.,S.D.Dispersive liquid-liquid microextraction method based on solidincation of floating organic drop for extraction of organochlorine pesticides in water samples.J.Chromatogr.A 2009,1216((45):7645-7650.
    [203]Morales-Munoz,S.;Luque-Garcia,J.L.;Castro,M.D.L.d.Continuous microwave-assisted extraction coupled with derivatization and fluorimetric monitoring for the determination of fluoroquinolone antibacterial agents from soil samples.J. Chromatogr.A 2004,1059(1-2): 25-31.
    [204]Walker, C. C.; Lott, H. M.; Barker, S. A. Matrix solid-phase dispersion extraction and the analysis of drugs and environmental pollutants in aquatic species. J. Chromatogr. A 1993,642 (1-2):225-242.
    [205]El-Aty, A. M. A.; Choi, J. H.; Ko, M. W.; Khay, S.; Goudah, A.; Shin, H.-C.; Kim, J.-S.; Chang, B.-J.; Lee, C.-H.; Shim, J.-H. Approaches for application of sub and supercritical fluid extraction for quantification of orbifloxacin from plasma and milk:Application to disposition kinetics. Anal. Chim.Acta 2009,631 (1):108-115.
    [206]陈素清;黄微雅;韩德满;王习梅.流动注射在线预富集-高效液相色谱法测定水中的4-壬基酚和双酚A.分析化学2008,36(7):959-963.
    [207]梁华定;徐明星;张雄;刘超.流动注射在线预富集-高效液相色谱法测定四种硝基类化合物.分析科学学报 2009,25(3):293-296.
    [208]Liang, H. D.; Han, D. M.; Yan., X. P. Cigarette filter as sorbent for on-line coupling of solid-phase extraction to high-performance liquid chromatography for determination of polycyclic aromatic hydrocarbons in water. J. Chromatogr. A 2006,1103 (1):9-14.
    [209]Yan, X. P.; Li, Y.; Jiang, Y. Selective Measurement of Ultratrace Methylmercury in Fish by Flow Injection On-Line Microcolumn Displacement Sorption Preconcentration and Separation Coupled with Electrothermal Atomic Absorption Spectrometry. Anal. Chem.2003,75 (10): 2251-2255.
    [210]Dong, L. M.; Yan, X.-P.; Li, Y.; Jiang, Y.; Wang, S. W.; Jiang, D. Q. On-line coupling of flow injection displacement sorption preconcentration to high-performance liquid chromatography for speciation analysis of mercury in seafood. J. Chromatogr. A 2004,1036 (2):119-125.
    [211]Xiao, Y.; Chang, H.; Jia, A.; Hu, J. Trace analysis of quinolone and fluoroquinolone antibiotics from wastewaters by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. A 2008,1214 (1-2):100-108.
    [212]Sun, H. W.; Qiao, F. X. Recognition mechanism of water-compatible molecularly imprinted solid-phase extraction and determination of nine quinolones in urine by high performance liquid chromatography. J. Chromatogr A 2008,1212(1-2):1-9.
    [213]Samanidou, V.; Evaggelopoulou, E.; Trotzmuller, M.; Guo, X.; Lankmayr, E. Multi-residue determination of seven quinolones antibiotics in gilthead seabream using liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2008,1203 (2):115-123.
    [214]Rubies, A.; Vaquerizo, R.; Centrich, F.; Compano, R.; Granados, M.; Prat, M. D. Validation of a method for the analysis of quinolones residues in bovine muscle by liquid chromatography with electrospray ionisation tandem mass spectrometry detection. Talanta 2007,72 (1):269-276.
    [215]Espinosa-Mansilla, A.; Pena, A. M. d.1.; Gomez, D. G.; Lopez., F. S. Determination of fluoroquinolones in urine and serum by using high performance liquid chromatography and multiemission scan fluorimetric detection. Talanta 2006,68 (4):1215-1221.
    [216]Prat, M. D.; Benito, J.; Compano, R.; Hernandez-Arteseros, J. A.; Granados, M. Determination of quinolones in water samples by solid-phase extraction and liquid chromatography with fluorimetric detection. J. Chromatogr. A 2004,1041 (1-2):27-33.
    [217]HU, X.; Luo, Y.; ZHOU, Q.; Lin, X. Determination of thirteen antibiotics residues in manure by solid phase extraction and high performance liquid chromatography. Chin. J. Anal. Chem. 2008,36(9):1162-1166.
    [218]赵进英;辛暨华;郭英娜;崔秀君;敏,张.;李金昶.固相萃取富集-高效液相色谱法分离检测水中3种苯脲除草剂.分析化学2004,32(7):103-106.
    [219]官兰;Wood, J. M.氟喹诺酮药物的稳定性研究.中国抗生素杂志 1995,20(1):26-30.
    [220]Turiel, E.; Bordin, G.; Rodriguez, A. Trace enrichment of (fluoro)quinolone antibiotics in surface waters by solid-phase extraction and their determination by liquid chromatography-ultraviolet detection.J. Chromatogr. A 2003,1008(2):145-155.
    [221]Xiao, Y.; Chang, H.; Jia, A.; Hu, J. Trace analysis of quinolone and fluoroquinolone antibiotics from wastewaters by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. A 2008,1214(1-2):100-108.
    [222]Chen, L.; Zhang, X.; Xu, Y.; Du, X.; Sun, X.; Sun, L.; Wang, H.; Zhao, Q.; Yu, A.; Zhang, H.; Ding,L.Determination of fluoroquinolone antibiotics in environmental water samples based on magnetic molecularly imprinted polymet extraction followed by liquid chromatography-tandem mass spectrometry.Anal.Chim.Acta 2010,662(1):31-38.
    [223]Rodriguez,E.; Navarro-Villoslada,F.; Benito-Pena,E.; Marazuela, M.a.D.; Moreno-Bondi, M.a.C.Multiresidue Determination of Ultratrace Levels of Fluoroquinolone Antimicrobials in Drinking and Aquaculture Water Samples by Automated Online Molecularly lmprinted Solid Phase Extraction and Liquid Chromatography.Anal.Chem.2011,83(6):2046-2055.
    [224]Lee,H.B.;Peart,T.E.;Svoboda,M.L.Determination of ofloxacin,norfloxacin,and ciprofloxacin in sewage by selectiVe solid-phase extraction,liquid chromatography with fluorescence detection,and liquid chromatography--tandem mass spectrometry.J. Chromatogr. A 2007,1139(1):45-52.
    [225]Larson,R.J.;Rothgeb,T. M.;Shimp,R.J.;Ward,T.E.;Ventullo,R.M.Kinetics and Practical Significance of Biodegradation of Linear Alkylbenzene Sulfonate in the Environment.J. Am. Oil,Chem.Soc.1993,70(7):645-657.
    [226]Perales,J.A.;Manzano,M.A.;sales,D.;Quiroga,J.M.Linear Alkylbenzene sulphonates: Biodegradability and Isomeric Composition. Bull. Environ. Contam. Toxicol.1999,63: 94-100.
    [227]Villar,M.;Callejon, M.; Jimeez, J. C.; Alonso,E.;Guiradm,A.New rapid methods for determination of total LAS in sewage sludge by high performance liquid chromatography (HPLC)and capillary electrophoresis(CE).Anal. Chim. Acta 2009,634:267-271.
    [228]Guo,P.;Guan,Z.;Wang,.M.;Chen,B.;Huang,Y. Determination of linear alkylbenzene sulfonates by ion-pair solid-phase extraction and high-performance liquid chromatography Talanta 2011,84:587-592.
    [229]Brouwer,V.D.;Storozhenko,S.;Steene,J.C.V.D.;Wille,S.M.R.;Stove,C.P.;Straeten,D. V.D.;Lambert,W.E.Multi-residue method for the analysis of synthetic surfactants and their degradation metabolites in aquatic systems by liquid chromatography-time-of-flight-mass spectrometry.J.Chromatogr.A 2011,1218:4799-4807.
    [230]Wangkam,S.;Soisungnoen,P.;Rayanakorn,M.;Grudpan,K.Determination of linear alkylbenzene sulfonates in water samples by liquid chromatography-UV detection and confirmation by liquid chromatography-mass spectrometry.Talanta 2005,67(4):686-695.
    [231]Fujita,M.;Ike,M.;Goda,Y.;Fujimoto S.; Toyoda,Y.; Miyagawa,K.An Enzyme-Linked Immunosorbent Assay for Detection of Linear Alkylbenzene Sulfonate:Development and Field Studies.Environ.Sci.Technol.1998,32(8):1143-1146.
    [232]Brandt,K.K.;Hessels(?)e,M.;Roslev,P.;Henriksen,K.;Sorensen,J.Toxic Effects of Linear Alkylbenzene Sulfonate on Metabolic Activity,Growth Rate,and Microcolony Formation of Nitrosomonas and Nitrosospira Strains.Appl.Environ.Microbiol.2001,67(6):2489-2498.
    [233]Urakawa,H.;Matsumoto,J.;Inaba,K.;Tsuneda,S.DNA microarray mediated transcriptional profiling of Nitrosomonas europaea in response to linear alkylbenzene sulfonates.FEMS Microbiol.Lett.2008,282(2):166-173.
    [234]Hu,y Y.;He,Y.Z.;Qian,L.L.On-line ion pair solid-phase extraction of electrokinetic multicommutation for determination of trace anion surfactants in pond water.Anal.Chim. Acta 2005,536(1-2):251-257.
    [235]Villar,M.;Callej6n,M.;Jim6nez,J.C.;Alonso,E.;Guiraum,A.Optimization and validation of a new method for analysis of linear alkylbenzene sulfonates in sewage sludge by liquid chromatography after microwave-assisted extraction.Anal.Chim.Acta 2007,599:92-97.
    [236]Lara-Martin,P. A.;Petrovic,M.;G6mez-Parra,A.;Barcel6,D.;Gonzalez-Mazo,E.Presence of surfactants and their degr.adation intermediates in sediment cores and grabs from the Cadiz Bay 483-491.Environ.Pollut.2006,144:483-491.
    [237]Lara,P.A.;G6mez,A.;Gonzalezo,E.Simultaneous extraction and determination of anionic surfactants in waters and sediments. J. Chromatogr. A 2006,1114(2):205-210.
    [238]Garcia,M.T.;Campos,E.;Sanchez-Leal,J.;Ribosa,I.Effect of linear alkylbenzene sulphonates(LAS)on the anaerobic digestion of sewage sludge.Water RPs.2006,40(15): 2958.2964.
    [239]Morales-Mufioz,S.;Luque-Garcia,J.L.;Castro,M.D.L.d.Screening method for linear alkylbenzene sulfonates in sediments based on water Soxhlet extraction assisted by focused microwaves with on-line preconcentration/derivatization/detection.J. Chromatogr.A 2005, 1026(1):41-46.
    [240]Ruiz, F. J.; Rubio, S.; Perez-Bendito, D. Potential of coacervation processes for the extraction of amphiphiles (linear alkyl benzenesulphonates) from sewage sludge samples prior to liquid chromatography. J. Chromatogr. A 2004,1030 (1-2):109-115.
    [241]Saez, M.; Leon, V. M.; Gomez-Parra, A.; Gonzalez-Mazo, E. Extraction and isolation of linear alkylbenzene sulfonates and their intermediate metabolites from various marine organisms. J. Chromatogr. A 2000,889 (1-2):99-104.
    [242]Moldovan, Z.; Avram, V.; Marincas, O.; Ternes, P. P. a. T. The determination of the linear alkylbenzene sulfonate isomers in water samples by gas-chromatography/mass spectrometry. J. Chromatogr. A 2011,1218:343-349.
    [243]Akyiiz, M. Ion-pair extraction and GC-MS determination of linear alkylbenzene sulphonates in aqueous environmental samples. Talanta 2007,71:471-478.
    [244]Ding, W. H.; Tzing, S. H.; Lo, J. H. Occurrence and concentrations of aromatic surfactants and their degradation products in river waters of Taiwan. Chemosphere 1999,38 (11):2597-2606.
    [245]Riu, J.; Barcelo, D. Determination of linear alkylbenzene sulfonates and their polar carboxylic degradation products in sewage treatment plants by automated solid-phase extraction followed by capillary electrophoresis-mass spectrometry. Analyst 2001,126 (8):825-828.
    [246]Heinig, K.; Vogt, C.; Werner, G. Determination of linear alkylbenzenesulfonates in industrial and environmental samples by capillary electrophoresis. Analyst 1998,123 (2):349-353.
    [247]Penteado, J. C.; Bruns, R. E.; Carvalho, L. R. F. d. Factorial design optimization of solid phase microextraction conditons for gas chromatography-mass spectrometry (GC-MS) analysis of linear alkylbenzenes in detergents. Anal. Chim. Acta 2006,562 (152-157).
    [2481 Tolls, J.; Haller, M.; Sijm, D. T. Extraction and isolation of linear alkylbenzenesulfonate and its sulfophenylcarboxylic acid metabolites from fish samples. Anal. Chem.1999,71 (22): 5242-5247.
    [249]Lara-Martin, P. A.; Gomez-Parra, A.; Gonzalez-Mazo, E. Development of a method for the simultaneous analysis of anionic and non-ionic surfactants and their carboxylated metabolites in environmental samples by mixed-mode liquid chromatography-mass spectrometry. J. Chromatogr. A 2006,1137:188-197.
    [250]Eichhorn, P.; Lopez, S.; Barcelo, D. Application of liquid chromatography-electrospray-tandem mass spectrometry for the identification and characterisation of linear alkylbenzene sulfonates and sulfophenyl carboxylates in sludge-amended soils. J. Chromatogr. A 2005,1067 (1-2):171-179.
    [251]Wang, W.; Chen, B.; Huang, Y.; Cao, J. Evaluation of eggshell membrane-based bio-adsorbent for solid-phase extraction of linear alkylbenzene sulfonates coupled with high-performance liquid chromatography. J. Chromatogr. A 2010,1217 (36):5659-5664.
    [252]Cai, Y.; Jiang, G.; Liu, J.; Zhou, Q. Multi-Walled Carbon Nanotubes as Superior Solid Phase Extraction Adsorbent for the Determination of Bisphenol A,4-n-Nonylphenol and 4-tert-Octylphenol. Anal. Chem.2003,75 (10):2517-2521.
    [253]Zhang, Q.; Yang, F.; Tang, F.; Zeng, K.; Wu, K.; Cai, Q.; Yao, S. Ionic liquid-coated Fe3O4 magnetic nanoparticles as an adsorbent of mixed hemimicelles solid-phase extraction for preconcentration of polycyclic aromatic hydrocarbons in environmental samples. Analyst 2010, 135 (9):2426-2433.
    [254]Pan, D.; Chen, C.; Yang, F.; Long, Y.; Cai, Q.; Yao, S. Titanium wire-based SPE coupled with HPLC for the analysis of PAHs in water samples. Analyst 2011,136 (22):4774-4779.
    [255]Zhao, X.; Shi, Y.; Cai, Y.; Mou, S. Cetyltrimethylammonium Bromide-Coated Magnetic Nanoparticles for the Preconcentration of Phenolic Compounds from Environmental Water Samples. Environ. Sci. Technol.2008,42 (4):1201-1206.
    [256]Lucena, R.; Simonet, B. M.; Cardenas, S.; Valcarcel, M. Potential of nanoparticles in sample preparation J Chromatogr. A 2011,1218 (4):620-637.
    [257]Wang, S.; Zhao, P.; Min, G.; Fang, G. Multi-residue determination of pesticides in water using multi-walled carbon nanotubes solid-phase extraction and gas chromatography-mass spectrometry. J. Chromatogr. A 2007,1165 (1-2):166-171.
    [258]Niu, H.; Cai, Y.; Shi, Y.; Wei, F.; Liu, J.; Mou, S.; Jiang, G. Evaluation of carbon nanotubes as a solid-phase extraction adsorbent for the extraction of cephalosporins antibiotics, sulfonamides and phenolic compounds from aqueous solution. Anal. Chim. Acta 2007,594 (1): 81-92.
    [259]Zhou, Q. X.; Wang, W. D.; Xiao, J. P. Preconcentration and determination of nicosulfuron, thifensulfuron-methyl and metsulfuron-methyl in water samples using carbon nanotubes packed cartridge in combination with high performance liquid chromatographyOriginal Research Article. Anal. Chim. Acta 2006,559 (2):200-206.
    [260]Cai, Y.; Jiang, G.; Liu, J.; Zhou, Q. Multi-walled carbon nanotubes packed cartridge for the solid-phase extraction of several phthalate esters from water samples and their determination by high performance liquid chromatography. Anal. Chim. Acta 2003,494 (1-2):149-156.
    [261]Wang, J. X.; Jiang, D. Q.; Gu, Z. Y.; Yan, X. P. Multiwalled carbon nanotubes coated fibers for solid-phase microextraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection. J. Chromatogr. A 2006,1137 (1-2): 8-14.
    [262]Li, Y. H.; Ding, J.; Luan, Z.; Di, Z.; Zhu, Y.; Xu, C.; Wu, D.; Wei, B. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 2003,41 (14):2787-2792.
    [263]Ravelo-Perez, L. M.; Herrera-Herrera, A. V.; Hernandez-Borges, J.; Rodriguez-Delgado, M. A. Carbon nanotubes:Solid-phase extraction. J. Chromatogr. A 2010,1217 (16):2618-2641.
    [264]Pyrzynska, K. Carbon nanostructures for separation, preconcentration and speciation of metal ions. TrAC, Trends Anal. Chem.2010,29 (7):718-728.
    [265]Bergemann, C.; Muller-Schulte, D.; Oster, J.; aBrassard, L.; Liibbe, A. S. Magneticion-exchange nano-and microparticles for medical, biochemical and molecularbiologicalapplications. J. Magn. Magn. Mater.1999,194 (1-3):45-52.
    [266]Akiralto, E. H.; Kobayashi, C.; Terasaki, H.; Kagami, H.; Ueda, M.; Kobayashi, T.; Honda, H. Construction and Delivery of Tissue-Engineered Human Retinal Pigment Epithelial Cell Sheets, Using Magnetite Nanoparticles and Magnetic Force. Tissue Engineer.2005,11 (3-4): 489-496.
    [267]Yang, H.-H.; Zhang, S.-Q.; Chen, X.-L.; Zhuang, Z.-X.; Xu, J.-G.; Wang, X.-R. Magnetite-Containing Spherical Silica Nanoparticles for Biocatalysis and Bioseparations. Anal. Chem.2004,76 (5):1316-1321.
    [268]Jia, B.; Gao, L. Fabrication of "Tadpole"-like magnetite/MWCNT Heterojunction and Their Self-Assembly under External Magnetic Field. J. Phys. Chem. B 2007,111(19):5337-5343.
    [269]Zhang, Y.; Xu, S.; Luo, Y.; Pan, S.; Ding, H.; Li, G. Synthesis of mesoporous carbon capsules encapsulated with magnetite nanoparticles and their application in wastewater treatment. J. Mater. Chem.2011,21 (11):3664-3671.
    [270]Qu, S.; Huang, F.; Yu, S.; Chen, G.; Kong, J. Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J. Hazard. Mater.2008,160 (2-3):643-647.
    [271]Chen, W.; Duan, L.; Zhu, D. Adsorption of Polar and Nonpolar Organic Chemicals to Carbon Nanotubes. Environ. Sci. Technol.2007,41 (24):8295-8300.
    [272]Long, R. Q.; Yang, R. T. Carbon Nanotubes as Superior Sorbent for Dioxin Removal. J. Am. Chem. Soc.2001,123 (9):2058-2059.
    [273]Gotovac, S.; Hattori, Y.; Noguchi, D.; Miyamoto, J.-i.; Kanamaru, M.; Utsumi, S.; Kanoh, H.; Kaneko, K. Phenanthrene Adsorption from Solution on Single Wall Carbon Nanotubes. J. Phys. Chem. B 2006,110 (33):16219-16224.
    [274]Stephen Inbaraj, B.; Chen, B. H. Dye adsorption characteristics of magnetite nanoparticles coated with a biopolymer poly(y-glutamic acid). Bioresour. Technol.2011,102 (19): 8868-8876.
    [275]Parham, H.; Rahbar, N. Solid phase extraction-spectrophotometricdetermination of salicylicacid using magneticironoxidenanoparticles as extractor. J. Pharm. Biomed. Anal.2009, 50(1):58-63.
    [276]Zhang, X. L.; Niu, H. Y.; Li, W. L.; Shi, Y. L.; Cai, Y. L. A core-shell magnetic mesoporous silica sorbent for organic targets with high extraction performance and anti-interference ability. Chem. Commun.2011,47 (15):4454-4456.
    [277]Zhang, Z.; Duan, H.; Zhang, L.; Chen, X.; Liu, W.; Chen, G. Direct determination of anabolic steroids in pig urine by a new SPME-GC-MS method. Talanta 2009,78 (3):1083-1089.
    [278]Pan, L.; Adams, M.; Pawliszyn, J. Determination of fatty acids using solid phase microextraction. Anal. Chem.1995,67 (23):4396-4403.
    [279]Tolls, J.; Haller, M.; Seinen, W.; Sijm, D. T. H. M. LAS Bioconcentration:Tissue Distribution and Effect of Hardness-Implications for Processes. Environ. Sci. Technol.1999,34 (2): 304-310.
    [280]Huang, M.; Li, Y.; Gu, G. Chemical composition of organic matters in domestic wastewater. Desalination 2010,262 (1-3):36-42.
    [281]Feng, Q.; Zhao, L.; Lin, J.-M. Molecularly imprinted polymer as micro-solid phase extraction combined with high performance liquid chromatography to determine phenolic compounds in environmental water samples. Anal. Chim. Acta 2009,650 (1):70-76.
    [282]Li, J.; Zhao, X.; Shi, Y.; Cai, Y.; Mou, S.; Jiang, G. Mixed hemimicelles solid-phase extraction based on cetyltrimethylammonium bromide-coated nano-magnets Fe3O4 for the determination of chlorophenols in environmental water samples coupled with liquid chromatography/spectrophotometry detection. J. Chromatogr. A 2008, (1-2):24-31.
    [2831 Zhao, X.; Shi, Y.; Wang, T.; Cai, Y.; Jiang, G. Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples. J. Chromatogr. A 2008,1188 (2):140-147.
    [284]Kawaguchi, M.; Hayatsu, Y.; Nakata, H.; Ishii, Y.; Ito, R.; Saito, K.; Nakazawa, H. Molecularly imprinted solid phase extraction using stable isotope labeled compounds as template and liquid chromatography-mass spectrometry for trace analysis of bisphenol A in water sample. Anal. Chim. Acta 2005,539 (1-3):83-89.
    [285]Pocurull, E.; Marce, R. M.; Borrull, F.; Bernal, J. L.; Toribio, L.; Serna, M. L. On-line solid-phase extraction coupled to supercritical fluid chromatography to determine phenol and nitrophenols in water. J. Chromatogr. A 1996,755 (1):67-74.
    [286]Tong, C.; Guo, Y.; Liu, W. Simultaneous determination of five nitroaniline and dinitroaniline isomers in wastewaters by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. Chemosphere 2010,81 (3):430-435.
    [287]Chen, L.; Zhang, X.; Xu, Y.; Du, X.; Sun, X.; Sun, L.; Wang, H.; Zhao, Q.; Yu, A.; Zhang, H.; Ding, L. Determination of fluoroquinolone antibiotics in environmental water samples based on magnetic molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2010,662 (1):31-38.
    [288]Nakata, H.; Kannan, K.; Jones, P. D.; Giesy, J. P. Determination of fluoroquinolone antibiotics in wastewater effluents by liquid chromatography-mass spectrometry and fluorescence detection. Chemosphere 2005,58 (6):759-766.
    [289]Wang, W.-D.; Huang, Y.-M.; Shu, W.-Q.; Cao, J. Multiwalled carbon nanotubes as adsorbents of solid-phase extraction for determination of polycyclic aromatic hydrocarbons in environmental waters coupled with high-performance liquid chromatography. J. Chromatogr. A 2007,1173 (1-2):27-36.
    [290]Habibi, M. H.; Hassanzadeh, A.; Mahdavi, S. The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions. Journal of Photochemistry and Photobiology A:Chemistry 2005,172 (1):89-96.
    [291]Nohynek, G. J.; Fautz, R.; Benech-Kieffer, F.; Toutain, H. Toxicity and human health risk of hair dyes. Food Chem. Toxicol.2004,42 (4):517-543.
    [292]Golka, K.; Kopps, S.; Myslak, Z. W. Carcinogenicity of azo colorants:influence of solubility and bioavailability. Toxicol Lett.2004,151 (1):203-210.
    [293]Stiborova, M.; Martinek, V.; Rydlova, H.; Frei, E. Sudan I is a potential carcinogen for humans:evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 and liver microsomes. Cancer Res 2002,62 (20):5678-5684.
    [294]Di Anibal, C. V.; Odena, M.; Ruisanchez,1.; Callao, M. P. Determining the adulteration of spices with Sudan Ⅰ-Ⅱ-Ⅱ-Ⅳ dyes by UV-visible spectroscopy and multivariate classification techniques. Talanta 2009,79 (3):887-892.
    [295]Baggiani, C.; Anfossi, L.; Baravalle, P.; Giovannoli, C.; Giraudi, G.; Barolo, C.; Viscardi, G. Determination of banned Sudan dyes in food samples by molecularly imprinted solid phase extraction-high performance liquid chromatography. J. Sep. Sci.2009,32 (19):3292-3300.
    [296]Long, C.; Mai, Z.; Yang, Y.; Zhu, B.; Xu, X.; Lu, L.; Zou, X. Synthesis and characterization of a novel molecularly imprinted polymer for simultaneous extraction and determination of water-soluble and fat-soluble synthetic colorants in chilli products by solid phase extraction and high performance liquid chromatography.J.Chromatogr. A 2009,1216(47):8379-8385.
    [297]Di Anibal,C.V.;Ruisanchez I,O.M.;M.P.,C.Determining the adulteration of spices with Sudan Ⅰ—Ⅱ-Ⅱ—Ⅳ dyes by UV-visible spectroscopy and multivariate classification techniques. Talanta.2009,79(3):887-892.
    [298]Yan,H.;Qiao,J.;Wang,H.;Yang,G.;Row,K.H.Molecularly imprinted solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction for the determination of four Sudan dyes in sausage samples.Analyst 2011,136(12):2629-2634.
    [299]Liu,W.;Zhao,W.;Chen,J.;Yang,M.A cloud point extraction approach using Triton X-100 for the separation and preconcentration of Sudan dyes in chilli powder.Anal.Chim.Acta 2007, 605(1):41-45
    [300]Puoci,F.;Garreffa,C.;Iemma,F.;Muzzalupo,R.;Splizzirri,U.G.;Picci,N.Molecular]y imprinted solid phase extraction for detection of sudan I in food matrices.Food Chem.2005, 93(2):349-353.
    [301]Klampfl,C.W.;Leitner,T.;Hjlder, E.F Development and optimization of an analytical method for the determination of UV filters in suntan lotions based on microemulsion electrokinetic chromatography.ELECTROPHORESIS 2002,23(15):2424-2429.
    [302]Wang,Y.;Yang,H.;Wang,B.;Deng,A.A sensitive and selective direct competitive enzyme-linked imm unosorbent assay for fast detection of Sudan I in food samples.J.Sci. Food Agric.2011,91(10):1836-1842.
    [303]Mejia,E.;Ding,Y.S.;Mora,M.F.;Garcia, C.D.Determination ofbanned sudan dyes in chili powder by capillary electrophoresis.Food Chem.2007,102(4):1027-1033.
    [304]Ertas,E.;Ozer H.;Alasalvar,C.A rapid HPLC method for determination of Sudan dyes and Para Red in red chilli pepper.Food Chem.2007,105(2):756-760.
    [305]Pan,L.;Adams,M.;Pawliszyn,J.Determination of fatty acids using solid phase microextraction.Anal. Chem.1995,67(23):4396-4403.
    [306]Zhang,Z.;Duan,H.;Zhang,L.;Chen,X.;Liu,.W.;Chen,G. Direct determination of anabolic steroids in pig urine by a new SPME-GC-MS method.Talanta 2009,78(3):1083-1089.
    [307]Bagheri,H.;Saber,A.;Mousavi,S.R.Immersed solvent microextraction of phenol and chlorophenols from water samples followed by gas chromatography-mass spectrometry.J. Chromatogr.A 2004,1046(1-2):27-33.
    [308]Zanjani,M.R.K.;Yamini,Y.;Shariati,S.;J6nsson,J.A.A new liquid-phase microextraction method based on solidification of floating organic drop.Anal.Chim.Acta 2007,585(2): 286-293.
    [309]Leong,M.I.;Chang,C.C.;Fuh,M.R.;Huang,S.D.Low toxic dispersive liquid-liquid microextraction using halosolvents for extraction of polycyclic aromatic hydrocarbons in water samples.J.Chromatogr.A 2010,1217(34):5455-5461.
    [310]Besharati-Seidani,A.;Jabbari,A.;Yamini,Y.Headspace solvent microextraction:a very rapid method for identification of volatile components of Iranian Pimpinella anisum seed.Anal. Chim.Acta 2005,530(1):155-161.
    [311]Shariati-Feizabadi,S.;Yamini,Y.;Bahramifar,N.Headspace solvent microextraction and gas chromatographic determination of some polycyclic aromatic hydrocarbons in water samples. Anal. Chim.Acta 2003,489(1):21-31.
    [312]Perales,J.A.;Manzallo,M.A.;Sales,D.;Quiroga,J.M.Linear Alkylbenzene Sulphonates: Biodegradability and lsomeric Composition Bull.Environ.Contam.Toxicol.1999,63(1): 94-100.
    [313]Eichhorna,P.;Kneppera,t P.;Venturab,F.;Diaz,A.The behavior of polar aromatic sulfonates during drinking water production:a case study on sulfophenyl carboxylates in two European waterworks.Water Res.2002,36(9):2179-2186.
    [314]Farre,M.;Ram6,J.;Galve,R.;Marco,M.P.;Barcel6,D.Evaluation of a newly developed enzyme-linked immunosorbent assay for determination of linear alkyl benzenesulfonates in wastewater treatment plants.Environ.Sci.Technol.2006,40(16):5064-5070.
    [315]Fujita,M.;Ike,M.;Goda,Y.;Fujimoto,S.;Toyoda,Y.;Miyagawa,K.An Enzyme-Linked Immunosorbent Assay for Detection of Linear Alkylbenzene Sulfonate:Development and Field Studies.Environ.Sci.Technol.1998,32(8):1143-1146.
    [316]Leon,V.M.;Lopez,C.;Lara-Martin,P.A.;Prats,D.;Varo,P.;Gonzalez-Mazo,E.Removal of linear alkylbenzene sulfonates and their degradation intermediates at low temperatures during activated sludge treatment. Chemosphere 2006,64 (7):1157-1166.
    [317]Kristian K, B.; Martin, H. E.; Peter, R.; Kaj, H.; Jan So, R. Toxic effects of linear alkylbenzene sulfonate on metabolic activity, growth rate, and microcolony formation of Nitrosomonas and Nitrosospira strains. Appl. Environ. Microbiol.2011,67 (6):2489-2498.
    [318]Hu, Y. Y.; He, Y. Z.; Qian, L. L.; Wang, L. On-line ion pair solid-phase extraction of electrokinetic multicommutation for determination of trace anion surfactants in pond water. Anal. Chim. Acta 2005,536 (1-2):251-257.
    [319]Andreu, V.; Pico, Y. Determination of Linear Alkylbenzenesulfonates and Their Degradation Products in Soils by Liquid Chromatography-Electrospray-Ion Trap Multiple-Stage Mass Spectrometry. Anal. Chem.2004,76 (10):2878-2885.
    [320]Lara-Martin, P.; Gomez-Parra, A.; Gonzalez-Mazo, E. Simultaneous extraction and determination of anionic surfactants in waters and sediments. J.Chromatogr. A 2006,1114 (2): 205-210.
    [321]Akyuz, M. Ion-pair extraction and GC-MS determination of linear alkylbenzene sulphonates in aqueous environmental samples. Talanta 2007,71 (1):471-478.
    [322]Reiser, R.; Toljander, H.; Giger, W. Determination of Alkylbenzenesulfonates in Recent Sediments by Gas Chromatography/Mass Spectrometry. Anal. Chem.1997,69 (23): 4923-4930.
    [323]Eichhorn, P.; Barcelo, D. Application of liquid chromatography-electrospray-tandem mass spectrometry for the identification and characterisation of linear alkylbenzene sulfonates and sulfophenyl carboxylates in sludge-amended soils. J. Chromatogr. A 2005,1067 (1-2): 171-179.
    [324]Conrad, A.; Cadoret, A.; Corteel, P.; Leroy, P.; Block, J. Adsorption/desorption of linear alkylbenzenesulfonate (LAS) and azoproteins by/from activated sludge flocs. Chemosphere 2006,62(1):53-60.
    [325]Dick, S. G.; Fuerstenau, D. W.; Healy, T. W. Adsorption of alkylbenzene sulfonate (A.B.S.) surfactants at the alumina-water interface. J. Colloid Interface Sci.1971,37 (3):595-602.
    [326]Fytianos, K.; Voudrias, E.; Mouratidou, T. The sorption-desorption behavior of linear alkylbenzene sulfonate in marine sediments. Chemosphere 1998,36 (9):2067-2074.
    [327]Lee, H. J.; Park, K. Y.; Moon, S.-S.; Lee, J.-G. Thermal Decomposition of Waste Linear Alkylbenzene Sulfonate. Ind. Eng. Chem. Res.2008,47 (21):8412-8415.
    [328]A.S. Koparal, E. O. Removal of linear alkylbenzene sulfonate from a model solution by continuous electrochemical oxidation. Desalination 2006,197 (1-3):262-272.
    [329]Duarte, I. C. S.; Oliveira, L. L.; Saavedra, N. K.; Fantinatti-Garboggini, F.; Menezes, C. B. A.; Oliveira, V. M.; Varesche, M. B. A. Treatment of linear alkylbenzene sulfonate in a horizontal anaerobic immobilized biomass reactor. Bioresour. Technol.2010,101 (2):606-612.
    [330]Lara-Martin, P. A.; Gomez-Parra, A.; Kochling, T.; San, J. L.; Amils, R.; Gonzalez-Mazo, E. Anaerobic Degradation of Linear Alkylbenzene Sulfonates in Coastal Marine Sediments. Environ. Sci. Technol.2007,41 (10):3573-3579.
    [331]Nielsen, A. M.; Beall, C. E.; McCormick, T. P.; Russell, G. L. Biodegradation of Coproducts of Commercial Linear Alkylbenzene Sulfonate. Environ. Sci. Technol.1995,31 (12):3397-3404.
    [332]Duarte, I. C. S.; Oliveira, L. L.; Mayor, M. S.; Okada, D. Y.; Varesche, M. B. A. Degradation of detergent (linear alkylbenzene sulfonate) in an anaerobic stirred sequencing-batch reactor containing granular biomass. Biodegradation 2010,64 (2):129-134.
    [333]Garcia, M. T.; Campos, E.; Ribosa, I.; Latorre, A.; Sanchez-Leal, J. Anaerobic digestion of linear alkyl benzene sulfonates:Biodegradation kinetics and metabolite analysis. Chemosphere 2005,60 (11):1636-1643.
    [334]Victor M. Leon, A. G.-P., and Eduardo Gonzalez-Mazo. Biodegradation of Linear Alkylbenzene Sulfonates and Their Degradation Intermediates in Seawater. Environ. Sci. Technol.2004,38 (8):2359-2367.
    [335]Delforno, T. P.; Okada, D. Y.; Polizel, J.; Sakamoto, I. K.; Varesche, M. B. A. Microbial characterization and removal of anionic surfactant in an expanded granular sludge bed reactor. Bioresour. Technol.2012,107 (0):103-109.
    [336]Mantzavinos, D.; Burrows, D. M. P.; Willey, R.; Biundo, G. L.; Zhang, S. F.; Livingston, A. G.; Metcalfe, I. S. Wet Air Oxidation of Aqueous Solutions of Linear Alkylbenzene Sulfonates. Ind. Eng. Chem. Res.2000,39 (10):3659-3665.
    [337]Abu-Hassan, M. A.; Kim, J. K.; Metcalfe, I. S.; Mantzavinos, D. Kinetics of low frequency sonodegradation of linear alkylbenzene sulfonate solutions. Chemosphere 2006,62 (5): 749-755.
    [338]Eleni-Manousaki, E. P.; Nicolas-Kalogerakis, D. M.Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation. Water Res.2004,38 (17):3751-3759.
    [339]Doan, H. D.; Saidi, M. Simultaneous removal of metal ions and linear alkylbenzene sulfonate by combined electrochemical and photocatalytic process. J. Hazard. Mater.2008,158 (2-3): 557-567.
    [340]Chen, C. L.; Wang, X. K.; Nagatsu, M. Europium Adsorption on Multiwall Carbon Nanotube/Iron Oxide Magnetic Composite in the Presence of Polyacrylic Acid. Environ. Sci. Technol.2009,43 (7):2362-2367.
    [341]Huang, G.; Zhang, H.; Shi, J. X.; Langrish, T. A. G. Adsorption of Chromium(VI) from Aqueous Solutions Using Cross-Linked Magnetic Chitosan Beads. Ind. Eng. Chem. Res.2009, 48 (5):2646-2651.
    [342]Zhou, L.; Wang, Y.; Liu, Z.; Huang, Q. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. J. Hazard. Mater.2009,161 (2-3):995-1002.
    [343]Chen, C.; Hu, J.; Shao, D.; Li, J.; Wang, X. Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J. Hazard. Mater.2009,164 (2-3):923-928.
    [344]Zhu, H. Y.; Fu, Y. Q.; Jiang, R.; Yao, J.; Xiao, L.; Zeng, G. M. Novel magnetic chitosan/poly(vinyl alcohol) hydrogel beads:Preparation, characterization and application for adsorption of dye from aqueous solution. Bioresour. Technol.2012,105 (0):24-30.
    [345]Zhou, L.; Liu, Z.; Liu, J.; Huang, Q. Adsorption of Hg(II) from aqueous solution by ethylenediamine-modified magnetic crosslinking chitosan microspheres. Desalination 2010, 258 (1-3):41-47.
    [346]Yao, Y.; Miao, S.; Liu, S.; Ma, L. P.; Sun, H.; Wang, S. Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem. Eng. J.2012,184 (0):326-332.
    [347]Zhu, H. Y.; Fu, Y. Q.; Jiang, R.; Jiang, J. H.; Xiao, L.; Zeng, G. M.; Zhao, S. L.; Wang, Y. Adsorption removal of congo red onto magnetic cellulose/Fe3O4/activated carbon composite: Equilibrium, kinetic and thermodynamic studies. Chem. Eng. J.2011,173 (2):494-502.
    [348]Wang, L.; Wang, L.; Zhang, F.; Li, Y. One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chem. Eur. J.2006,12 (24):6341-6347.
    [349]Liu, B.; Huang, Y. Polyethyleneimine modified eggshell membrane as a novel biosorbent for adsorption and detoxification of Cr(VI) from water. J. Mater. Chem.2011,21 (43): 17413-17418.
    [350]Lin, Y.-F.; Chen, H.-W.; Chien, P.-S.; Chiou, C.-S.; Liu, C.-C. Application of bifunctional magnetic adsorbent to adsorb metal cations and anionic dyes in aqueous solution. J. Hazard. Mater.2011,185 (2-3):1124-1130.
    [351]Liu, X.; Xing, J.; Liu, H. Preparation and characterization of amino-silane modified superparamagnetic silica nanospheres. J. Magn. Magn. Mater.2004,270 (1-2):1-6.
    [352]Amara M, K.H. Modification of the cation exchange resin properties by impregnation in polyethyleneimine solutions Application to the separation of metallic. Talanta 2003,60 (5): 991-1001.
    [353]Zhang, D.; Niu, H.; Zhang, X.; Meng, Z.; Cai, Y. Strong adsorption of chlorotetracycline on magnetite nanoparticles. J. Hazard. Mater.2011,192 (3):1088-1093.
    [354]Hartmann, A.; Alder, A. C.; Koller, T.; Widmer, R. M. Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater. Environ. Toxicol. Chem.1998,17 (3):377-382.
    [355]Chen, B.; Wang, W.; Huang, Y. Cigarette filters as adsorbents of solid-phase extraction for determination of fluoroquinolone antibiotics in environmental water samples coupled with high-performance liquid chromatography. Talanta 2012,88 (1):237-243.
    [356]Yi, R. H.; Wang, Q. J.; Mo, C. H.; Li, Y. W.; Gao, P.; Tai, Y. P.; Zhang, Y.; Ruan, Z. L.; Xu, J. W. Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao. Environ. Pollut.2010,158 (7):2350-2358.
    [357]Herrera-Herrera, A. V.; Hernandez-Borges, J.; Rodriguez-Delgado, M. A. Fluoroquinolone antibiotic determination in bovine, ovine and caprine milk using solid-phase extraction and high-performance liquid chromatography-fluorescence detection with ionic liquids as mobile phase additives. J. Chromatogr. A 2009,1216 (43):7281-7287.
    [358]Arnold, D. R.; Granvil, C. P.; Ward, K. W.; Proksch, J. W. Quantitative determination of besifloxacin, a novel fluoroquinolone antimicrobial agent, in human tears by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2008,867 (1):105-110.
    [359]Xiao, Y.; Chang, H.; Jia, A.; Hu, J. Trace analysis of quinolone and fluoroquinolone antibiotics from wastewaters by liquid chromatography-electrospray tandem mass spectrometry J. Chromatogr. A 2008,1214(1-3):100-108.
    [360]Ramachandran, K. M.; Kumar, G. S. A new method for the determination of residual piperazine in pharmaceuticals by capillary gas chromatography. Talanta 1996,43 (8): 1269-1273.
    [361]Aly, F. A.; Al-Tamimi, S. A.; Alwarthan, A. A. Chemiluminescence determination of some fluoroquinolone derivatives in pharmaceutical formulations and biological fluids using [Ru(bipy)32+]-Ce(IV) system. Talanta 2001,53 (4):885-893.
    [362]McCourt, J.; Bordin, G. Development of a capillary zone electrophoresis-electrospray ionisation tandem mass spectrometry method for the analysis of fluoroquinolone antibiotics. J. Chromatogr. A 2003,990 (1-2):259-269.
    [363]Ashwin, H.; Stead, S.; Caldow, M.; Sharman, M.; Stark, J.; de Rijk, A.; Keely, B. J. A rapid microbial inhibition-based screening strategy for fluoroquinolone and quinolone residues in foods of animal origin. Anal. Chim. Acta 2009,637 (1-2):241-246.
    [364]Jjemba, P. K. The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land:a review. Agriculture, Ecosystems and Environment 2002,93 (1-3):267-278.
    [365]Kemper, N.; Kemper, N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecological Indicators 2008,8 (1):1-13.
    [366]Soren, T. B. Pharmaceutical antibiotic compounds in soils:a review. J. Plant Nut. Soil Sc.2003, 166(2):145-167.
    [367]Yi, R. H.; Wang, Q. J.; Mo, C. H.; Li, Y. W.; Gao, P.; Tai, Y. P.; Zhang, Y.; Ruan, Z. L.; Xu, J. W. Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao. Environ. Pollut.2010,158 (7):2350-2358.
    [368]Xu, W.; Zhang, G.; Li, X. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Res.2007,41(19):4526-4534.
    [369]徐维海;张干;邹世春.香港维多利亚港和珠江广州河段水体中抗生素的含量特征及其季节变化.环境科学2006,27(12):2458-2462.
    [370]Golet, E. M.; Xifra, I.; Siegrist, H.; Alder, A. C.; Giger, W. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ. Sci. Technol. 2003,37 (15):3243-3249.
    [371]Kim, S. C.; Carlson, K. Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. Environ. Sci. Technol.2007,41 (1):50-57.
    [372]邰义萍;莫测辉;李彦文.长期施用粪肥土壤中喹诺酮类抗生素的含量与分布特征.中国环境科学 2010,30(6):816-821.
    [373]李彦文;莫测辉;赵娜.菜地土壤中磺胺类和四环素类抗生素污染特征研究.环境科学2009,30(6):1762-1766.
    [374]王冉;刘铁铮;王恬.抗生素在环境中的转归及其生态毒性.生态学报 2006,26(1):265-270.
    [375]姚圆;莫测辉;李彦文.固相萃取-高效液相色谱法分析蔬菜中四环素类抗生素.环境化学2010,29(3):536-541.
    [376]Ternes, T. A.; Meisenheimer, M.; McDowell, D.; Sacher, F.; Brauch, H.-J.; Haist-Gulde, B.; Preuss, G.; Wilme, U.; Zulei-Seibert, N. Removal of Pharmaceuticals during Drinking Water Treatment. Environ. Sci. Technol.2002,36 (17):3855-3863.
    [377]Carrasquillo, A. J.; Bruland, G. L.; MacKay, A. A.; Vasudevan, D. Sorption of Ciprofloxacin and Oxytetracycline Zwitterions to Soils and Soil Minerals:Influence of Compound Structure. Environ. Sci. Technol.2008,42 (20):7634-7642.
    [378]Feitosa-Felizzola, J.; Hanna, K.; Chiron, S. Adsorption and transformation of selected human-used macrolide antibacterial agents with iron(III) and manganese(IV) oxides. Environ. Pollut.2009,157 (4):1317-1322
    [379]Gao, J.; Pedersen, J. A. Adsorption of sulfonamide antimicrobial agents to clay minerals. Environ. Sci. Technol.2005,39 (24):9509-9516.
    [380]王彬;龚继来;杨春平;曾光明;周雯婧.磁性多壁碳纳米管吸附去除水中罗丹明B的研究.中国环境科学2008,28(11):1009-1013.
    [381]Lina, Y. F.; Chen, H. W.; Chien, P. S.; Chiou, C. S.; Liu, C. C. Application of bifunctional magnetic adsorbent to adsorb metal cations and anionic dyes in aqueous solution. J. Hazard. Mater.2011,185 (2-3):1124-1130.
    [382]Liu, X.; Ma, Z.; Xing, J.; Liu, H. Preparation and characterization of amino-silane modified superparamagnetic silica nanospheres. J. Magn. Magn. Mater.2004,270 (1-2):1-6.
    [383]Ding, G.; Novak, J. M.; Herbert, S.; Xing, B. Long-term tillage effects on soil metolachlor sorption and desorption behavior. Chemosphere 2002,48 (9):897-904.
    [384]Elmund, G. K.; Morrison, S. M.; Grant, D. W. Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste. Bull Environ Contam Toxicol 1971,6 (2):129-132.
    [385]Ross, D. L.; Riley, C. M. Aqueous solubilities of some various substituted quinolone antimicrobials. Int JPharm 1990,63 (3):237-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700